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Abstract - Assorted morphological characteristics of breast cancer have categorized it as a heterogeneous life-threatening 

ailment for females. Researchers have proposed automated approaches for detecting malignant breast cancer from patient 

images for faster diagnosis with higher precision. Descriptor definition with local attention by dividing a given image into 

patches can result in a robust representation of the breast cancer histopathological images for identification of malignancy. 

This work has experimented with feature extraction with local attention-based vision transformers and has evaluated the 

classification results under multiple classification environments. The research paper has also compared the resilience of 

classical descriptors generated using handcrafted methods and automated pre-trained convolutional neural network (CNN)-

based feature extraction. Three separate handcrafted feature extraction methods, namely Color Histogram, Local Binary 

Pattern (LBP), and Oriented FAST and Rotated BRIEF(ORB), are used in the process, along with pre-trained CNN-based 

feature extraction methods (InceptionNet-v1, EfficientNet-B7, and ResNet-50). The experimentation is performed using the 

BreakHis dataset, and the results have revealed the superior performance of vision transformer-based features as compared to 

all other individual features considered. Furthermore, early fusion-based descriptors with different combinations of 

handcrafted and deep-learning features are created to investigate any improvement in the generalization of descriptors. The 

results have indicated that the feature extracted with local attention-based vision transformer overfits with early fusion has the 

best performance when evaluated individually in three different classification environments. 

Keywords - Breast cancer, Local attention, Vision transformer, Color histogram, Local Binary Pattern, Convolutional Neural 

Networks.  

1. Introduction 
Histopathological images are the yardstick for 

automated breast cancer detection using computer-aided 

diagnosis. Breast cancer causes maximum mortality and 

morbidity among women worldwide, as reported by World 

Health Organization’s (WHO) World Cancer Report. 

According to the survey on recent fatal encounters with 

breast cancer, morbidity is known to be the second leading 

cause of death, with a stated account of 14.7% [1]. The 

likelihood of surviving breast cancer can improve by 80% in 

the case of early detection [2]. The histopathological 

investigation has always outclassed all the recent 

advancements in molecular biology in diagnosing breast 

cancer recurrence [3].  

Most of the abnormalities in the epithelial cells 

generating the benign lesion cannot give rise to breast cancer. 

However, cells exhibiting inappropriate division and 

irregular development are referred to as malignant or 

cancerous cells. Manual analyzing microscopic images is a 

highly complicated task based on the nature of their 

appearances [4][5]. However, developing an automated 

method for determining the disease’s malignancy might 

prove helpful in ensuring early medical attention, which 

could be a gesture that saves lives [6] [7] [8]. In[9], various 

algorithms for segmenting nuclei to distinguish malignant 

and benign cases are tested on a dataset of 500 pictures. 

Cytological images used in [10] for the recognition of breast 

cancer are derived from fine-needle biopsies. Four different 

classifiers were trained as a result of the research. In [11], 

cytological scans are used for nuclei segmentation to predict 

breast cancer using diverse machine learning (ML) 

algorithms. The Cascade technique combined with the 

rejection option has reported a classification accuracy of 97% 

for breast cancer [12]. The method enables the resolution of 

straightforward situations at the first level while deferring the 

resolution of complex cases to the next level, capable of 

https://www.internationaljournalssrg.org/
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higher complexity pattern recognition. Due to the lack of 

datasets available to researchers, Spanhol et al. [13] proposed 

a dataset with 7909 breast histopathology pictures acquired 

from 82 patients. It was evaluated by obtaining textual 

features from six classes, categorizing the features with 

various classifiers, and reporting an accuracy of up to 85%.  

Hence, the preceding discussion clearly establishes the 

significance of breast cancer research in the current context. 

This has led to exploring the representation learning 

technique of descriptor definition using deep neural networks 

[14]. Traditional CNNs require substantial computational 

resources, which is a bottleneck for real-time implementation 

[15]. The inductive bias is stronger in CNNs, which can 

exhibit lesser confidence in model regularization or data 

augmentation [16]. Hence for smaller datasets, CNNs are 

prone to overfitting. The authors identified gaps in the 

research described above, which can be addressed using self-

attention-based vision transformers (ViT). They have 

relatively lesser inductive bias and have exhibited incredible 

performance on smaller datasets by dividing an image into 

patches and initiating positional embedding. Impressive 

content-based image classification (CBIC) results are 

unveiled by the self-attention-based vision transformers 

(ViT), which divide the image data into patches to extract 

rich feature vectors. The entire process of defining feature 

vectors with ViT is not only different from the existing pre-

trained convolutional neural networks (CNNs) but also is 

expected to have improved feature quality with respect to the 

handcrafted feature extraction techniques. Hence, the 

objectives of this paper are: 

 

• To investigate the robustness of feature vector extracted 

using vision transformer (ViT) 

• To investigate any improvement in classification 

accuracy by fusing handcrafted features and deep 

representation learning features to feature vectors 

extracted using ViT. 

• To investigate augmentation in feature generalization 

with early feature fusion.  

• To investigate the performance of early feature fusion 

using representation learning-based features. 

 

The above objectives are achieved by extracting feature 

vectors with three different handcrafted techniques followed 

by descriptor definition using pre-trained CNNs and ViT. A 

popular public dataset named “BreakHis" is a testbed to 

compute the classification results in this experimentation 

process [13]. All the generated features are evaluated using 

three different classifiers, namely, K Nearest Neighbor 

(KNN), Random Forest (RF), and Support Vector Machine 

(SVM). The results have revealed the dominance of the local 

attention-based vision transformer (ViT) feature for higher 

classification accuracies in all three classification 

environments when the experimentation is carried out using a 

single descriptor definition. This study has investigated the 

possibility of enhanced feature generalization using the 

fusion of handcrafted features to vision transformer-based 

features for the first time. 

Moreover, this paper has also proposed using a vision 

transformer for a representation learning-based approach. 

However, the scenario is observed to be different in the case 

of fusion-based approaches, and the classification results 

have highlighted the combination of EfficientNet-B7 with 

handcrafted features ensuing in higher classification results 

by denying the obvious superiority of participation of vision 

transformer features as a member of the fusion process. This 

has also indicated better feature generalization in the early 

fusion technique using conventional pre-trained CNNs 

compared to the vision transformer-based local attention 

approach. 

2. Literature Review 
A substantial volume of research work is carried out for 

the automated identification of breast cancer using computer-

aided diagnosis [17]. The research is essential in the domain 

since breast cancer is identified as being one of the primary 

issues resulting in the fatality of the female population [18]. 

A transfer learning-based approach using CNN for early 

breast cancer identification is observed to be beneficial in 

controlling premature deaths [19]. The initiation of 

computer-based nuclear morphometry for cancer detection 

has been discussed in the literature for the last 40 years [20]. 

The widespread adoption of whole sliding images (WSI) and 

other digital pathology forms has produced several 

roadblocks, including the high execution cost and technology 

implementation, the technique's insufficient output when 

dealing with extensive clinical routines, implicit technical 

issues and pathologists' cultural resistance [21]. Publication 

of the "BreakHis" dataset and its unrestricted access to the 

entire world has enabled public access to the 

histopathological image dataset to the experts for breast 

cancer diagnosis [13]. Recent research has revealed 

promising classification accuracies using this dataset as a 

testbed for extracting both handcrafted and deep-learning 

features [22]. Classification of breast tumors from image data 

in [23] is carried out by using the sorted gray values’ mean 

derived from the test images as features. Extraction of 

morphological textured-based feature vectors is presented in 

[24] for the binary categorization of cancer images using 

SVM. A prominent application of color features is observed 

in [25] for feature vector representation applied in the 

classification of breast cancer. Global and local thresholding-

based binarization for feature extraction is carried out in [26] 

for breast cancer detection from mammography images. The 

efficacy of binarization is also reported in [27] and [28] for 

detecting malignancy in breast cancer. Texture features are 

learned from ultrasound images for breast cancer 

identification [29]. Curvelet transform is used in [30] to 

extract potential features for the recognition of breast cancer.  

Deep learning (DL) techniques have recently gained 



Rik Das et al. / IJETT, 70(12), 317-327, 2022 

 

319 

popularity for successfully addressing image categorization 

issues. [31] [32]. With patch-based DL algorithms for breast 

tumor categorization mentioned in [25], a superior 

presentation of input data for tumor detection is witnessed. A 

class structure deep CNN was recently proposed in [56] and 

has demonstrated an average image-level 96.7% accuracy for 

the BreakHis dataset. A deep multichannel preserving 

autoencoder was used in another method [34], which 

reported an aggregate 99.36% accuracy. Additionally, in the 

different arguments [35], a CNN model is evaluated using 

cardiology, radiology, and gastroenterology as three distinct 

medical imaging applications. In [36], a two-level model is 

suggested, using the expectation maximization (EM) method 

in conjunction with a patch-level CNN and SVM or the 

multiclass regression technique. Neural codes, also known as 

Decaf features, are considered to act in some way as a trade-

off between conventional handmade methods and CNN 

procedures that are task-specific [37] [38]. This hypothesis 

has produced robust descriptor creation by using a CNN that 

has already been trained as a feature extractor. Additionally, 

distinct classifiers developed with competitive classification 

accuracy are given the retrieved features as inputs [39] [40]. 

The efficiency of vision transformers using ultrasound 

images for breast cancer categorization is reported in [41]. 

Average classification accuracy of 93.02% is achieved for 

breast cancer categorization using the DeconvTransformer 

model [42]. Classification of histopathological images for 

revealing breast cancer is carried out in [43] using 

Transformer based self-supervised learning. Improvement in 

breast cancer identification is observed in unregistered 

Multiview mammograms with the use of transformers [44]. 

Hence, the application of diverse methods for breast 

cancer using content-based image classification is evident 

from the discussion, as mentioned earlier in the existing 

literature. But, primarily, the techniques are implemented 

separately and are not tested using an early ensemble 

approach. It is observed that none of the methodologies has 

attempted to examine the improvement of the feature 

generalization capacity of vision transformers by fusing the 

extracted features with the handcrafted ones. Moreover, it is 

also observed that the fusion of self-attention-based extracted 

descriptors from vision transformers is also not fused with 

pre-trained CNN-based representation learning features to 

understand the performance enhancement for classification 

and breast cancer analysis.  

The authors have identified the gap and have designed 

diverse fusion-based descriptor definitions with assorted 

feature combinations to evaluate the classification 

performances in terms of achieved feature generalization. 

The results are encouraging for ensuring augmented 

precision over individual approaches and have identified the 

suitable combinations of features for better classification 

results. 

3. Proposed Techniques  
Descriptor definition has a fundamental contribution to 

ensuring high precision for CBIC. The authors in this work 

have intended to investigate the feature generalization 

capability of varied descriptor definition techniques for 

designing an automated computer-aided breast cancer 

diagnosis using histopathological image data. 

Self-attention between image patches applied by vision 

transformer (ViT) based feature extraction has enabled it to 

learn global information superior to conventional CNNs 

having limited local receptive field. Therefore, representation 

learning-based feature generation primarily uses a ViT [55]. 

Furthermore, pre-trained CNN-based feature extraction is 

carried out, followed by the definition of handcrafted feature 

vectors to design the fusion-based approach and to evaluate 

the comparative generalization. A brief description of each of 

the techniques is mentioned in the subsections below. 

3.1. Vision Transformer (ViT)  

Two-dimensional image data is handled with a vision 

transformer by reshaping a given image 𝑖 ∈ ℝ𝐻∗𝑊∗𝐶to a 

series of flattened two-dimensional patches 𝑖𝑝 ∈ ℝ𝑁∗(𝑃2.𝐶). 

Here, the original image resolution is (H, W), and C 

represents the number of channels. (P, P) denotes each 

patch’s resolution, and N denotes the total number of 

patches. Here, 𝑁 = 𝐻𝑊/𝑃2. 

 

The Transformer uses a constant latent vector of 

dimension D across all the layers with which the flattened 

patches are mapped with a trainable linear projection as in 

equation 1. 

 𝑧0 = [𝑖𝑐𝑙𝑎𝑠𝑠;  𝑖𝑝
1𝐸; 𝑖𝑝

2𝐸;… . ;  𝑖𝑝
𝑁𝐸] + 𝐸𝑝𝑜𝑠,    

 

𝐸 ∈ ℝ(𝑃2.𝐶)∗𝐷, 𝐸𝑝𝑜𝑠 ∈ ℝ(𝑁+1)∗𝐷 
(1) 

 

where 𝑧0
0 = 𝑖𝑐𝑙𝑎𝑠𝑠are a sequence of embedded patches 

 

A learnable embedding is prepended to the series of 

embedded patches from which the image representation r is 

derived as the state at the output of the transformer device, as 

in equation 2. Positional information is retained in patch 

embedding by adding positional embeddings. 

 
𝑟 = 𝐿𝑁(𝑧𝐿

0) (2) 

where 𝑧𝐿
0 is the Transformer encoder. 

 

The transformer blocks present in the ViT model are 

responsible for creating a tensor to be processed by a 

classifier head with softmax to conclude the final class 

probabilities. The authors in this approach have extracted the 

feature vectors from the histopathological images by 

flattening the outputs of the final transformer block and using 

them as image representations to the classifier to evaluate 

classification accuracy. A block diagram of ViT is provided 

in Figure 1. 



Rik Das et al. / IJETT, 70(12), 317-327, 2022 

 

320 

 

 
Fig. 1 Block Diagram of ViT-based Feature Extraction 

 
Fig. 2 Block Diagram of Pre-trained CNN-based feature extraction 

 

 

3.2. Convolutional Neural Network-based Representation 

Learning 

Feature extraction using DL techniques [46] is 

performed using pre-trained CNNs, namely, InceptionNet-v1 

and EfficientNet-B7+ ResNet-50. The CNNs are trained 

using the imagenet dataset and are capable of categorizing 

1000 unique classes. The last layer of the CNNs is 

considered a feature vector and is extracted from the 

architecture to provide input to the classifiers, as shown in 

Figure 2.  

3.3. Color Histogram (CH) 

One of the MPEG-7 feature sets is the CH, which is 

regarded as an effective image descriptor. These features can 

be adjusted for scale-invariant properties after image size 

normalization. This technique's invariance to image rotation 

and translation are also essential features[22].  

A color histogram is created using the R, G, and B 

planes of an image. The image’s histogram represents the 

probability dispersal of the color intensities. The global 

histogram is computed by taking the entire image into 

account. Color histograms are simple to create and are less 

affected by slight shifts in viewpoint. Color histograms can’t 

give spatial information and are affected by lighting changes. 
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3.4. Local Binary Pattern (LBP) 

The “local binary pattern (LBP) is a non-parametric 

operator that describes the local spatial structure of an image 

and achieves excellent texture classification results. The 

center pixel is matched to its surrounding pixels in a radius 

of ‘P’ pixels. If the surrounding pixels’ intensity is higher 

than that of the center pixel, code ‘0’ is assigned; otherwise, 

code ‘1’[47]. Concatenating these surrounding code bits 

yields the binary codeword for the center pixel. The decimal 

number is then generated from the codeword. The feature 

vector is formed by computing the histogram of the decimal 

codewords. The histogram has a total of 2d bins, where ‘d’ 

denotes the number of bits in the binary codeword. Equations 

3 and 4 can thus be used to define the LBP descriptor for the 

center pixel(xc,yc). 

 𝐿𝐵𝑃(𝑥𝑐 𝑦𝑐) = ∑𝑡(ic −

P

p=1

ip)2
p (3) 

 

 𝑡(𝑥) = {
1,   𝑖𝑝 ≥ 𝑖𝑐
0,   𝑖𝑝 < 𝑖𝑐

 (4) 

 

Where ‘ic' denotes the center pixel intensity, and ‘ip’ 

denotes the surrounding pixel intensity. Also, t=0 if ic<=ip 

else t=1. 

3.5. Oriented FAST and Rotated BRIEF (ORB) 

Oriented Features from Accelerated Segment Test 

(FAST) and Rotated Binary Robust Independent Elementary 

Features (BRIEF) combine to generate ORB. FAST and its 

variants, such as oFAST, are techniques for locating 

interesting areas in images[57]. The fact that these interest 

points are generally found near corners of an image suggests 

that the pixels with the highest gradients relative to their 

surrounding neighbors are typically the interest points.  

The Oriented FAST (oFAST) was developed to 

overcome the issue of orientation for the corners. Centroid 

intensity is a straightforward and useful orientation 

measurement used by oFAST. The corner orientations can be 

determined using the standard moments as given in equation 

5.  

 𝑚𝑝𝑞 = ∑𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)

𝑥,𝑦

 (5) 

 

Where I(x,y) is the point’s intensity value (x,y), the 

standard moments are used to compute the centroid, as 

demonstrated in equation 6: 

 𝐶 =  (
𝑚10

𝑚00
,
𝑚01

𝑚00
) (6) 

 

After locating the centroid, a vector 𝑂𝐶⃗⃗⃗⃗  ⃗ is produced, 

where O denotes the corner’s center and C denotes the 

centroid. Calculating the angle, as defined in equation 7, 

where atan2 is a special case of the arc tangent function used 

with standard moments – gives the orientation. 

 𝜃 = 𝑎𝑡𝑎𝑛2(𝑚01, 𝑚10) (7) 

The interest points detected using oFAST are described 

using binary vectors using the rBRIEF algorithm.   

 

 
Fig. 3 Sample of BreakHis Dataset with Different Magnification Factors 
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Fig. 4 Breast Image Classification using Proposed Technique 

3.6. Experimental Setup 

The experimental setup is based on a system comprising 

2 CPU Cores assisted with 12 GB NvidiaK80 GPU and 12 

GB RAM. The testbed is prepared with a widespread public 

dataset named BreakHis dataset having 7909 images 

categorized into eight different breast cancer sub-classes [13] 

[29]. These images are contributed by 82 anonymous patients 

of the Pathological Anatomy and Cytopathology (P&D) Lab 

Brazil. The images have four different magnification factors, 

namely, 40X, 100X, 200X, and 400X, respectively, and are 

divided into malignant and benign categories. The images are 

three-channeled in nature with a dimension of 700×460 and 

eight-bit per channel depth. The results are derived using 

five-fold cross-validation, and the number of training images 

is approximately 6327. An illustration of the dataset with 

sample images is shown in Figure 3.   

Figure 4 shows the block diagram of the proposed 

technique. The BreakHis dataset images are pre-processed. 

Handcrafted features, deep learning representations, and 

vision transformer-based features are extracted from the 

images to generate the feature vector of an image. All the 

feature vectors are normalized for creating an early fusion-

based classification framework using diverse combinations. 

The process is envisioned to be useful for enhanced 

generalization of descriptors. The fused features and 

individual features are evaluated using three different 

classifiers, namely, support vector machine (SVM), random 

forest (RF), and K Nearest Neighbours (KNN). The 

evaluation metric is identified as the image level accuracy, 

which is the ratio of the number of correctly classified 

images (Ic) to the number of total images (It), as in equation 

8. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐼𝑚𝑎𝑔𝑒_𝑙𝑒𝑣𝑒𝑙 =

𝐼𝑐
𝐼𝑡

 (8) 

4. Discussion and Analysis 
Individual descriptor definition primarily uses 

handcrafted techniques and deep learning-based feature 

extraction. The feature vectors extracted using CH [49], 

LBP[50], and ORB[51] are evaluated for image-level 

accuracies using SVM, RF, and KNN classifiers. The 

accuracy recorded for the SVM classifier using CH features 

is 67% which is higher than the accuracies of LBP and ORB 

features, having subsequent accuracies of 66% and 65%. 

Although, in the case of RF and KNN classifiers, feature 

descriptors for the ORB technique have the highest accuracy 

compared to CH and LBP, respectively. However, the 

classification accuracy for features extracted using a vision 

transformer has exhibited the highest value of 95% using an 

RF classifier compared to any of the other handcrafted 

techniques and representation learning techniques of feature 

extraction. A comparative illustration of the classification 

accuracies with individual features is shown in Figure 5. 

The illustration in Figure 5 has provided the image level 

accuracies achieved by different individual feature extraction 

techniques. Local attention-based features extracted using 

Vision Transformer have the highest accuracies of 92%, 

95%, and 90% with SVM, RF, and KNN, respectively, 

among all the seven varieties of feature vectors extracted. 

EfficientNet-B7 [52] has recorded almost equivalent 

performance of 91% image-level classification accuracy to 

that of vision transformer (ViT) and much higher than 

InceptionNet-v1[53] (82% with SVM) and ResNet-50 [54] 

(70% with SVM) for classification using SVM. 
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Fig. 5 Comparative Image Level Accuracies in Different Classification Environments for Individual Features 

 
Fig. 6 Comparative Image Level Accuracies in Different Classification Environments for Fused Features 

Although, the remaining two classification results for 

EfficientNet-B7 are 86% and 82% for RF and KNN, 

respectively, which have outclassed the classification 

performances of the other two representation learning 

features extracted using InceptionNet-v1 (80% with RF and 

82% with KNN) and ResNet-50 (68% using RF and 81% 

using KNN). Nevertheless, it is observed that features 

extracted using local attention with ViT have revealed the 

maximum image-level classification accuracies in all three 

classification environments (SVM, RF, and KNN). 

CH[49] LBP[50] ORB[51]
InceptionNet-

v1[53]

EfficientNet-

B7[52]

Vision

Transformer

ResNet-

50[54]

SVM 67% 66% 65% 82% 91% 92% 78%

RF 75% 76% 76% 80% 86% 95% 68%

KNN 76% 80% 83% 78% 82% 90% 81%
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Furthermore, different varieties of fused features are 

created using the following combinations: 

• Color Histogram with LBP 

• LBP with ORB 

• CH with LBP and ORB 

• CH, LBP, ORB and InceptionNet-v1 

• CH, LBP, ORB and EfficientNet-B7 

• CH, LBP, ORB and ResNet-50 

• CH + LBP + ORB + Vision Transformer (ViT) 

 

The comparative results for image-level classification 

accuracies for fused features are presented in Figure. 5. 

The visualization in Figure 6 clearly reveals that the 

fusion of handcrafted features in different combinations, 

namely, CH with LBP, LBP with ORB, and CH, LBP with 

ORB, has improved the classification results in all the cases 

except for the fusion of three features evaluated using the 

KNN classifier. The accuracy is reduced to 75%, less than 

each handcrafted feature. Although, an increase in accuracies 

in most cases has indicated better feature generalization by 

introducing early feature fusion for handcrafted techniques.  

Henceforth, feature fusion is carried out between 

representation learning features extracted using pre-trained 

CNNs and vision transformers to that of the handcrafted 

features. The results in Figure 6 demonstrate an improvement 

in the individual accuracies of handcrafted features with this 

fusion in the majority of the cases.  

However, a drop in accuracy is observed in deep 

learning features due to fusion in some issues, namely, the 

classification of CH+LBP+ORB+ InceptionNet-v1 using an 

SVM classifier and for CH+LBP+ORB+ ViT using an RF 

classifier. Although, the performance of handcrafted 

techniques has improved even in these two cases. 

An SVM classifier achieves maximum image level 

accuracy of 96% with feature fusion of CH + LBP + 

EfficientNet-B7. The classification results achieved by the 

fusion of handcrafted features to local attention-based ViT 

features are inferior to that of the EfficientNet-B7 for SVM 

and KNN and are equal for RF. However, the other two 

fused feature combinations, namely, CH + LBP + ORB + 

InceptionNet-v1 and CH + LBP + ORB + ResNet-50, are 

much lesser for all three classification environments. 

Thus, the experimentation process has disclosed the 

following research insights: 

• Individual descriptors defined using the local attention-

based mechanism of vision transformer (ViT) possess 

superior feature generalization capacity compared to 

pre-trained CNNs and handcrafted features 

• The classification performance of ViT features degrades 

with fusion compared to individual outcomes 

• A careful combination needs to be done for the fusion-

based approach using ViT features to avoid inferior 

classification outcomes due to overfitting. 

• Fusion of handcrafted features with representation 

learning features in general extracted using pre-trained 

CNNs leads to higher accuracy due to robust descriptor 

definition. 

 

Therefore, the research work has identified that features 

extracted using local attention-based vision transformers are 

prone to overfitting in the fusion-based scenario. The vision 

transformers can extract significantly rich feature vectors 

compared to pre-trained CNNs or handcrafted techniques 

when used as individual feature extractors. However, for the 

fusion-based scenario, a combination of handcrafted designs 

and features extracted using pre-trained CNNs results in 

superior generalization compared to the ViT model for 

enhanced classification accuracy. 

5. Conclusion 
The paper has conducted an extensive examination to 

identify robust feature vector extraction techniques for breast 

cancer classification using histopathological images.  

The main contribution of this work is to examine the 

robustness of feature vectors extracted using a local 

attention-based vision transformer compared to traditional 

descriptors extracted using handcrafted techniques and deep 

learning-based automated techniques. In the process, three 

different handcrafted techniques, namely, CH, LBP, and 

ORB, are implemented along with pre-trained CNN-based 

(InceptionNet-v1, EfficientNet-B7, and ResNet-50) feature 

extraction techniques.  

The research outcomes have clearly revealed the higher 

classification accuracies of local attention-based vision 

transformer features compared to the rest of the techniques 

for evaluating classification accuracies with single feature 

vector extraction. The process is followed by feature fusion 

of the different feature varieties to assess any enhancement in 

feature generalization capabilities to stimulate classification 

accuracies.  

The results are affirmative and have exhibited enhanced 

image level accuracies compared to the individual 

descriptors. Hence, the feature fusion technique is observed 

to be efficient in improving the robustness of local attention-

based features of vision transformers to ensure a high level of 

precision in designing computer-aided breast cancer 

diagnosis using histopathological images. 
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