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Abstract - Today, manufacturing companies are confronted with increasing pressure on prices, lead times and demands of 

product customization. They need to reinvent their business and industrial operations along the value chains for greater 

efficiency by exploring advanced technologies such as cyber-physical systems, artificial intelligence, robotics, the Internet of 

things, big data, cloud computing, etc. Under the current global scenario, the trend towards using these technologies is 

considered a major factor in the fourth industrial revolution (called industry 4.0). Many organizations are in the transition 

stage to I4.0 in order to make their processes more collaborative and smarter. Besides that, the new possibilities opened up by 

these technologies can also increase the efficiency of circular economy and, more specifically, sustainable manufacturing. 

This is to optimize resources, reduce waste generation, manage returned products, and help factories implement cleaner 

industrial processes. The present study considers articles focusing on environmental sustainability in the industry 4.0 context. 

We draw up an analysis of the theoretical background, including related works on sustainability and industry 4.0. The paper 

also presents sustainable reverse logistics architecture based on multi-agent and expert systems. We have combined the agent 

paradigm with industry 4.0 to achieve a scalable, efficient, reliable, autonomous, and adaptive system. 

Keywords - Sustainable manufacturing, Industry 4.0, Circular economy, Reverse logistics, Multi-agent system.

1. Introduction 

In recent years, an increasingly important focus has been 

given to the fourth industrial revolution (called industry 4.0). 

This new paradigm is marked by the introduction of digital 

technologies into the smart manufacturing environment.  

Before this, the industrial world has undergone several 

revolutions [1]. Chronologically at the end of the 18th 

century, the first industrial revolution introduced production 

lines and the steam engine using hydraulic energy to power 

the machines [103]. In the 1870s, the second revolution used 

electric production lines allowing higher yields than steam 

and lower production costs. The 20th century was marked by 

the production system transformation from mechanics to 

automation, thanks to electronics and computing. The fourth 

revolution primarily concerns the smart factory based on 

interconnected objects and data analysis [2]. Industry  4.0  

emphasizes the networks of machines in an intelligent 

factory setting capable of autonomously exchanging 

information in real time and controlling each other [3].  

Industry 4.0 marries production operations and physical 

equipment to smart technologies such as Cyber-Physical 

Systems, the Internet of Things, cloud computing, big data, 

machine learning, etc., for creating a more holistic and 

better-connected ecosystem. 

Cyber-Physical Systems (CPS) are the combination of 

IT elements (software, hardware, sensing devices, 

computational applications) and physical entities that can 

interact with humans through many distinct technologies [4] 

[5]. In the cyber-physical environment, machines can 

communicate, collect real-time data, and take informed 

decisions [6]. CPS leads a revolution in industrial 

applications for the monitoring, interaction, manipulation, 

and control of the manufacturing environment [7]. Regarding 

the Internet of Things, it aims to implement network and 

communication protocols between connected objects. 

Integrating IoT devices in cyber-physical systems provides 

various ways of interacting and manipulating physical 

systems through seamless network connectivity and refined 

user control over the actuation side [8]. It enables real-time 

transmission of data for decentralized decision-making 

processes [9]. So, combining CPS and IOT offers innovative 

services in different manufacturing applications. In addition, 

Big data in industry 4.0 has the vast potential to help reduce 

malfunction rate and improve production and product 

quality. These tools and algorithms enable to process of a 
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large variety of data, including capture, transfer, storage and 

analysis. The big data techniques are implicitly used in CPS 

by relating to the Internet of Things (for collecting data) and 

cloud computing (for storing and accessing data through the 

Internet). Big Data also improves system scalability, security 

and efficiency [10]. Several technologies have made emerged 

industry 4.0 concept [11]; we will review the main concepts 

in this paper. Most of the technologies applied within the 

Industry 4.0 are not necessarily new; what is recently 

developed is the combination of them to optimize, in our 

context, the sustainable environment. 

The progressive exploitation of resources and increasing 

environmental degradation have shifted focus to sustainable 

issues [12;13]. Sustainability is driving companies today to 

think beyond economic benefit goals and move towards 

sustainable manufacturing processes to address 

environmental and societal factors. Indeed, many companies 

are committed to the cause of sustainability in their processes 

[14] to optimize resources, reduce waste generation, manage 

returned products and help their factories to implement 

cleaner industrial processes. 

In this context, industry 4.0 technologies can be 

considered the new revolution in the supply chain, which 

aims to design sustainable products based on closed-loop life 

cycles and achieve maximum efficiency and outcome by 

minimum resource utilization [15]. 

The consideration of sustainability in supply chain 

management is mainly based on three factors [16]: (i) 

pressure from stakeholders (such as investors, non-profit 

organizations, profit organizations and customers) to reduce 

the environmental impacts that are generated (increase in 

waste generated, increase in pollution...); (ii) the 

improvement of the brand image which serves as an element 

of differentiation vis-à-vis competitors; and (iii) regulations 

which are becoming more and more restrictive. 

The main objective of our research is to explore the 

concept of a circular value chain and discuss the sustainable 

impacts. In fact, circular economy solutions based on 

industry 4.0 technologies have been developed to transform 

returned products in the end-of-life (EOL) or end-of-use 

(EOU) into new products [17]. These returned products can 

be recycled, repaired, reused, refurbished and 

remanufactured after their disposal. However, only the 

remanufacturing process guarantees that the quality of 

remanufactured products is the same as that of new products 

[18]. According to [19], the circular economy becomes not 

an option but inevitable for continued economic prosperity 

and ecological balance.  

 

Moreover, we explore using a Multi-Agent System 

(MAS) to implement a decentralized architecture, taking 

advantage of characteristics of agents, e.g., intelligence, 

autonomy, reasoning, cooperation, and reactivity. This 

system is based on various agents for performing: collecting 

data, processing data, storing data, making predictions and 

creating knowledge to facilitate making decisions processes.  

To solve the industry 4.0 problems, some authors have 

used the multi-agent approach for data analysis and 

prediction. Their experimental results show that prediction 

with a multi-agent system was more precise than prediction 

based only on the data [20]. MAS are a promising approach 

to developing Industry 4.0 components [21]. The 

autonomous decision and distributed cooperation between 

agents lead to high flexibility in smart manufacturing [22]. 

In this paper, we will aim to answer the following 

research questions: 

 

RQ1: What is the leading Industry 4.0 technologies used in 

sustainability manufacturing? 

 

RQ2: How do I4.0 technologies and multi-agent system 

adoption affect sustainable manufacturing? 

 

RQ3: How can we manage a returned product in the industry 

4.0 context? 

The paper comprises the following sections: Section 2 

describes the fundamental concepts of our research work, we 

survey anterior work; Section 3 presents the architecture of 

our system; Section 4 concludes the work. 

 

2. Theoretical Background 

2.1. Industry 4.0 

The term Industry 4.0 originates from Germany; it was 

first used at the Hanover Motor Show in 2011 [1]. 

Industrialists, experts and university researchers gathered 

together. They announced it to clarify their vision of industry 

integrated with high technology, namely terms that are 

becoming more and more popular such as Internet of Things, 

Internet of Services (IoS), Cyber-Physical Systems (CPS), 

Artificial Intelligence, etc., [23]. Different researchers have 

given different perceptions of the meaning of Industry 4.0. 

According to [24], Industry 4.0 is seen as business 

management through digitization to provide real-time market 

data, and operational information exchanged between 

machines and links in the chain logistics, production 

processes and customers. For [25], Industry 4.0 represents 

using sophisticated machines, advanced computer 

applications and sensors to plan, forecast, adjust and control 

societal outcomes and business models. Industry 4.0 is seen 

as an advantage for staying competitive in any industry. 

Thus, to create a more dynamic production flow, the 

optimization of the value chain must be controlled 

autonomously. Industry 4.0 encourages manufacturing 

efficiency by intelligently collecting data to make the right 

decisions and execute them without a doubt. By using the 
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most advanced technologies, the procedures for collecting 

and interpreting data will be easier. The operational 

interoperability capability acts as a "connecting bridge" to 

provide a reliable manufacturing environment in Industry 4.0 

[26]. Industry 4.0 is a strategy that builds on digital and 

connectivity, using different technologies to transform 

processes, products and services. This transformation occurs 

through decentralized and real-time decision-making, 

allowing new capacities for systems, in cooperation with 

humans, to go from surveillance to autonomy [27] [28]. 

 

2.2. Technologies of the 4.0 Context 

Industry 4.0 is commonly used as a synonym for Cyber-

Physical Systems [29]. It is defined by [30] as a set of 

connected cyber-physical systems capable of using and 

analyzing a large mass of data in the manufacturing field.  

CPS corresponds to the integration of machines and 

processes in order to make factories capable of 

communicating autonomously and independently [31] [32] 

by setting up monitoring and control elements' operating 

conditions [33] [34].  

According to our research, we summarize that Industry 

4.0 incorporates a set of technologies based essentially on the 

concept of a Cyber-physical system. The following authors 

consider a list of eleven core Industry 4.0 technologies 

resulting from a literature review. These technologies will 

support our research framework and architecture: 

2.2.1. Internet of Things (IOT) 

Devices and machines connected via the Internet with a 

wired or wireless network, capable of taking measurements 

on a physical environment (sensors) and acting on it 

(actuators). IIoT refers to IoT technology used in the 

industrial domain (ajouter references). IIOT uses connected 

sensors and smart devices in production workshops to collect 

data for analysis [35] [36]. The key elements of an IIOT 

platform are smart devices, the communication network 

(Modbus / TCP, TSN etc.) and Big Data Analytics (Hadoop, 

Hive, Spark etc.) [37]. The architecture of IIoT is often seen 

as an evolution of M2M (Machine to Machine) technology 

[38]. 

2.2.2. Big Data (BDA) 

In the context of Industry 4.0, data is generated by 

multiple sources such as sensors, machine controllers, 

manufacturing systems, people, etc. All this massive data 

(Volume), arriving at high speed in near real-time (Velocity) 

and different formats (Variety), is called "Big Data" [39]. 

The Internet of Things is considered an important data source 

that can lead industries to harness Big Data tools [40]. The 

Big data platform is based on various applications to collect, 

process and store data. It also offers advanced data analysis 

techniques (Big Data Analytics) and data interpretation tools 

(Visual Analytics). 

2.2.3. Cloud Computing (CC) 

Cloud Computing is a virtual platform based on IT 

services, public or private, offered by different suppliers 

(servers, storage, networking, services, applications). The 

cloud allows users to access documents/data from any 

location, provided they can access the network through the 

Internet. Cloud computing offers three services: IaaS 

(infrastructure as a service), PaaS (platform as a service) and 

SaaS (software as a service) [41]. In the context of 4.0, we 

talk about industrial cloud computing. The platform supports 

data from sensors and provides secure data sharing between 

machines, information systems and operators. However, due 

to the increasing number of accesses, the cloud can 

experience problems with bandwidth, latency, network 

downtime, etc. [42]. This is why other layers of processing 

and storage can be combined with the cloud layer; we speak 

of Fog computing and Edge computing. Fog Computing 

provides storage, computing and networking services, etc., 

near user devices (e.g., information systems, network 

routers). This concept is based on decentralized data 

processing in elements called "fog no" [30 43]. The data 

generated by the IIOT will then be processed first in the Fog 

layer before being transmitted to the cloud for other forms of 

processing. 

Regarding Edge computing, it allows the integration of 

computing power and data storage into the physical 

environment of the IOT (machine, robot, controller, etc.). 

Each object has its system/application that it uses for its 

internal processing. In any case, whether for the Fog or the 

Edge, the data is processed and analyzed locally, with no 

need to have internet access. The company can consider 

combining the three concepts depending on the platform it 

wants to set up. The following figure shows the interaction 

between the different layers. 

 
Fig. 1 Cloud computing layers (Source: www.visma.com) 

Artificial intelligence (AI) is a cognitive science based 

on a set of theories and techniques allowing to design of 

systems capable of simulating intelligence and reproducing 

human behaviour in their reasoning activities [44]. Today we 

are talking about industrial artificial intelligence because AI 

technologies can help industrial companies improve their 

systems' availability, reliability, autonomy and performance 
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quality. Industrial AI can help develop intelligent predictive 

systems to diagnose, forecast, predict, and help avoid or 

prevent breakdowns and shutdowns. AI was first developed 

through expert systems. This tool remains effective for 

performing reasoning from a knowledge base (facts and 

rules) fed by human experts, but today in 4.0, machine 

learning is used. ML uses mathematical and statistical 

approaches to empower industrial systems to learn from data 

analysis. The aim is to design systems that learn over time 

and by themselves, thus developing some form of 

intelligence and autonomy rather than reproducing 

predefined human decisions. Machine Learning is 

characterized by exploiting supervised learning algorithms, 

unsupervised learning, semi-supervised learning and 

reinforcement learning [45]. 

 

2.2.4. Data Mining (DM) 

Data mining is applied to efficiently provide valuable 

information for management and decision-making in 

companies [46]. This technology consists of extracting 

knowledge and rules to detect new trends from a large 

number of fuzzy or random data (Big data). The data used 

generally does not have an apparent connection at first 

glance. Therefore, data mining analyzes these data from 

several angles by modeling, classifying and grouping them to 

identify hidden correlations better and predict future results 

[47]. Once trends are generated, they can help machine 

learning perform its functions [48]. We can then say that 

Data-mining refers to the practice of analyzing data, using 

learning techniques, from a set of data generated by other 

computer tools. 

2.2.5. Cyber-Security (CS) 

Aims to protect computer networks from accidental or 

malicious attacks and threats [49]. In the industrial context, 

traditional systems are generally closed, and security is 

ensured by isolation and physical access control. However, 

modern manufacturing machines are equipped with many 

smart devices connected to other machines, PLCs, data 

management systems (ERP, MES, CMMS, etc.) and data 

analysis systems. This interconnection now presents threats 

to the integrity of systems. According to a study conducted 

by the European Network and Information Security Agency 

(ENISA), the most critical elements in terms of cybersecurity 

in Industry 4.0 are control systems Industrial Control 

Systems (ICS Industrial Control systems), followed by 

Industrial Internet of Things (IIoT) gateways, sensors and 

actuators [50]. Indeed, security does not have absolute 

priority when creating IoT devices [51]. Poorly protected, 

this can constitute potential loopholes and endanger specific 

industrial applications for piloting, planning and monitoring 

production. Potential hacker targets seek trade secrets or 

financial gain through ransomware and data exfiltration. 

Cyber security is therefore expected to become an integral 

part of the strategy, design and operations of companies that 

adopt the Industry 4.0 paradigm. 

2.2.6. Additive Manufacturing (AM) 

3D printing is based on the principle of rapid and precise 

manufacturing of parts by accumulating successive layers 

[52]. The reduction in costs of 3D printers and the precision 

and speed of printing has encouraged the use of this 

technology in industries, whether to create small spare parts, 

complex components or prototypes. Several techniques of 

additive manufacturing have been explored in recent years. 

These techniques can be classified by the state of the material 

used in the printing: (i) a liquid material (e.g. molten wire 

deposition (FDM) modeling); stereolithography (a rapid 

prototyping technique (SLA), which makes it possible to 

manufacture solid objects from a digital model); discrete 

particles (usually powders, e.g. selective laser sintering 

(SLS)); electron beam fusion (allowing 3D printing of metal 

parts (EBM)); or solid sheets (manufacture of objects by 

rolling, for example, modeling of laminated objects (LOM)) 

[53]. Each of these techniques has its own strengths and 

weaknesses [54]. 

 

2.2.7. Robots and Cobots (RO) 

Robots are widely used in industry, and they have made 

an irreplaceable contribution to manufacturing, assembly, 

transport, etc. They are known for their speed in carrying out 

tasks and their precision. Robotics technologies are 

experiencing significant development thanks to the 

emergence of Industry 4.0. Indeed, the next generation of 

robotics could play an essential role in meeting the dynamic 

needs of intelligent and collaborative manufacturing [55]. 

Robots are generally classified in the category of cyber-

physical systems, and they are generally composed of: a 

digital controller for the execution and management of the 

system, physical components for the perception of the 

environment and the manipulation of elements that facilitate 

movement, cyber components for connection to the network 

[56]. Robots can be autonomous, mobile and collaborative 

"Cobots". An autonomous mobile collaborative robot can 

move around different locations in the factory. It is used in 

manufacturing workshops to improve flexibility and 

productivity [57]. Collaborative robots are set up to facilitate 

human-robot collaboration [58]; they are built in such a way 

that they can communicate with each other and with people, 

learn, educate themselves and teach human beings. 

 

2.2.8. Digital Twin (DT) 

Each product has its cyber twin, generally developed 

with the physical product. The digital twin can be defined as 

a complete digital representation of an individual product 

[59]. A digital twin includes the same primary characteristics 

as well as the behavior of the actual product through 

recorded information or basic models. The behavior of the 

actual product can be simulated using the digital twin in a 

provided environment. This simulation is decoupled 

according to the time and place of the physical product. So 

the primary benefit of a digital twin is the location and time-

independent simulation of the behavior of an actual product. 
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With this new concept, experiences with actual products can 

be reduced; therefore, time and costs can be saved in the 

product development process [60]. The basic structure of 

cyber twins is an information model in which all relevant 

information and their relationship to each other is collected 

and described. At the end of this structural model, the sensor 

data is recorded and can be used in the calculations. 

Analyzes are continuously updated with real-time sensor 

data. Therefore, decisions about future behavior can be made 

based on reliable analyzes, calculations and simulations [61]. 

 

2.2.9. Blockchain (BC) 

It is a technology applied to transactions requiring 

traceability and visibility. The blockchain allows users 

connected to the network to share information without an 

intermediary. In a report published in December 2018 on the 

uses of blockchains and other registry certification 

technologies, the joint information mission of the National 

Assembly defines blockchain as a registry. This extensive 

database has the particularity to be shared simultaneously 

with all its users. The latter can enter data into it according to 

specific rules set by a very well-secured computer protocol 

thanks to cryptography [62]. The particularity of this register 

is the recording of data in the form of small blocks, which 

can no longer be modified after validation (except by 

agreement between its owners). Thus, blockchain has 

attracted much attention in distributed technologies such as 

the Internet of Things, as it improves security and privacy, 

increases system fault tolerance, and provides faster 

reconciliation. , creates a scalable network and contributes to 

the reduction of costs and the time of removal of 

intermediaries [63]. 

2.2.10. Augmented Reality (AR) 

Augment reality and virtual interface, two terms 

denoting a two or three-dimensional technology that 

increases sensory quality by adding a contextual layer of 

information to real data. This technology is based on 

methods that represent the real environment by adding virtual 

fictitious elements [64]. Augmented reality can provide 

information on all phases of a product's life cycle (product 

design, production processes and progress, quality control, 

etc.). This information is helpful for operators and 

hierarchical superiors to make the necessary decisions [105]. 

The realization of augmented reality requires the 

development of several technological and computer supports 

to limit the gap between the imaginary and the real, thus 

creating a convergence of images [66] [67]. 

 

2.3. Sustainable Manufacturing and Circular Economy 

The increase in customer demands can cause severe 

damage to the environment, mainly because of industrial 

waste and the use of non-renewable materials. Manufacturers 

are now oriented towards sustainable development, changing 

their production patterns to shield natural resources and 

ecology [68]. Thus, when producing a new product, the focus 

should be on minimizing the entire product life cycle's 

adverse effects on the environment from the very early stage 

of material extraction towards product disposal [69]. In this 

context, different concepts have emerged to achieve 

sustainable development goals, such as "green logistics", 

"reverse logistics", "sustainable manufacturing", "sustainable 

supply chain", "circular economy", "recycling", 

"remanufacturing", etc. 

Sustainable manufacturing can be defined as « the 

production of products in a way that minimizes 

environmental impacts and takes social responsibility for 

employees, the community, and consumers throughout a 

product's lifecycle, while achieving economic benefits » 

[70;71]. It can also be described as integrating different 

processes to produce high-quality products with minimum 

resource utilization. To ensure sustainability in 

manufacturing, three elements, i.e., processes, products and 

systems, must individually demonstrate the benefits at the 

social, economic and environmental levels [72]. Another 

definition considers sustainable manufacturing as "a value-

added recovery process, which can recapture the value of the 

end-of-life product or discard product to its original 

distinctive value » [73]. In addition, Sustainable 

manufacturing plays a vital role in the circular economy to 

extend the life cycle of end-of-life and end-of-use items (18). 

Sustainable manufacturing is considered a subset of the 

circular economy [74]. 

Furthermore, the circular economy concept focuses on 

removing wastes through improved exploitation of resources 

[74]. There are various possibilities for defining CE [75]. We 

adopt the most cited definition proposed by the Ellen 

MacArthur Foundation [76]. This British charity association 

helps to propagate the principles of the circular economy and 

defines it as a "system restorative and regenerative by design, 

which aims to maintain products, components and materials 

at their highest utility and value". This foundation 

distinguishes between two flows, biological and technical.  

 

2.4. Related works on Sustainability and Industry 4.0 

Many studies have identified challenges, opportunities 

and the impact of Industry 4.0 technology adoption on 

sustainable manufacturing and circular economy (77; 78; 68; 

71; 79; 80 ). Authors in (81) present the challenges of 

sustainable development and the key industry 4.0 elements 

which support these challenges. They discuss performance 

parameters in three dimensions—economic, social and 

ecological. [82] identify the barriers to sustainable operations 

in the era of Industry 4.0 and circular economy. [74] present 

a comparative analysis exploring opportunities for Industry 

4.0 technologies and their potential impacts on sustainable 

manufacturing. [79] analyze the challenges in implementing 

Industry 4.0 technologies in SMEs for ethical and sustainable 

operations. Authors rank and categorize these challenges by 

the DEMATEL approach. A study in [83] investigates 
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impacts using the Triple Bottom Line perspective for 

sustainable development. In this context, a model for 

evaluating the influence of Industry 4.0 technologies on 

sustainable metrics is proposed. This model analyses the 

impact of Industry 4.0 technologies on several key 

performance indicators related to sustainable development. 

[106] discuss how Industry 4.0 technologies can underpin 

circular economy strategies. The paper presents technologies 

on which organizations can base sustainable operations 

management decisions. 

 

Other studies have proposed different sustainable 

manufacturing conceptual frameworks and architectures by 

applying Industry 4.0 technologies. [85] propose a 

sustainable framework to assist manufacturing organizations 

in the identification of barriers and also rank the solutions to 

overcome those barriers. [86] propose a conceptual 

framework of big data analytics in Sustainable smart 

manufacturing. The framework can be used as a guideline to 

select the relevant lifecycle stages that impact sustainable 

production. The work done in [87] Propose a new 

architecture which combines different technologies in order 

to propose a scalable architecture based on: CPS (responsible 

for establishing the real-time communication control 

network), digital-twin (responsible for fine perceptual control 

and simulation of the physical process); Big data 

(responsible for preprocessing; processing and storage of 

remanufacturing data) and IoT-Cloud (responsible for 

providing a software environment for Big Data Analysis). 

Based on these smart technologies, all the information is 

integrated to implement the prediction and optimization 

management for the product's multi-life-cycle 

remanufacturing process. The authors of [88] present the 

development of a decision-making framework to enable the 

remanufacturing of the Rechargeable Energy Storage 

System. This framework's novelty lies in identifying the 

exact data type and data sets required to enable 

remanufacturing, hence "data-driven remanufacturing".  

The study in [89] develops a new framework by 

combining big data analytics, additive manufacturing and 

sustainable smart manufacturing technologies. An 

application scenario was also presented to demonstrate the 

proposed framework. Authors in [90] use supervised 

machine learning techniques to understand the 

environmental, economic and social impacts on the 

sustainability of food consumption. An integrated 

sustainability assessment and modeling framework is applied 

to 29 food consumption categories. The proposed framework 

involves five steps: (1) economic input-output life cycle 

sustainability assessment, (2) non-dimensional 

normalization, (3) sustainability performance evaluation, (4) 

centroid-based clustering analysis, and (5) sustainability 

impact modeling. 

 

 

2.5. Multi-Agent System and Sustainability 

A multi-agent system (MAS) is an artificial intelligence 

method used in our research to design and implement an 

open architecture that can support the integration of new 

logistics entities, processes, and decision-making criteria and 

indicators. A multi-agent system is defined as a set of entities 

that coordinate their knowledge, goals, experiences and plans 

to act or solve problems. Multi-agent systems distribute tasks 

between different agents (autonomous or semi-autonomous 

entities) in order to achieve their objectives in an optimal 

state. An agent can be defined as a computer system located 

in an environment from which it takes its input. The agent 

can act independently in this environment to meet its 

objectives [91]. 

Different researchers have used multi-agent systems to 

solve supply chain management problems, such as 

collaborative production planning, the collaboration of 

multiple logistics parties [92], coordination between 

enterprises, information sharing, order fulfillment process, 

provider selection, sustainable manufacturing [93], 

remanufacturing, etc. Regarding sustainability, several 

authors have applied MAS in developing sustainable 

manufacturing or sustainable supply chain. Other studies are 

focused on a specific activity, such as recycling, 

remanufacturing or repairing in reverse logistics. Our 

literature review on multi-agent systems applied in 

sustainable manufacturing allowed us to identify some 

related works. For example, authors in [94] present a system 

to implement a reverse production process following a 

Service-Oriented Manufacturing paradigm utilizing a virtual 

market. A multi-agent system supports this architecture to 

implement a virtual market for buying and selling products to 

be recycled (i.e. old materials, wastes, used items, etc.). This 

proposed system aims to facilitate stakeholders' participation 

in green supply chain activities. These activities are 

implemented using web services published in the cloud and 

managed by an SOA framework. [107] propose a Multi-

Agent-based Personalised Product Service System. This 

architecture consists of a sensor agent module, a rating agent, 

a similarity agent, a user package agent, a system agent, a 

selection agent and a recommendation agent.  

The authors propose a clothing rental service for male 

customers based on a specified set of needs. Thus, the agents 

cooperate in developing a personalized Product Service 

System (PSS). [96] propose to use collective intelligence 

techniques from multi-agent systems to implement a decision 

support system in remanufacturing context. This system 

transforms highly variable post-used components into new 

products using reuse-oriented strategies. A multi-agent 

system is also used to support decision-making process in 

recycling-oriented product assessment already at the design 

stage [97]. A study (Ghadimi, 2019) presents a system based 

on the multi-agent system for addressing sustainable supplier 

evaluation and selection process to provide a communication 



Nawal Bensassi et al. / IJETT, 70(12), 179-193, 2022 

 

185 

channel, structured information exchange and visibility 

among suppliers and manufacturers. 

3. Proposed Architecture 
This section details our proposed architecture, shown in 

the figure. 2. In our work, each level incorporates one or 

several agents. Agents communicate and collaborate between 

themselves to carry out the tasks entrusted to them [99]. 

Agents can work autonomously, make decisions 

independently, and interact with each other to achieve global 

objectives. The architecture supports the management of the 

reverse flows. Reverse logistics (RL) is the process initiated 

by the product returned by customers to suppliers. It is 

considered a key factor of sustainable manufacturing (100). 

Once the good has been collected and sorted, its fate has to 

be decided. Different options can be made, such as repair (if 

the product is defective), remanufacturing (for reselling to 

secondary markets or even for the main markets), recycling 

(to remove raw material), and the elimination of some parts 

or the entire product. 

 
Fig. 2 Proposed architecture 

 

3.1. Description of Layers 

3.1.1. Data Source Layer 

In order to procure the real-time data, some IoT devices 

are configured on the whole manufacturing cycle (smart 

design, smart production, smart delivery, smart recovery) and 

deployed to the products, in their locations or their parts (ex: 

the RFID device can be embedded into the products and 

record their lifecycle status). Other data can be acquired from 

the enterprise information systems (PLM, ERP, MES, etc.), 

including data about daily operations stored in transactional 

databases or else data of websites and web services. These 

data are used to monitor products during the different 

product lifecycle management processes and improve 

decision-making. Generally, we use two main data sources: 

internal (managed and controlled by the company) and 

external (not controlled by the company). These data are 

classified into three types [101]: 

Structured Data 

Structured data refers to data that has a fixed format 

organized into rows and columns, such as data stored in 

relational databases.  

 

Unstructured Data 

Unstructured data is data that does not have a specific 

format making it difficult to process; it can be textual (like 

emails, PowerPoint presentations, and Word documents) or 

non-textual (such as images, audio and video).  

 

Semi-Structured 

Semi-Structured is a form of structured data. It is not 

organized by the tabular structure but contains metadata tags 

to separate semantic elements contained therein. Email, SMS 

or XML documents are an example of semi-structured data. 
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Table 1. Data Example 

Source Data Type 
Protocols/ 

Interfaces 
Latency 

Smart 

Devices 

Degeneration 

status 

Temperature 

Shutdown 

problem 

For data (MQTT, 

http, CoAP, etc.) 

For Network 

(Wifi, ZigBee, Z-

Wave, etc.) 

Real-

time 

Information 

system 

Database 

Product type 

Sales volume 

number of 

returns 

ODBC, OLEDB, 

JDBC, etc. 
Batch 

 

We need to use appropriate IOT technologies in this 

layer; a comparative study should be performed before 

implementation based on the following criteria: frequency 

bands, power consumption, range, cost, security, standards & 

throughput [104]. 

 

3.1.2. Data Preprocessing Layer 

It is responsible for preparing real-time and non-real-

time data captured from the data source layer (IOT sensors, 

RFID, database transaction...) to render them suitable for 

further processing and analysis. The data collected is 

heterogeneous; homogenization is required before 

transmitting it to the upper layers. This level includes the 

tasks of filtering, cleaning, reducing and transforming data. 

Data preparation consists of modifying and deleting 

incorrect, incomplete, irrelevant or repetitive data because 

such data is generally neither necessary nor useful for data 

processing and analysis. To complete the data preparation, 

we need to use in first the correct tool for ingestion. Our 

choice must depend on many parameters, such as data size, 

data format, data frequency or data velocity [102]. We 

classify two types of tools: Batch Data Ingestion, useful for 

offline analytics (e.g. Sqoop Apache) and Stream Data 

Ingestion (e.g. Flume Apache). The preparation layer loads 

the relevant data to the distributed storage layer (which 

supports the Hadoop ecosystem). 

 

3.1.3. EOL Processing Layer 

Each company's return process is defined and specific. 

However, generally, a product may be returned within the 

testing period for a refund or beyond the testing period for 

repair or replacement under warranty. If the product is no 

longer under warranty, others operations will be applied 

(including repairing with cost, remanufacturing, recycling, 

disposal, etc.). Our work (99) presents the generic returns 

handling supported by our multi-agent architecture. The 

process (represented by the Business Process Model and 

Notation approach) starts with controlling whether the 

product is accepted or rejected and whether it is a defective 

or end-of-life/end-of-use product. The agents of this level are 

initiated if the system requests returned products. 

 
Fig. 3 Steps of data ingestion (adapted from Erraissi and al., 2018) 
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3.1.4. Decision-Making Layer 

This layer offers different functionalities for decision-

support. These functionalities could take the form of 

descriptive, predictive, and prescriptive analytics depending 

upon the need of the company and deployed tools. We 

propose a hybrid approach by implementing two principal 

modules: a reactive scheduling module (based on 

conventional methods) to optimize/adapt remanufacturing 

orders and sustainable manufacturing resources; and a 

learning module for data-driven modeling via machine 

learning algorithms. Indeed, predicting customers' returns, 

preferences, demands, the number of remanufactured parts, 

etc., are effective means for manufacturers to make their 

process more efficient and products better to customers' 

needs. This level uses the data generated directly by the data 

preprocessing layer and some results of the EOL processing 

layer to apply the learning models and predict the market 

requirements, helping manufacturers improve and develop 

the appropriate product for sustainable practices.  

The combination of big data methods and machine 

learning models (e.g. clustering, classification, neural 

network, etc.) allows different knowledge to be revealed for 

decision-making. The deployment of machine learning 

models involves the use of two databases as well as different 

steps. The first step consists of determining the relevant data 

sources (learning data) and selecting the appropriate 

machine-learning algorithms that work best for the kind of 

prediction required by managers. In the next step, we use the 

chosen algorithm to improve the capacity of the predictive 

model (learning step). We move on to the evaluation step to 

test the predictive model with new data that has never been 

used by the learning (validation data). Then, we can improve 

our learning by adjusting the parameters. Otherwise, we 

move directly to the last step, which allows using the 

developed model to predict the expected results. The output 

of this level can be used for visualization via a human-

machine interface or be sent to a physical environment so 

that control actions can be taken on the manufacturing supply 

chain. 

 

3.1.5. Application Layer 

Application layer provides the visualization of 

information and knowledge for end-users. Different 

application services can be proposed at this level (e.g. 

sustainable and smart product design, optimization of 

remanufacturing process, reduction in energy consumption, 

sustainable and smart maintenance, etc.) for efficient, 

sustainable smart manufacturing. At this level, we can use 

the outcoming of the decision-making layer or some data 

generated by Pre-processing layer (in this case, users can 

visualize KPIs on Business Intelligence dashboards or 

Decision Reports). 

 

3.1.6. Storage Layer 

We use in the first a relational database for the system's 

data storage. The collected data sets from the physical 

environment must be effectively integrated into the 

database/datawarehouse and be securely stored. So, 

manufacturing enterprises are focused principally on 

structured data storage but also manage the other categories 

of data. However, other data store technologies are used to 

manage large amounts and a variety of data, such as 

Distributed File Systems and NoSQL Databases. 

 

3.1.7. Others Evolutif Layers 

Our work consists of providing an opened and 

distributed architecture by integrating new functionalities and 

technologies. In this context, we can integrate a simulation 

module based on digital twins and the features of cloud 

computing. The cloud can provide the storage capability for 

the complete lifecycle of data processed by big data 

technologies. However, several challenges are involved in 

applying cloud storage to sustainable smart manufacturing, 

such as security, privacy and query optimization [86]. 

Regarding the digital twin, it provides rich information to 

support the production and recovery operation throughout the 

product lifecycle. Indeed, the product moves from the 

beginning-of-life (BOL) to middle-of-life (MOL) and end-of-

life (EOL). Thus the knowledge and information maintained 

inside the digital twin become bigger and richer 

simultaneously and can be used for analysis and decision-

making. 

 

3.2. Description of Agents 

The responsibilities of these agents, defined in Table 2, 

describe the generic behavior of each agent (the internal job 

that the agent has to do). Some agent functions may depend 

on the company's context. 
 

Table 2. Responsibility table of proposed agents 

Agents Responsibilities 

Communication 

Agent 

Manages interactions between the whole 

system agents 

Uses the structure of FIPA ACL for 

managing the interaction between agents 

Mediator Agent 

Coordinates the various tasks of the system 

Decides which agent can be performed the 

tasks 

Initiates and sends requests to agents 

Collected Data 

Agent 

Acquires data from the data source layer 

Sends requests/information to the mediator 

Preprocessing 

Agent 

Receives requests from mediator agents for 

preparing and filtering data 

Handles missing and noisy data 

Transforms the data into appropriate forms 

for data analytics 

Sends the final data set obtained to the 

resource agent for storage 
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Inspect Agent 

Receives requests from the mediator agent 

to inspect returned products 

Analyzes the characteristics of the returned 

products 

Checks if there are similar problems in its 

knowledge base using the Case-Bases 

Reasoning approach 

Requests sustainable processing rules from 

the expert agent 

Proposes solutions to manage the returns 

product 

Communicates the authorization number to 

the client (if the returned product is 

accepted)  

Informs the repairs agent or the recovery 

agent (depending on its decision) 

Informs the mediator agent of the proposed 

solution (After receipt of the results from the 

invoked agents) 

Requests the resource agent for data storage 

Repair Agent 

Receives requests from the inspection agent 

Takes care of the reparation's returned 

products to process 

Checks if the product is under warranty 

before proceeding to process 

Checks its knowledge base for managing the 

repair processing  

Informs the Inspect agent of the proposed 

solution 

Sends requests to the recovery agent if the 

product is not repairable 

Recovery Agent 

Receives request message from repair agent 

specifying that the returned product had to 

be recovered 

Select the appropriate rules to collect the 

product  

Decide which entities are responsible for the 

product recovery to optimize the customer 

collecting process at the collection site 

Informs the inspect agent of the proposed 

solution 

Sorting Agent 

Receives the confirmation of the returned 

product (end of life or end of use) from the 

mediator agent 

Separates the product into different 

components  

Checks the component's state and classifies 

them into reusable, recyclable or disposal 

Separates the components into hazardous 

and non-hazardous 

Checks its knowledge base for choosing the 

right option (based on past experience) 

Takes the best decision on processing 

options for EOL and EOU products (the 

main options supported by our process are 

recycling, resale, remanufacturing and 

disposal) 

Requests sustainable rules from the expert 

agent  

Sends the result sorting to the processing 

agent 

Processing 

Agent 

Supports the different steps of the chosen 

option (if the product needs to be recycled, 

remanufactured, disposed of, or 

reconfigured, etc.) 

Allocates the components to a particular 

processing unit according to their 

characteristics 

Informs the mediator agent of the final result 

(different data can be shared with the 

planner agent or directly with the decision-

making agent via the mediator agent, ex: 

product state, component state, amount of 

components to be used, processing unit) 

Requests the resource agent for data storage 

Expert Agent 

Receives requests from the return inspection 

module's agents and return processing 

Module's agents 

Applies the rule-based reasoning technique 

for responding to requests (Its knowledge 

base contains different regulations, ex 

WEEE processing) 

Helps the other agents to make their 

decision 

Sends the sustainable processing rules (IF-

ELSE) to requesting agents 

Learning Agent 

Exploits the data generated by preprocessing 

layer  

Receives requests from mediator agent 

Analyzes the features 

Chooses the appropriate algorithm to use  

Applies the learning model 

Evaluates the predictive model by testing it 

with new data 

Adjusts settings 

Sends the result to the decision agent 

Planner Agent 

Receives requests from mediator agent 

Applies the algorithms defined by the 

system designer (genetic algorithms, colony 

optimisation, etc.) according to the 

sustainable manufacturing problems 

Includes forecasting and remanufacturing 

planning capabilities  (with the purpose of 

defining the optimal remanufacturing 

process plans in the dynamic production 

plants) 

Schedules the closed-loop supply chain 

operations  

Makes a decision as to when the 

components need to be transferred from the 

recovery warehouse 

Optimizes the resources 
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Considers the consumer preferences in the 

selection of results 

Sends the result to the decision agent 

Decision Agent 

Takes different categories/levels of 

decisions 

Can receive the results generated by 

different agents: the processing agent, the 

learning agent or the planner agent. 

If it concerns learning, this agent applies the 

predictive model and infers knowledge  

Otherwise, here are some decision examples 

:Forecasting product returns, improving 

product design (simplifying the disassembly 

process), predicting customer demand, 

estimating different costs, etc. 

Sends the final decisions to visualization 

agents (to display information / KPI on the 

human-machine interface) 

Sends the final decisions to control the agent  

Visualization 

Agent 

Receives the final results from the decision 

agent 

Represent data to end users 

Resource Agent 

Receives requests for data  

Connects to database and datawarehouse 

and extracts the data 

Sends data to agents 

Records the data collected in real-time or 

batch mode 

Control Agent 

Receives the final results from the decision 

agent  

Performs actions directly in the physical 

environment via actuators 
 

3.3. Agents Implementation: Future Perspectives 

We will use the agent declaration, communication and 

interaction phase for system implementation on the JADE 

platform. The agent entity in the Jade platform is a class that 

inherits from "jade.core.Agent". This class contains the 

"setup" method, which is the initialization part of the agent. 

Each agent must be initialized and linked to one or more 

behaviors. It is considered a task that the agent must perform 

at a specific time and according to constraints. The definition 

of behaviors is carried out by "Behaviours", which allow 

agents to act in the JADE platform.  
 

Behaviors are implemented as instances of a class 

inheriting from "jade.core.behaviours.Behaviour" and can 

contain at least two methods. The "action" method: defines 

the actions to perform when the behavior is invoked. The 

"done" method: returns a boolean indicating whether the 

behavior has finished executing or not. 

The agents of our system use messages conforming to 

the FIPA-ACL specifications. The JADE platform uses ACL 

(Agent Communication Language) as an inter-agent 

communication language. ACL is based on communication 

acts that can be distinguished into three types: 
 

• Informative 

query_if, subscribe, inform, inform_if confirm, 

disconfirm, not_understood 
 

• Tasks distribution 

request, request_whenever, cancel, agree, refuse, failure 
 

• Negotiation 

cfp, propose, accept_proposal reject_proposal 
 

4. Conclusion 
This paper presents our architecture platform for 

managing and predicting reverse flows in sustainability. Our 

main objective is to use industry 4.0 technologies, such 

exploitation of IOT and BIG DATA ecosystem. 

The strengths of the presented architecture are (i) the use 

of the multi-agent system for more autonomy and 

intelligence and (ii) the ability to gather data from 

heterogeneous devices and tools to combine them on 

different artificial intelligence technologies. This architecture 

will serve as a roadmap for the future work of our research 

laboratory. In the following steps, we intend to implement 

the MAS application and use Machine Learning algorithms 

to develop a remanufacturing predicting case. 
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