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Abstract - The segmentation and classification of the prostate lesion or malignant growth through manual observation are 

highly challenging. Machine learning-based semantic segmentation architecture was used to segment the diseases based on 

lesion appearance and characteristics automatically. Still, those models consume more energy and processing time and will 

lead to reduced scalability and reliability. To tackle these limitations, deep learning (DL) based semantic segmentation 

architecture can be implemented, which has more advantages in discriminating the features of the lesions efficiently and 

accurately. This paper proposes DL-based semantic segmentation models such as LinkNet, U-Net, PSPNet and FPN. These 

proposed segmentation models are integrated with convolutional neural network (CNN) based backbone architectures like 

ResNet-34 and SE-ResNet-34. Initially, the nearest neighbour interpolation technique is employed as preprocessing technique 

for scaling the image. Next, normalization of intensity is employed to minimize the variations in the intensity distributions of 

the image. Normalized image is used for processing various settings of LinkNet and U-Net architectures. Furthermore, the 

proposed model uses hyper-parameter optimization with optimizers such as Adam, Adamax, Stochastic Gradient Descent, 

RMSProp, and Nadam for both U-Net and LinkNet to minimize the complexity of the network and enhance computing 

efficiency. Experimental results have been evaluated using Python on Google Colab with NCI-ISBI 2013 dataset. Performance 

analysis of the proposed model is assessed in terms of the Intersection of the Union (IoU) score. The LinkNet with SE-ResNet-

34 model optimized using Adamax generated the best result with 0.7454453 IoU score, following U-Net with SE-ResNet-34 

optimized using Adamax generated 0.738271933 IoU. 

Keywords - Deep learning, FPN, Prostate cancer, PSP-Net, LinkNet, ResNet-34, Semantic segmentation, SE-ResNet-34, U-

Net. 

1. Introduction 
The developing biomedical image acquisition system 

has shifted the research community's focus toward the 

convention of disease diagnosis that does not involve 

invasive procedures. Every diagnostic test requires a 

comprehensive and analytical review of the patient's medical 

scans, which depict the intricate internal structure of the body 

and show how its various organs function. The medical field 

has witnessed an exponential expansion in the number of 

diagnostic practices due to the availability of a wide range of 

medical imaging techniques, including X-ray, magnetic 

resonance image (MRI), computed tomography (CT), etc.  

The imaging process, types of applications, and typical 

time consumption for diagnosis are all different for each of 

these scans. Deep learning (DL) methodologies are analyzed 

well to consider the automatic support in diagnosis 

procedures, which results in a quick and best way to cure, 

monitor, and treat the disease. Because analysing such 

complex scans is laborious and time-consuming for any 

radiologist, DL methodologies are being explored to fill this 

void of complexity. Segmentation is one of the automation 

tasks that help identify and discover the required items or 

regions of interest for the issue. Segmentation can be broken 

down into two stages, known as instance and semantic, 

depending on the level of specificity with which the classes 

of objects are identified. Semantic segmentation separates the 

items into their respective classes; however, instance 

segmentation goes one step further and separates the objects 

that belong to the same class [1]. 

Prostate cancer (PCa) is a complex prevalent form of 

tumor caused in males due to instability and accumulation of 

multiple molecular alterations. Molecular alteration of 

normal cells becomes malignant in the form of a lesion with 

irregular appearance and boundaries [2]. Diagnosis of PCa 

can be made using non-invasive techniques such as MRI and 

CT. However, accurate diagnoses of the prostate lesion are 

difficult, error-prone and time-consuming due to the 
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heterogeneous appearance, boundaries and irregular shapes 

of lesions [3]. Manual lesion segmentation and classification 

are highly intensive and challenging on features with high 

intra-class variation and low interclass variations [4].  

1.1. Problem Statement & Solution 

Machine learning (ML) based semantic segmentation 

algorithm such as conditional random field [5] and gray level 

segmentation [6] has been employed to automatically 

segment the diseases based on the lesion appearance and its 

characteristics on shape, size and border into benign and 

malignant. The ML model is incapable of representing the 

complex structures of the malignant features, and these 

models are time-consuming and lead to reduced scalability 

and reliability. In addition, this model produces limited 

discriminative capability and is less adaptable to lesion 

boundary changes in the various categories of lesion features. 

In order to tackle those limitations, DL-based semantic 

segmentation architecture [7] has been exploited as it is more 

advantageous in discriminating the features of the lesions 

efficiently and accurately [8]. 

In this paper, various optimization techniques have been 

employed for the DL-based semantic segmentation on 

convolution network architectures such as U-Net, LinkNet, 

PSP-Net and FPN on the backbone of CNN such as ResNet-

34 and SE-ResNet-34 for PCa lesion segmentation. Initially, 

image interpolation and intensity normalization were 

employed as preprocessing techniques for image resizing and 

image normalization for reducing variations in the intensity 

distributions of the image. Further, those processed images 

are applied for processing in the various setting of U-Net [9] 

[34], LinkNet [10] [22], PSP-Net and FPN architecture 

which is a full convolution decoder and encoder network 

with the skip connections among the encoder and decoder 

blocks using ResNet-34 [11] and SE-ResNet-34 [12]. 

Furthermore, the proposed model uses hyperparameter 

optimization with various optimization algorithms such as 

Adam, Adamax, SGD, RMSProp, and Nadam for both U-

Net, LinkNet, PSP-Net and FPN to enhance prostate 

boundary detection. 

The remaining article has been sectioned as follows; 

section 2 details the problem statement and literature review 

for lesion classification. Section 3 provides the proposed 

semantic segmentation architectures using CNN models for 

segmenting the lesions. Experimental analysis of the 

proposed methodology on the ImageNet dataset has been 

carried out in Section 4, along with performance analysis 

based on IoU Score in various settings. Finally, Section 5 

concludes the research with future recommendations. 

2. Related Works 
In this part, numerous conventional models have been 

employed for lesion semantic segmentation as an automated 

system for the analysis of MRI by utilizing ML. The DL 

model has been detailed as follows. 

A conditional random field is most effective in semantic 

segmenting for lesion classification. The classification 

process has been processed with preprocessing of the MR 

images using interpolation techniques [13]. Next, 

preprocessed image is segmented using a finite set of 

possible states using the cost function. The prior relationship 

among pixels [14] was to extricate the multiple attributes of 

the images. Those computed attributes were utilized for 

training the classifiers. The classifier model classifies the 

feature into a malignant class or benign class. 

Gray-level segmentation is employed to segment the 

lesions of the prostate. The segmentation process has been 

carried out after preprocessing the images using interpolation 

and normalization [15]. Those processes generate the 

contrast-enhanced lesion for effective feature segmentation 

with reduced variation between dataset images. Segmented 

images are applied to KNN classification [16] on extracted 

features to categorize the normal and malignant lesions with 

higher accuracy and efficiency in the neighbour context. 

The segmentation of the PCa on an MRI is an essential 

step in the process of diagnosing and determining how well 

treatment is working. However, automatic segmentation is 

difficult since there is no distinct prostate boundary, 

heterogeneity inside the prostate tissue, a wide range of 

prostate shapes, and a shortage of training data has been 

annotated. To segment the prostate automatically in an 

accurate and reproducible way, [41] presented a two-stage 

segmentation methodology using the combination of U-Net 

and residual blocks. This method included a two-stage neural 

network. The first was a 2D U-Net, used to identify an 

approximation of the prostate's position, and the second was 

an integration of U-Net and Res-Net, which was used to 

segment the prostate accurately. 

An analysis of encoder–decoder CNN was proposed in 

[18] for the prostate glands of segmentation using T2W MRI 

images. SegNet, FCN, U-Net, and DeepLabV3+ were chosen 

to be the four selected CNNs. DeepLabV3+ was initially 

offered for segmenting of natural and biomedical images. In 

[19], a deep neural network, watershed, multi-atlas, and 

SSM-based reconstruction model was presented to segment 

the PCa in MRIs. DNN determines the ROI for the prostate 

and eliminates the least relevant pixels. It reduces the amount 

of time it takes for the code to run while simultaneously 

improving the accuracy of the registration. The watershed 

technique helped enhance the outcome in the base and apex 

regions, and the dynamic probabilistic atlas was able to 

produce more exact initial segmentation as a result. The 

findings that were achieved were improved with the 

application of the dynamic SSM technique. 
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In [20], an automated MRI segmentation technique was 

proposed that uses DL architectures. CASE-Net is an 

architecture developed to improve segmentation performance 

by combining the benefits of adjustable feature weights with 

attention gating. Using a sequential model, the CASE-Net, 

U-Net, USE-Net, and Link-Net were each manually 

generated in Keras. It was proposed in [21] that a multisite 

network, also known as an MS-Net, could improve prostate 

segmentations by learning more robust representation and 

using numerous different data sources. In order to account 

for inter-site variability present in the various MRI datasets, 

the domain-specific batch normalization layers were added to 

the network's backbone. It allowed the networks to evaluate 

statistics and independently normalise site features. A multi-

site-guided knowledge transfer was presented to enhance 

kernels for extracting more generic descriptions from 

multisite information. This was done in light of the challenge 

associated with capturing the shared information contained 

within various datasets. 

The prostate gland and prostate lesions could be 

segmented using a radiomics-based, highly supervised U-Net 

model proposed in [22]. The most widely used SGD 

approach, along with the Adam optimization strategy as an 

additional hyperparameter, was utilized in the training of this 

model. In the various stages of prostate cancer, this pipeline 

model has been utilized to segment the prostate capsule and 

prostate lesion. 

An automatic deep learning system called prostate 

segmentation (PSNet) was developed in [23] to segment the 

PCa on an MRI. This deep CNN approach was trained from 

endwise in a single learning step, and the inputs that it was 

given were prostate MRIs and the ground facts that 

corresponded to them. An inference for pixel-wise 

segmentation is something that can be accomplished by using 

the learnt CNN model. In [24], a CNN architecture called the 

USE-Net model was proposed for the zonal prostate 

segmentation of MRI. Squeeze-and-Excitation (SE) blocks 

have been incorporated into U-Net in this architecture. In 

particular, the blocks of SE were included after each encoder 

and encoder-decoder block. 

2.1. Research Gap and Analysis 

The segmentation of the PCa using MRI is a crucial step 

in the process of adaptive radiotherapy and radiomics 

research. The goal is to determine which imaging 

characteristics are associated with which patient outcomes. In 

this research, DL approaches such as LinkNet, U-Net, 

PSPNet, and FPN are proposed. These DL approaches aim to 

tackle the prostate gland's real-time, fully automated 

delineation process on T2-w-MRI. Delineation manually is a 

time-consuming operation, which is why this research 

proposes these approaches. While U-Net is used in various 

applications for delineating medical images, LinkNet, 

PSPNet, and FPN are employed in applications for object 

detection. 

3. Proposed Methodology 
In this section, deep semantic segmentation architectures 

named U-Net, LinkNet, PSP-Net and FPN, and ResNet-34 

and SE-ResNet-34 as encoder backbones for prostate gland 

segmentation are adopted for the prostate gland MR image. 

This architecture is modelled to segment the prostate gland 

based on its appearance.  

3.1. Image Preprocessing 

Images may contain various sizes; the following image 

preprocessing technique must be employed to achieve 

common image sizes. 

3.1.1. Nearest Neighbor Interpolation Technique 

It has been employed to resize an image by computing 

an average value to the data points in the image vector by 

weighting criteria. Initially, NCI-ISBI 2013 data set [25] was 

represented in different sizes (256×256), (320×320), and 

(384×384). It can be resized by performing row-wise and 

column-wise interpolating the image matrix by normalizing 

the row and column-wise pixel positions using the ceil 

function. 

3.2. Semantic Segmentation 

It is referred to as pixel-wise classifications in the 

process of assigning labels to every individual pixel into 

object class in the image. A network of semantic 

segmentation is composed of two symmetrical paths 

convolution parts and deconvolution parts. The convolution 

part down-samples the input image, and the deconvolution 

part will up-sample the down-sampled features with a fully 

connected layer. Finally, the Softmax layer was utilized to 

label the segmented features of the input image. The novelty 

of the work includes the semantic segmentation of prostate 

MRI with various deep models. 

3.2.1. U-Net-ResNet-34 

U-Net is a pretrained network model consisting of an 

encoder, bottleneck convolution layer and decoder. The 

encoder network has 34 convolution blocks that encrypt the 

input images into the representation of features at various 

levels with the features map. Feature maps will be increased 

in each convolution block to efficiently learn the complicated 

shape of the lesions. The block of bottleneck convolution 

transforms the features learned out of the encoder network 

into decoder networks. Decoder networks semantically 

transform the features of discrimination to pixel space to 

obtain the dense network. Fig. 1 represents the proposed 

architecture of the U-Net for prostate classification applied in 

this work [1]. 
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Fig. 1 U-Net Architecture for ResNet-34 Layer (Ronneberger et al, 2015). 

3.2.2. Residual Neural Network 

An increase of layers in the neural network will be 

transformed into a dense network, which leads to a vanishing 

gradient problem. The network becomes deeper due to a 

change of weights in the layers to the batch of training 

inputs. The ResNet network was employed to reduce the 

various layers' tuning, which can skip one or more layers to 

decrease the depth of the network. In this work, ResNet-34 

was employed as an encoder network to U-Net architecture 

to enable feature propagation gradient flow and solve the 

vanishing gradient issues [26].  

3.2.3. Encoder Network of U-Net 

In this, ResNet-34 is a CNN composed of 34 layers 

deep. It has 16 residual blocks. Each block-down samples the 

images in each layer. It is considered a contraction path of 

the U-Net.  

3.2.4. Decoder Network of the U Net  

Decoder Network is considered the expansive path with 

a decoder block as residual connections are incorporated as it 

up-samples the down-sampled features. The up sample of the 

features is carried out in transposed convolutions for 

expanding the convolution size. The images were 

concatenated with the appropriate images from the 

contracting paths for combining the data of the past layers to 

obtain the accurate prediction of lesion boundaries and good 

spatial locations.  

Block 1: The transposed convolutions (TC) were utilized 

with the 3*3 kernels and the stride of two residual 

blocks to hold 256 feature maps. The block’s output 

was concatenated with the output of the contraction 

block. Dropout was included with the 0.5 drop rate. 

A 2D Convolution layer was utilized with the 3*3 

kernel sizes in addition to padding to keep input and 

output sizes as same. At last, the function of 

sigmoid activation was utilized.  

Block 2: TC was utilized with the 3*3 kernels and the stride 

of two residual blocks to hold a reduced 128 feature 

maps. The block’s output was concatenated with the 

output of the contraction block. Dropout was 

included with the 0.5 drop rate. The 2D Convolution 

layer was utilized with the 3*3 kernel sizes and 

padding to keep input and output sizes. At last, the 

function of sigmoid activation was utilized.  

Block 3: TC was utilized with the 3*3 kernels and the stride 

of two residual blocks to hold a reduced 64 feature 
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maps. The block’s output was concatenated with the 

output of the contraction block. Dropout was 

included with the 0.5 drop rate. A 2D Convolution 

layer was utilized with the 3*3 kernel sizes in 

addition to padding to keep input and output sizes as 

same. Then, the function of sigmoid activation was 

utilized.  

Block 4: TC was utilized with the 3*3 kernels and the stride 

of two residual blocks to hold a reduced 32 feature 

maps. The block’s output was concatenated with the 

output of the contraction block. Dropout was 

included with the 0.5 drop rate. A 2D Convolution 

layer was utilized with the 3*3 kernel sizes in 

addition to padding to keep input and output sizes as 

same. Then, the function of sigmoid activation was 

utilized.  

Block 5: TC was utilized with the 3*3 kernels and the stride 

of two residual blocks to hold a reduced 8 feature 

maps. The block’s output was concatenated with the 

output of the contraction block. Dropout was 

included with the 0.5 drop rate. A 2D Convolution 

layer was utilized with the 3*3 kernel sizes in 

addition to padding to keep input and output sizes as 

same. Then, the function of sigmoid activation was 

utilized [27]. Thus, the output feature map was 

reduced to a single value using 1*1 convolution at 

the output layer, and the sigmoid activation function 

was applied to the output. 

 

3.2.5. LinkNet-ResNet-34 Architecture 

LinkNet is a pretrained network consisting of the 

encoder and decoder networks. The encoder block transforms 

the image into a feature map as it contains the convolution 

block. Feature maps learn the complex structures of the 

lesion. In this work, ResNet-34 and SE-ResNet-34 have been 

employed as the backbone [28]. 

3.2.6. Decoder Network of the LinkNet 

The decoder network is considered with the decoder 

block as a residual connection connected to the related 

encoder blocks. The transferred blocks from the encoder 

were included in the related decoder block, which holds the 

feature map. Dropout was included with the 0.5 drop rate. 

All the decoder blocks included a 1 × 1 convolution function 

which minimizes the feature map using 4 filters, 

subsequently transposed convolution and batch 

normalization to upsample the feature maps. Finally, the 

sigmoid activation function precisely predicts lesion 

boundaries and better spatial locations [31]. 

3.2.7. LinkNet-SE-ResNet-34 Architecture  

LinkNet is a pretrained network consisting of the 

encoder and decoder networks for semantic segmentation of 

the lesion. In this architecture [28], the encoder network 

containing convolution transforms the image into a feature 

map by down-sampling and the decoder network up-samples 

the feature map to yield better-predicted results.  

3.2.8. SE-ResNet-34  

SE-ResNet network has been employed as it can identify 

the interdependencies among the feature in the decoder block 

using the feature recalibration approach. Notably, the model 

automatically acquired the significance level of all the 

feature blocks through learning approaches for decreasing 

the depth of the network, and then according to the degree of 

importance using the sequence operation and excitation 

operation on the residual block of the decoder block.  

3.2.9. Encoder Network of LinkNet 

In this, ResNet-34 is a CNN composed of 34 layers 

deep. It has 16 residual blocks. Each block-down samples the 

images in each layer. Initially, kernel size of 7*7 and stride 2 

performed convolution, and it was sequenced using max-

pooling with a 2-stride. Finally, the network is composed of 

repetitive residual blocks. The initial convolutional operation 

was applied with stride two to provide the down-sampling 

since the convolution operations utilize stride one. 

 
Fig. 2 LinkNet Architecture 



M. N. Rajesh & B. S. Chandrasekar / IJETT, 70(12), 252-271, 2022 

 

257 

 
Fig. 3 PSP-Net Architecture 

3.2.10. Decoder Network of the LinkNet 

Decoder Network is considered with the decoder block 

as a residual connection connected to the corresponding 

encoder block. The transferred blocks from the encoder were 

included in the related decoder block, which holds the feature 

map. Dropout was included with the 0.5 drop rate. All the 

decoder blocks included the 1 × 1 convolution operations, 

which minimizes the feature map using 4 filters, sequenced 

by transposed convolution and batch normalization to up-

sample the feature maps. Finally, the sigmoid activation 

function precisely predicts lesion boundaries and better 

spatial locations.  

3.3. PSP-Net 

Pyramid Scene Parsing Network, also known as PSP-

Net, is a semantic segmentation model that uses a pyramid 

parsing module (PPM). This module makes use of global 

context information using different region-based context 

aggregation. To acquire the feature maps from the input 

images, PSP-Net employed a CNN that was pretrained and 

utilized the dilated networks methodology. The final feature 

map size was equal to one-eighth of the input image. The 

PPM was used at the very top of the map to collect 

information about the map context. When utilizing the four-

level pyramids, the pooling kernels covered the overall image 

and half and tiny regions. They were combined to form global 

priors. After, the earlier initial feature map was combined into 

the subsequent section of the final part. After this layer, a 

convolution layer will be applied to produce the final 

prediction map. 

Fig. 3 illustrates the architecture of the PSP-Net, which is 

created based on the PPM [29]. A CNN model that had been 

pre-trained with the dilated network strategy was employed to 

extract the feature map from an image provided as input. For 

the purpose of elucidating this structure, PSP-Net offers an 

efficient global contextual prior that may be used for scene 

parsing at the pixel level. The PPM can collect information 

on multiple levels, which is more representative than the 

global pooling module. Compared to the initially dilated FCN 

network, the PSP-Net does not significantly increase the 

computing effort required. When doing end-to-end learning, 

it is possible to optimize both the global PPM and the local 

FCN features simultaneously [29]. 

3.4. FPN 

FPN, known as a Feature Pyramid Network, takes single-

scale images of random size as input and produces a 

correspondingly sized feature map at many layers in a 

completely convolutional way. This type of feature extractor 

is also known as an FPN. This technique is not dependent on 

the convolutional backbone architectures in any way. 

Consequently, it acts as a general-purpose model for 

developing feature pyramids within the deep CNNs, which 

may be applied to problems such as object detection. The 

pyramid's building requires both a top-down and a bottom-up 

pathway to be completed. The feedforward computation of 

the backbone ConvNet is the bottom-up pathway. This 

pathway computes a feature hierarchy that consists of feature 

mappings at multiple scales with a scaling step of 2. Each 

step of the feature pyramid corresponds to a single level of 

the pyramid.  

 
Fig. 4 FPN Architecture 
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Each stage's final layer output is used as a reference set 

of feature maps. Regarding ResNet, the feature activations 

output was used by the final residual block of each stage. 

Through upsampling spatially coarser but semantically 

stronger feature maps from higher pyramid levels, the top-

down pathway can perceive features with a better resolution 

than other pathways. After that, features from the bottom-up 

pathway are added to these characteristics through lateral 

connections to improve them. Each lateral link combines 

feature maps from the bottom-up and the top-down pathways 

that are the same size in terms of spatial extent. The bottom-

up feature maps may have low-level semantics, but their 

activations have been localized with greater precision due to 

the reduced number of times it was subsampled [30]. 

 

3.5. Optimization of Models 

Optimization of the U-Net, LinkNet, PSP-Net and FPN is 

carried out using Adam, Adamax, SGD, RMSProp and 

Nadam to reduce the error rates for the training process and 

parameter tuning. Adam Optimization techniques estimate the 

learning rates for every parameter included in training 

gradients to reach an exact result with high dice similarity 

coefficient. Stochastic Gradient Descent (SGD) optimization 

with strategic relapse produces outputs by getting inputs for 

producing actual results with the weight parameters of the 

model. Nesterov adaptive momentum uses the correction 

factor to reach the exact result. Root Mean Square 

Propagation (RMSProp) uses the squared gradient’s moving 

average, which utilizes the recent gradient descent’s 

magnitudes to normalize the gradients. Thus, with the 

increased learning rate, the algorithm could shift in the 

horizontal direction with major steps converging faster [33]. 

3.6. Loss Function 

The loss function of weighted cross-entropy was selected 

for the architecture of CNN as it can differentiate between the 

prostate pixels and penalizes the predicted outcome of the 

results on gradient descent from the exact value. It is 

formulated as, 
 

𝐿𝐹 = −
1

𝑛
∑ 𝑊𝑐,𝑖[𝑇𝑖 log 𝑝𝑖 + (1 − 𝑇𝑖) log(1 − 𝑝𝑖)]
𝑛
𝑖=1     (1) 

 

Where, 𝑝𝑖 was predicted, segmentation class, 𝑊𝑐,𝑖 is the 

encoder weight and 𝑇𝑖 is the target segmentation label. 

3.7. Backbone  

The proposed models use pre-trained models as the 

backbone, such as ResNet-34 and SE-ResNet-34, for PCa 

gland segmentation. Backbone refers to a feature-extracting 

network usually used within architecture. This feature 

extractor encodes the input of the network input in the 

encoder part, from which the decoder section will be built up 

based on the program as part of the transfer learning process 

and into a certain feature representation. Hence based on the 

semantic segmentation model proposed herewith, for 

example, if U-Net is used, then it first loads the backbone 

with pre-trained ImageNet weights from the applications of 

Keras and thus, a function creates the decoder section by 

concatenating the prior outputs on the decoder section with 

the outputs from the related layers named in the list of skip 

connections and integrating more convolutions. ResNet-34 is 

a type of CNN that consists of a collection of residual blocks 

with skip connections. The ResNet-34 consists of a 34-layer 

ResNet architecture. The model is faster to train and uses less 

memory. It is used for the encoder/down-sampling section of 

the U-Net model. The ResNet model has to skip connections, 

allowing large layers to be skipped when needed. It results in 

the model being trained with optimal weights, thereby 

reducing the loss during downsampling in the segmentation 

model. SE block is a form of CNN that explicitly models the 

interdependencies across channels to recalibrate channel-wise 

feature responses adaptively. These blocks, when stacked 

together, can generate SE-Net designs that generalize 

exceedingly effectively across a wide variety of datasets. 

These architectures can be created by stacking the blocks. 

Even in the current results, it was observed that the SE blocks 

deliver significant performance improvements for existing 

semantic segmentation [34]. 

4. Experimental Results  
Experimental results of the proposed model have been 

evaluated with Python program using Google Colab 

Notebook and with NCI-ISBI 2013 dataset containing 2276 

images of various sizes as (384×384), (320×320) and 

(256×256) [27]. In processing the image, the data set is 

portioned into a training set containing 1744, a testing set 

containing 261 and a validation set containing 271. The 

performance considering IoU measure of semantic 

segmentation with U-Net, LinkNet, PSP-Net and FPN 

architectures in combination with backbones like ResNet-34 

and SE-ResNet-34 has been evaluated while fixing hyper-

parameter such as Batch Size, Validation Steps and variation 

in epoch values and the model was tuned with encoder 

weights set to “ImageNet” and activation parameter set to 

sigmoid with classes set to binary and varying optimizers. 

4.1. Results Obtained with U-Net 

This section describes various approaches for Prostate 

Semantic Segmentation using U-Net with ResNet34 and SE-

ResNet34 as the backbone and the performance results 

obtained. Fig. 5 shows the Original Prostate Gland Image 

along with the mask that was provided as against the 

predicted mask by for  

i. ResNet34 as backbone and Optimizer being Adam as in 

Fig. 5  

ii. ResNet34 as backbone and Optimizer being Adamax as in 

Fig. 5  

iii. ResNet34 as backbone and Optimizer being SGD as in 

Fig. 5  

iv. ResNet34 as backbone and Optimizer being RMSProp as 

in Fig. 5  

v. ResNet34 as backbone and Optimizer being Nadam as in 
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Fig. 5  

vi. SEResNet34 as backbone and Optimizer being Adam as 

in Fig. 5  

vii. (vi), SEResNet34 as backbone and Optimizer being 

Adamax as in Fig. 5  

viii. SEResNet34 as backbone and Optimizer being SGD as in 

Fig. 5  

ix. SEResNet34 as backbone and Optimizer being RMSProp 

as in Fig. 5 and  

x. SEResNet34 as backbone and Optimizer being Nadam as 

in Fig. 5 

 
(i)        (ii) 

 
(iii)        (iv) 

 
(v)        (vi) 

 
(vii)        (viii) 

 
(ix)        (x) 

Fig. 5 Prostate MRI Image along with the ground truth or provided mask and the predicted mask are listed for U-Net  model considering (i) 

ResNet34 as backbone and Optimizer being Adam, (ii) ResNet34 as backbone and Optimizer being Adamax, (iii) ResNet34 as backbone and 

Optimizer being SGD, (iv) ResNet34 as backbone and Optimizer being RMSProp, (v) ResNet34 as backbone and Optimizer being Nadam, (vi) 

SEResNet34 as backbone and Optimizer being Adam, (vii) SEResNet34 as backbone and Optimizer being Adamax, (viii) SEResNet34 as backbone 

and Optimizer being SGD, (ix) SEResNet34 as backbone and Optimizer being RMSProp, (x) SEResNet34 as backbone and Optimizer being Nadam 
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Table 1. The table indicates IoU Score obtained with various Optimizers used with U-Net Model with ResNet3-4 and SE-ResNet-34 as Backbone and 

in combination with various Optimizer 

Architecture and Backbones Adam Adamax SGD RMSProp Nadam 

U-Net – ResNet-34 0.716165932 0.732374634 0.704223167 0.663843288 0.708662823 

U-Net – SE-ResNet-34 0.737513949 0.742655936 0.703767031 0.694015578 0.697213093 

 

Table 1 shows IoU Score obtained when testing the U-

Net model with ResNet-34 and SE-ResNet34 as the backbone 

for untrained MRI images. Based on the trials, it can be 

inferred that the best performance - IoU Score were obtained 

with SE-ResNet-34 as the backbone with Adamax Optimizer 

giving 0.742655936, followed by Adam Optimizer giving 

0.737513949, followed by Resnet-34 as the backbone with 

Adamax Optimizer giving 0.732374634, followed by Adam 

Optimizer giving 0.716165932. The bar chart in figure 6 

shows the performance - IoU Score of various combinations 

of U-Net with backbones and Optimizers. Fig. 6 indicates a 

Bar Chart with IoU Score obtained with UNet Model in the 

combination of ResNet34 and SEResNet34 as Backbones 

plotted against various Optimizers. 

Each model was set to 200 epochs for training, 16 as 

batch size, a scheduler of the iterative learning rate, 1e-3 

initial learning rate, and various optimizers and backbones. 

The performance of the U-Net model-IoU score obtained for 

training and validation as against the epochs for the best 6 

results is shown in Fig. 7. It was observed that for U-Net with 

ResNet-34 as the backbone and with adamax Optimizer, the 

training and validation IoU score went up to 0.95995 but IoU 

score obtained while testing is 0.732374634. For U-Net with 

SE-ResNet-34 as the backbone and with adam optimizer, the 

training and validation IoU score went up to 0.94412, but the 

IoU score obtained while testing is 0.737513949. For U-Net 

with SE-ResNet-34as backbone and with adamax Optimizer, 

the training and validation IoU score went up to 0.97588, but 

the IoU score obtained while testing is 0.742655936. 

 

 
Fig. 6 Bar Chart indicates the IoU score obtained plotted against various optimizers used with the U-Net model in the combination of ResNet-34 and 

SE-ResNet-34 as Backbones 
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(a)            (b)                (c) 

 

 
(d)    (e)    (f) 

Fig. 7 Training and Validation Performance - IOU Vs epochs for U-Net with a) Resnet-34 as the backbone and Adamax Optimizer, b) Resnet-34 as 

the backbone and SGD Optimizer, c) Resnet-34 as the backbone and Nadam Optimizer d) SE-Resnet-34 as the backbone and Adamax Optimizer e) 

SE-Resnet-34 as the backbone and SGD Optimizer f) SE-Resnet-34 as the backbone and Nadam Optimizer 

4.2. Results Obtained with LinkNet  

This section describes various approaches for Prostate 

Semantic Segmentation using LinkNet Architecture with 

ResNet34 and SEResNet34 backbone, along with the 

performance results obtained. 

Fig. 8 shows the Original Prostate Gland Image along 

with the mask that was provided as against the predicted 

mask by for ResNet-34 as backbone and Optimizer being 

Adamax as in Fig. 8 (i), ResNet-34 as backbone and 

Optimizer being Adamax as in Fig. 8 (ii), ResNet-34 as 

backbone and Optimizer being SGD as in Fig. 8 (iii), 

ResNet-34 as backbone and Optimizer being RMSProp as in 

Fig. 8 (iv), ResNet-34 as backbone and Optimizer being 

Nadam as in Fig. 8 (v), SE-ResNet-34 as backbone and 

Optimizer being Adam as in Fig. 8 (vi), SE-ResNet-34 as 

backbone and Optimizer being Adamax as in Fig. 8 (vii), SE-

ResNet-34 as backbone and Optimizer being SGD as in Fig. 

8 (viii), SE-ResNet-34 as backbone and Optimizer being 

RMSProp as in Fig. 8 (ix) and SE-ResNet-34 as backbone 

and Optimizer being Nadam as in Fig. 8 (x). Table 2 shows 

IoU Score obtained when testing the LinkNet model with 

ResNet-34 and SE-ResNet-34 as the backbone for untrained 

MRI images.  

Based on the trials, it can be inferred that the best 

performance - IoU Score were obtained with SE-ResNet-34 

as the backbone and Adamax Optimizer 0.7454453. This 

result was followed by ResNet-34 as the backbone, with 

Adamax Optimizer giving 0.738271933, followed by Nadam 

Optimizer giving 0.712770765, followed by SGD Optimizer 

with 0.701902515.  

The bar chart in Fig. 9 shows the performance - IoU 

Score of various combinations of LinkNet with ResNet-34 

and SE-ResNet-34 backbones and Optimizers. 

 

Table 2. The table indicates IoU Score obtained with various optimizers used with the LinkNet model in the combination of ResNet-34 and SE-

ResNet-34 as Backbone 

Architecture and Backbones Adam Adamax SGD RMSProp Nadam 

LinkNet – ResNet-34 0.698139869 0.738271933 0.701902515 0.661088051 0.712770765 

LinkNet – SE-ResNet-34 0.687389449 0.7454453 0.697475474 0.686124772 0.693827738 
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(i)        (ii) 

 
(iii)        (iv) 

 
(v)        (vi) 

 
(vii)        (viii) 

 
(ix)        (x) 

Fig. 8 Prostate MRI along with the ground truth or provided mask and the predicted mask are listed for the LinkNet model considering (i) ResNet-34 

as backbone and Optimizer being Adam, (ii) ResNet-34 as backbone and Optimizer being Adamax, (iii) ResNet-34 as backbone and Optimizer being 

SGD, (iv) ResNet-34 as backbone and Optimizer being RMSProp, (v) ResNet-34 as backbone and Optimizer being Nadam, (vi) SE-ResNet-34 as 

backbone and Optimizer being Adam, (vii) SE-ResNet-34 as backbone and Optimizer being Adamax, (viii) SE-ResNet-34 as backbone and Optimizer 

being SGD, (ix) SE-ResNet-34 as backbone and Optimizer being RMSProp, (x) SE-ResNet-34 as backbone and Optimizer being Nadam 
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Fig. 9 Bar chart indicates the IoU score obtained plotted against various optimizers used with the LinkNet Model in the combination of ResNet-34 

and SE-ResNet-34 as Backbone 

 
                                    (a)                                      (b) 

Fig. 10 Training and Validation, Performance-IoU Vs Epochs for LinkNet with Adamax optimizer and with backbone such as a) ResNet-34 and b) 

SE-ResNet-34 

Each model was set to 200 epochs for training, 16 as 

batch size, a scheduler of the iterative learning rate, 1e-3 

initial learning rate, and various optimizers and backbones. 

The performance of the LinkNet model-IoU score obtained 

for training and validation against the epochs for the best 3 

results is represented in Fig. 10. 

It was observed with LinkNet while using adamax 

Optimizer and with ResNet-34 as backbone obtained an IoU 

score during training and validation of 0.97074, but while 

testing resulted from 0.738271933. For LinkNet with SE-

ResNet-34 as the backbone and with adamax Optimizer, the 

training and validation IoU score went up to 0.96763, but the 

IoU score obtained while testing is 0.7454453. 

4.3. Results Obtained with PSP-Net 

This section describes various approaches for Prostate 

Semantic Segmentation using PSP-Net architecture with 

ResNet-34 and SE-ResNet-34 backbone, along with the 

performance results obtained. Fig. 11 shows the Original 

Prostate Gland Image along with the mask that was provided 

as against the predicted mask by for ResNet34 as backbone 

and Optimizer being Adamax as in Fig. 11 (i), ResNet34 as 

backbone and Optimizer being Adamax as in Fig. 11 (ii), 

ResNet34 as backbone and Optimizer being SGD as in Fig. 

11 (iii), ResNet34 as backbone and Optimizer being 

RMSProp as in Fig. 11 (iv), ResNet34 as backbone and 

Optimizer being Nadam as in Fig. 11 (v), SE-ResNet34 as 

backbone and Optimizer being Adam as in Fig. 11 (vi), SE-

ResNet34 as backbone and Optimizer being Adamax as in 

Fig. 11 (vii), SE-ResNet34 as backbone and Optimizer being 

SGD as in Fig. 11 (viii), SE-ResNet34 as backbone and 

Optimizer being RMSProp as in Fig. 11 (ix) and SE-

ResNet34 as backbone and Optimizer being Nadam as in 

Figure 11 (x). 
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(i)        (ii) 

 
(iii)        (iv) 

 
(v)        (vi) 

 
(vii)        (viii) 

 
(ix)        (x) 

Fig. 11 Prostate MRI Image along with the ground truth or provided mask and the predicted mask is listed for PSP-Net model considering (i) 

ResNet34 as backbone and Optimizer being Adam, (ii) ResNet34 as backbone and Optimizer being Adamax, (iii) ResNet34 as backbone and 

Optimizer being SGD, (iv) ResNet34 as backbone and Optimizer being RMSProp, (v) ResNet34 as backbone and Optimizer being Nadam, (vi) SE-

ResNet34 as backbone and Optimizer being Adam, (vii) SE-ResNet34 as backbone and Optimizer being Adamax, (viii) SE-ResNet34 as backbone and 

Optimizer being SGD, (ix) SE-ResNet34 as backbone and Optimizer being RMSProp, (x) SE-ResNet34 as backbone and Optimizer being Nadam 

Table 3 shows results obtained while testing the PSP-

Net model with ResNet34 and SE-ResNet-34 as the 

backbone for untrained MRI images. Based on the trials, it 

can be inferred that the best performance - IoU Score were 

obtained with SE-ResNet34 as the backbone and Nadam 

Optimizer 0.709108849, followed by SE-ResNet34 as the 
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backbone with Adam Optimizer giving 0.699512671, 

followed by ResNet34 as the backbone with Nadam 

Optimizer giving 0.694847168, followed by SE-ResNet34 as 

the backbone with Adamax Optimizer with 0.685369737 and 

further followed by Resnet34 as the backbone with Adam 

Optimizer giving 0.68529029. The bar chart in Fig. 12 shows 

the performance - IoU Score of various combinations of 

PSP-Net with ResNet34 and SE-ResNet34 backbones and 

Optimizers. 

 

Table 3. The table indicates IoU Score obtained with PSP-Net Model with ResNet34 and SE-ResNet34 as Backbone with various combinations of 

optimizers 

Architecture and Backbones Adam Adamax SGD RMSProp Nadam 

PSP-Net – ResNet34 0.68529029 0.680192549 0.605144408 0.669634853 0.694847168 

PSP-Net – SEResNet34 0.699512671 0.685369737 0.631567752 0.660367808 0.709108849 

 

 
Fig. 12 Bar chart indicates the IoU score obtained plotted against various optimizers used with the PSP-Net model in the combination of ResNet-34 

and SE-ResNet-34 as Backbone 

 
(a)           (b) 

Fig. 13 Training and Validation Performance - IOU Vs epochs for PSP-Net with ResNet34 and SE-ResNet34 as Backbones with Adamax Optimizer 

Each model was set to 200 epochs for training, 16 as 

batch size, cyclic learning rates scheduler, and the first 

learning rates of 1e-3, along with various Optimizer and 

backbones. Performance of the PSP-Net Model - IoU Score 

obtained for Training and Validation as against the epochs for 

the ResNet34 and SE-ResNet34 as Backbones with Adamax 

Optimizer as in Fig. 13. It was observed that the IoU score for 

Semantic Segmentation with PSP-Net with SE-ResNet34 as 

backbone using Nadam as Optimizer during training and 

validation went up to 0.97639 but while testing resulted in 

0.709108849. With SE-ResNet34 as the backbone, using 

Adam as Optimizer during training and validation went up to 

0.98062, while testing resulted in 0.699512671. With 

ResNet34 as the backbone, using Nadam optimizer during 
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training and validation went up to 0.97697, but while testing 

resulted in 0.694847168. With SE-ResNet34 as the backbone, 

Adamax as Optimizer during training and validation went up 

to 0.97610 while testing resulted in 0.685369737. The highest 

IoU score was obtained with RMSProp optimizer, with SE-

ResNet34 as backbone got 0.98393 but while testing resulted 

in 0.660367808 and with ResNet34 as backbone got 0.98335 

but while testing resulted in 0.669634853.  

 
(i)        (ii) 

 
(iii)        (iv) 

 
(v)        (vi) 

 
(vii)        (viii) 

 
(ix)        (x) 

Fig. 14 Prostate MRI Image along with the ground truth or provided mask and the predicted mask is listed for the FPN model considering (i) 

ResNet34 as backbone and Optimizer being Adam, (ii) ResNet34 as backbone and Optimizer being Adamax, (iii) ResNet34 as backbone and 

Optimizer being SGD, (iv) ResNet34 as backbone and Optimizer being RMSProp, (v) ResNet34 as backbone and Optimizer being Nadam, (vi) SE-

ResNet34 as backbone and Optimizer being Adam, (vii) SE-ResNet34 as backbone and Optimizer being Adamax, (viii) SE-ResNet34 as backbone and 

Optimizer being SGD, (ix) SE-ResNet34 as backbone and Optimizer being RMSProp, (x) SE-ResNet34 as backbone and Optimizer being Nadam 
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Table 4. Table indicates IoU Score obtained with FPN Model with ResNet34 and SE-ResNet34 as Backbone with various combinations of Optimizers 

Architecture and Backbones Adam Adamax SGD RMSProp Nadam 

FPN – ResNet34 0.705056016 0.720181423 0.715967565 0.676009491 0.703369762 

FPN – SEResNet34 0.72547259 0.735521363 0.698487643 0.684241517 0.67387959 
 

4.4. Results Obtained with FPN 

This section describes various approaches for Prostate 

Semantic Segmentation using FPN architecture with 

ResNet34 and SE-ResNet34 backbone, along with the 

performance results obtained. Fig. 14 shows the Original 

Prostate Gland Image along with the mask that was provided 

as against the predicted mask by for ResNet34 as backbone 

and Optimizer being Adamax as in Fig. 14 (i), ResNet34 as 

backbone and Optimizer being Adamax as in Fig. 14 (ii), 

ResNet34 as backbone and Optimizer being SGD as in Fig. 

14 (iii), ResNet34 as backbone and Optimizer being 

RMSProp as in Fig. 14 (iv), ResNet34 as backbone and 

Optimizer being Nadam as in Fig. 14 (v), SE-ResNet34 as 

backbone and Optimizer being Adam as in Fig. 14 (vi), SE-

ResNet34 as backbone and Optimizer being Adamax as in 

Fig. 14 (vii), SE-ResNet34 as backbone and Optimizer being 

SGD as in Fig. 14 (viii), SE-ResNet34 as backbone and 

Optimizer being RMSProp as in Fig. 14 (ix) and SE-

ResNet34 as backbone and Optimizer being Nadam as in Fig. 

14 (x). 

Table 4 shows results obtained while testing the FPN 

model with ResNet34 and SE-ResNet34 as the backbone for 

untrained MRI images. Based on the trials, it can be inferred 

that the best performance - IoU Score were obtained with SE-

ResNet34 as the backbone and Adamax Optimizer 

0.735521363, followed by SE-ResNet34 as the backbone 

with Adam Optimizer giving 0.72547259, followed by 

ResNet34 as the backbone with Adamax Optimizer giving 

0.720181423, followed by ResNet34 as the backbone with 

SGD Optimizer giving 0.715967565, followed by ResNet34 

as the backbone with Adam Optimizer with 0.705056016 and 

further followed by ResNet34 as the backbone with Nadam 

Optimizer giving 0.703369762. The bar chart in Fig. 15 

shows the performance - IoU Score of various combinations 

of FPN with ResNet34 and SE-ResNet34 backbones and 

Optimizers. Each model was set to 200 epochs for training, 

16 as batch size, a cyclic learning rate scheduler, and the 

initial learning rate of 1e-3, along with various Optimizer and 

backbones. Performance of the FPN Model - IoU Score 

obtained for Training and Validation as against the epochs for 

the ResNet34 and SE-ResNet34 as Backbones with Adamax 

Optimizer are shown in Fig. 16. 

It was observed that the IoU score for Semantic 

Segmentation with FPN with SE-ResNet34 as backbone 

while using RMSProp optimizer during training and 

validation obtained went up to 0.99177, but while testing 

resulted in 0.684241517. With SE-ResNet34 as the backbone 

while using Adamax optimizer during training and validation 

obtained went up to 0.97560, but while testing resulted in 

0.735521363. With SE-ResNet34 as the backbone while 

using Adam optimizer during training and validation obtained 

went up to 0.95558, but while testing resulted in 0.72547259. 

ResNet34 backbone using Adamax Optimizer during training 

and validation went up to 0.97580, but while testing resulted 

in 0.720181423. With ResNet34 backbone, using SGD 

optimizer during training and validation went up to 0.97066 

while testing resulted in 0.715967565. Each of these models 

was pre-set to be trained for 200 iterations with the size of 

batch 16 and with the starting learning rates of 1e-3 and with 

cyclic learning rates scheduler to make the network models 

extricate dense feature maps by managing the region view for 

accurate localizations; the early sopping was defined by 

monitoring the loss and for every 10 epochs while restoring 

the best weights. This has significantly led to the quick and 

effective encoder and decoder networks that build the deep 

representation among multi-feature images and covers good 

spatial data at different ranges against various encoder and 

decoder networks producing the effective segmentation 

boundary. 

 

 
Table 5. Performance Evaluation of the Various Setting of Segmentation Techniques 

Model Backbone Adam Adamax SGD RMSProp Nadam 

U-Net ResNet-34 0.716165932 0.732374634 0.704223167 0.663843288 0.708662823 

U-Net SE-ResNet-34 0.737513949 0.742655936 0.703767031 0.694015578 0.697213093 

Link-Net ResNet-34 0.698139869 0.738271933 0.701902515 0.661088051 0.712770765 

Link-Net SE-ResNet-34 0.687389449 0.7454453 0.697475474 0.686124772 0.693827738 

PSP-Net ResNet-34 0.68529029 0.680192549 0.605144408 0.669634853 0.694847168 

PSP-Net SE-ResNet-34 0.699512671 0.685369737 0.631567752 0.660367808 0.709108849 

FPN ResNet-34 0.705056016 0.720181423 0.715967565 0.676009491 0.703369762 

FPN SE-ResNet-34 0.72547259 0.735521363 0.698487643 0.684241517 0.67387959 
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Fig. 15 Bar chart indicates the IoU score obtained plotted against various optimizers used with the FPN Model in the combination of ResNet-34 and 

SE-ResNet-34 as Backbone 

 
(a)     (b) 

Fig. 16 Training and Validation Performance - IOU Vs epochs for FPN with ResNet34 and SE-ResNet34 as Backbones with Adamax Optimizer

Table 5 represents the performance comparison of the 

Semantic Segmentation approaches of the model on the CNN 

models, ResNet34 and SE-Resnet34 on U-Net, LinkNet, PSP-

Net and FPN segmentations with various optimizers. Based 

on the above table, it can be inferred that the best 

performance measured through IoU score as an index in 

segmenting the prostate gland was with the LinkNet 

architecture with SE-ResNet34 as the backbone and with 

Adamax as Optimizer yielded the better result of 0.7454453, 

followed by U-Net architecture and SE-ResNet34 as the 

backbone and with Adamax as Optimizer yielded the result of 

0.742655936, followed by LinkNet architecture and 

ResNet34 as the backbone and with Adamax as Optimizer 

yielded result of 0.738271933, followed by U-Net 

architecture and SE-ResNet34 as the backbone and with 

Adam as Optimizer yielded a result of 0.737513949, followed 

by FPN architecture and SE-ResNet34 as the backbone and 

with Adamax as Optimizer yielded the result of 0.735521363. 

4.5. Performance Analysis Comparison 

The performance of the proposed models was compared 

with the existing technique called Dynamic Multi-Atlas 

(DMA) segmentation technique, which is based on deep 

learning. This DMA technique was proposed to segment the 

prostate lesions in MRI images using the NCI-ISBI-2013 

dataset [19] and compared with 3D and 2D-UNet [35-40]. 

Table 6 represents the comparison of research models 

with the existing DMA technique for validation. The IoU 

values of the proposed models, such as U-Net with SE-

ResNet-34 optimized with Adamax, LinkNet with SE-

ResNet-34 optimized with Adamax, PSP-Net with SE-

ResNet-34 optimized with Nadam, and FPN with SE-ResNet-

34 optimized with Adamax models are compared. Compared 
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to the DMA, 3D-UNet and 2D-UNet techniques, the 

proposed LinkNet with SE-ResNet-34 optimized with 

Adamax optimizer achieved 0.7454453 as the best result in 

this analysis compared to the other proposed models. 

Following LinkNet, the U-Net with SE-ResNet-34 and FPN 

with SE-ResNet-34 optimized with Adamax has obtained 

better results compared to the DMA technique with 

0.742655936 and 0.735521363. The proposed models 

outperformed the compared models mainly because of the 

optimizers employed with the proposed models. These 

optimizers help to achieve great results with better 

performance. 

Table 6. Performance Comparison of Segmentation Techniques 

Models IoU 

U-Net with SE-ResNet-34 0.7426 

LinkNet with SE-ResNet-34 0.7454 

PSP-Net with SE-ResNet-34 0.7091 

FPN-SE-ResNet-34 0.7355 

DMA [19] 0.67±0.07 

3D-UNet without batch normalization [35] 0.723 

3D-UNet with batch normalization [35] 0.704 

2D-UNet with batch normalization [35] 0.547 

 

5. Conclusion 
Precise segmentation of the prostate region in MR 

Imaging improves the treatment opportunities and chances of 

the patient’s prognosis with cancer. Prostate gland 

segmentation using the DL semantic segmentation models 

such as U-Net, LinkNet, PSP-Net and FPN with backbones 

such as ResNet-34 and SE-ResNet-34 has been designed, 

implemented, and discussed along with various optimizers 

and other hyperparameters setting. In this work, neural 

network architecture optimizer Adam, Adamax, RMSProp, 

Nadam and SGD has been employed along with multiple 

epoch values along with learning rates to improve learning 

and reduce loss. Performance of the proposed model has been 

carried out using NCI-ISBI 2013 dataset to the IoU metric on 

the various sets of the model. It has proved that LinkNet with 

SE-ResNet34 architecture yielded better results in predicted 

segmentation, followed by U-Net with SE-ResNet34 

architecture and then followed by LinkNet with ResNet34. 

The results obtained in this paper are based on some of the 

hyperparameters tuned to get better results. The results of the 

proposed models are compared with the DMA technique. 

However, future work can consider better understanding, 

developing layers, and tuning actuators of the semantic 

segmentation models adopted. 
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