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Abstract - The task of automatic music transcription is to build algorithms to convert acoustic music signals into some form of 

musical notation. Previous works train a single neural network architecture for a complete database of different composers. 

This work presupposes that each composer has their own characteristic style. The objective of this work is to carry out two 

stages of training. The first stage results in a generic trained model, and the second is a specialized and fine-tuned retraining 

step, generating a model for each compositor. To achieve this objective, experiments were carried out with two different 

Neural Network architectures —MLP and Convolutional— using the MusicNet database. Overall, the results with fine-tuning 

improved the average accuracy, except for composers with fewer musical works. 

Keywords - Convolutional Neural Networks, Multilabel Classification, Multilayer Perceptron, Short Time Fourier Transform, 

Spectrogram, Transfer Learning. 

1. Introduction 
Musical transcription is an old problem that has existed 

since its early developments, with the objective of 

documenting musical information in a legible writing form 

[1]. Recognition of music information is a problem addressed 

in different tasks, such as Optical Music Recognition (OMR) 

which performs optical scans on handwritten scores and can 

use Deep Learning to translate them into digital information, 

as did Nawade et al. [2]. Automated Music Transcription 

(AMT) is another task of Music Information Retrieval 

(MIR), with the aim of converting acoustic music signals 

into some form of musical notation [3]. The main idea can be 

represented as a sequence-to-sequence task, with the input of 

a sequence of audio frames and the output as a sequence of 

objects, which can be expressed as numbers or tokens, 

representing the notes [4]. 

The compilation of the study by Benetos et al. [3] 

presents several approaches to solving the AMT issue, 

including the methods of signal processing [5][6], Bayesian 

networks [7], probabilistic modelling [8], non-negative 

matrix factorization [9][10][11][12], and hidden Markov 

models [13][14]. Benetos et al. [3] also show that neural 

networks have become increasingly popular in solving this 

problem, as larger data sets are emerging and becoming 

accessible, as processing hardware is becoming more and 

more powerful. Even using neural networks, the authors 

indicate that there are still challenges associated with state-

of-the-art methods based on neural networks, considering 

that experiments show that there is still detection of spurious 

notes in their results.  

The article by Thickstun et al. [15] addresses the 

problem of labelling dataset size limitation and introduces a 

new large-scale music dataset, MusicNet. This same article 

deals with the multi-label classification method to predict 

musical notes in audio recordings, together with an 

evaluation protocol. It compares different machine learning 

architectures for this method. The best results were with 

MultiLayer Perceptrons (MLP) and Convolutional Neural 

Networks (CNN). 

The work by Thickstun et al. [15] performs cross-

validation using the holdout method, which separates part of 

the data for training and the rest of the basis for tests. This 

work assumes that each composer has a different style from 

one another [16]. Thus, the purpose of this work is to have 

two steps followed by training. The first is given by the 

model trained by Thickstun et al. [15] and includes a second 
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step of fine-tuning, generating a model for each composer. 

This approach of training steps followed by training has 

already been discussed in the work of Tamaazousti et al. 

[17], in which, in the first step, there is training with generic 

categories. Then there is a second training (retraining), 

making a fine-tuning of one or more models for more 

specific problems. Fine-tuning is defined as “the process of 

pre-training neural networks with a generative objective 

followed by an additional training phase with a 

discriminative objective on the same dataset” [34]. In the 

“Transfer learning” process, the second training step is 

performed with another general dataset of a smaller size than 

the one used in the first step. 

This work investigates whether the fine-tuning of a 

separate model retrained by the composer (second stage) 

improves the result in relation to the general trained network 

(first stage) in the AMT task. As the work is based on the 

article by Thickstun et al. [15], the experiments use the same 

dataset (MusicNet), the same evaluation metrics, precision, 

recall and average precision, and the same five neural 

network models that obtained the best results (according to 

Table 4 and Appendix E of the base article). For each model, 

there are three types of experiments: the first one initializing 

the weights of the network and training for each composer; 

the second keeping the weights of the original work and 

running them with the test base of this work; and the third 

applying a second fine-tuning step by the composer. 

As few musical datasets exist compared to image 

datasets, the contribution of this work is to improve the 

accuracy of musical transcription through fine-tuning due to 

the low amount of data. 

The next sections are organized as follows: Section 2 

describes related works; Section 3 presents a detail of the 

MusicNet database, following the proposal of the base article 

and the fine-tuning retraining; in Section 4, the results of the 

experiments are presented and discussed; and Section 5 

concludes this study with a summary of the main points 

discussed here and suggestions for possible future work. 

2. Related Works 
Benetos et al. [3] summarize the AMT problem in six 

subtasks, which are the following: pitch and multi-pitch 

estimation that involve the extraction of fundamental 

frequency from an audio file; onset and offset detection, 

which is used in musical notes recognition; instrument 

recognition; rhythm and beat tracking for instrument 

separation; recognition of time and dynamics for each 

instrument; and score composition. All those methods can be 

applied to frame level, note level, and stream level 

approaches for source separation and problem resolution. For 

example, pitch estimation can be considered a frame-level 

approach, while onset and offset detection can be interpreted 

as a note level. Some of the main solutions to tackle these 

problems are listed in the introduction. 

Also, as stated in the introduction, the work of Thickstun 

et al. [15] was used as the basis for this work. The article 

introduces the foundation of MusicNet and explains how 

automatic annotation was performed using the Dynamic 

Time Warping method, which performs event-based music 

segmentation on the score to find the best alignment between 

digital scores (MIDI) and audio recordings. The result of the 

best model was the architecture based on CNN, which 

achieved a value of 67.8% in the average accuracy metric, 

60.5% in accuracy and 71.9% in the recall. A detailed 

description of the multi-label article classification basis and 

methods can be found in Section 3 of this text. The same 

authors published another article [19] exploring four CNN 

architectures the following year. In their work, the network 

that models the translation-invariant features obtained the 

best performance using the average precision metric of the 

first work as a comparison, reaching a value of 77.3%. 

Cheuk et al. [20] also use the MusicNet database to 

evaluate different audio representations in automatic music 

transcription. The work analyzes the effect of four different 

frequency representations as input to the model: linear 

frequency spectrogram, logarithmic frequency spectrogram, 

constant-Q transform (CQT) and honey spectrogram. The 

model's performance is evaluated by varying the number of 

windows and frames in the audio representation. The best 

result found was the use of the logarithmic spectrogram, 

based on precision, accuracy and error metrics, with a 

performance of 66.6%, 48.1% and 56.0%, respectively. 

Within the scope of audio processing with transfer 

learning D. Ghosal and M. H. Kolekar [21] proposes a music 

genre and style recognition approach for songs in the 

GTZAN dataset [22] and Ballroom dataset [23] containing a 

large amount of music of different styles. The experiment 

consists of a set of CNNs, Convolutional Long Short Term 

Memory (LSTM), and MLP with a transfer learning model 

running in a 10-fold cross-validation setup. The models for 

CNN and LSTM were tested with a wide set of spectral and 

rhythmic features such as Mel Spectrogram, Energy 

Chromagram, Constant Q Chromagram and others extracted 

from the raw music signals. The MLP model combined the 

features mentioned before with the transfer learning system 

trained for music labelling. The best result for the GTZAN 

dataset is obtained by MLP with transfer learning, achieving 

an 85.5% average accuracy score across all 10 folds. 

However, for the Ballroom dataset, the best result was 

obtained by the CNN LSTM with max pooling, with an 

average accuracy of 90%. 

 

Another transfer learning proposal in the task of MIR is 

presented by L. Ou, X. Gu, and Y. Wang [35]; however, the 

focus is on ALT (Automatic Lyric Transcription). The 
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solution was developed to take advantage of the similarities 

of spoken and sung voices, achieved by performing transfer 

learning using a singing data system after pre-training and 

fine-tuning speech data and exploring the influence of 

different starting points. A variety of lyric transcription 

datasets were used for tests, including DALI [25], Hansen 

[26], Mauch [27], Jamendo [28] and DAMP Sing [29]. The 

results were measured with WER (Word Error Rate) and 

show that the work outperforms other state-of-the-art 

methods in all datasets, where the least error was measured 

in the DSING dataset at 12.34%. 
 

Nawade et al. [2] investigate the performance of deep-

learning methods for old handwritten music symbol 

recognition. The Alicia Fornes dataset was used, and the 

musical symbols were classified into seven different classes. 

The paper presents two approaches related to CNN, one 

purely based on the mobileNetV2 architecture and the other 

replacing the softmax layer with classifiers such as SVM, 

RandomForest, and KNN. The performance evaluation of the 

methods used the precision, recall, F1 score, and accuracy 

metrics, and Transfer Learning was also used in an attempt to 

improve the measures. Their method outperforms previous 

existing methods achieving an accuracy of 99.58% with the 

CNN combined with RandomForest without the Transfer 

Learning. 
 

Tamaazousti et al. [17] bring three different approaches 

to address the issue of universal representations and 

knowledge transfer. The idea behind the article is that the 

data used for training can be structured in a certain way that 

allows different tasks to learn more or better from the same 

data and learning algorithms. The first proposal is a 

segregation of the initial problem to learn new features and 

then generically combine all the data. For example, 

categorize the network with images of Rottweilers, Pitbulls, 

and others, and then generalize to the category of dogs.  

The second proposal is called Focused Retraining, 

which, unlike the first, retrains the model based on the tuning 

principle; that is, it starts as a generalist and then retrains in a 

specialized way. It is interesting to emphasize the need to 

form an independent network by speciality of the problem 

and that the data be the same in training and recycling. This 

second proposal is the one used in the experiments of this 

text. The third proposal is the performance evaluation for the 

problem of universality, combining its previous proposals, 

problem segregation, generic combination, and focused 

retraining. In the article, several experiments are carried out 

with ten different data sets comparing them with other 

methods of universal representations considered state of the 

art. In most of the experiments, the third proposal of the 

work stands out over the other methods based on the average 

accuracy and precision metrics, reaching the best value of 

77.5% for the CA101 database. 

3. Materials and Methods 
This section is divided into three parts: a description of 

the MusicNet database, a description of the system proposed 

by Thickstun et al. [15], and the adjustment step, referring to 

retraining by the composer. 

3.1. Musicnet 

The MusicNet project was inspired by the ImageNet 

database and pursued the same idea of providing a rich set of 

labeled data to explore machine learning techniques in 

music, being a common reference to compare results. 

MusicNet [30] is a database containing 330 freely licensed 

classical music recordings and is featured in the article by 

Thickstun et al. [15]. The compressed base has a size of 

11Gb, and the expansion reaches 30Gb. All compositions 

have a set of metadata containing the composer, musical 

movement (andantino, maestoso, andante, among others), set 

of instruments (solo piano, string quartet, among others), 

responsible for transcription, and music tempo. The 

recordings last an average of six minutes, the shortest being 

55 seconds and the longest almost 18 minutes. 

The dataset is labeled by musical composition. There are 

513 starting classes using the naive definition of distinct 

instrument/note combinations. On the “MusicNet Inspector” 

page [31], it is possible to choose the musical composition, 

listen to it, and visualize the explanations about the musical 

notes in a video. The video contains a piano-roll 

representation of color-coded note annotations according to 

the instruments and the audio waveform to show the 

amplitude of the audio at each instant. The labels were 

obtained through automatic alignment with MIDI files rather 

than being manually tagged, which introduced a degree of 

labelling error that the authors estimate to be around 4%. 

Because it is a continuous music event, many labels can 

overlap in a time series, creating multiple polyphonic labels. 

The data structure of the tags that support this information is 

an interval tree that builds a tree based on the time interval 

and expands to the leaves that exhibit the characteristics of 

that interval. The information contained in the leaves is as 

follows: start and end interval of the recording time (of the 

sheet), instrument, musical note, compass, rhythm (or beat) 

and note value. 

In short, the dataset has more than 2,048 minutes of 

recording, almost 1.3 million stamps, exploring ten different 

classical music composers and eleven musical instruments. 

Table 1 shows the information by the composer: number of 

compositions, time in minutes and number of labels (leaf 

nodes). The database is unbalanced for composers. 

Practically half of the music dataset is related to Beethoven, 

but other composers such as Bach, Brahms, Schubert and 

Mozart have representative participation within the dataset. 

Haydn has the least number of compositions and time. 
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 Table 1. Summary of information on musical composition by the 

composer in the Music-Net database, sorted by the number of 

compositions in descending order. 

Composer 

Number of 

musical 

compositions 

Duration 

in 

minutes 

Labels 

Beethoven 157 1.057 736.072 

Bach 67 184 62.782 

Schubert 30 253 146.648 

Brahms 24 192 133.109 

Mozart 24 156 99.641 

Cambini 9 42 24.820 

Dvorak 8 55 46.261 

Faure 4 32 22.349 

Ravel 4 27 21.243 

Haydn 3 14 6.404 

 

Another imbalance is related to musical instruments. 

There are many solo piano musical compositions, while flute 

and oboe are poorly represented. Only 83 of the 88 keys are 

used on the piano and appear as labels. 

 

3.2. The proposal from Thickstun et al. 

The simplified architecture of the proposal by Thickstun 

et al. [15] is shown in Figure 1. The input audio goes through 

the window technique, part (a) of the figure; then, in step (b), 

an audio transformation is applied to generate a spectrogram 

that transforms the audio signal into a frequency graph. Next, 

there is the classifier, step (c), which is an MLP or CNN, 

which generates the result ŷ. This result converts into a 

vector of 0s (zeros) and 1s (ones) in step (d). 

Thickstun et al. [15] analyze the compensation that the 

window size must be large enough to return relevant 

information but not so much as to lose the temporal 

resolution of the signal. The authors provided the values of 

the window size parameter of 2,048 and 16,384, a value that 

varies according to the model being illustrated by the cut of a 

red rectangle, part (a) of the figure, which is converted into a 

spectrogram, part (b) of the figure. Spectrograms represent 

the magnitude of the STFT (Short Time Fourier Transform). 

 
Fig. 1 The architecture of the work of Thickstun et al. (2017) 

The spectrogram is an input for the classification 

methods, part (c) of the figure. In Thickstun et al. [15] work, 

four models based on MLP architecture and one on CNN 

architecture were developed. The list below shows the name 

and a summary of the models: 

 

• Model 1: MLP with 2,500 nodes and a window size of 

2,048; 

• Model 2: MLP with 500 nodes and a window size of 

2048; 

• Model 3: MLP with 500 nodes and a window size of 

16,384; 

• Model 4: MLP that makes use of an average pooling 

with two strides in the input to try to modify the relevant 

characteristics. In addition, it uses a window of size 

2,048; 

• Model 5: Simple CNN with a convolution layer, a 

pooling layer (making use of the average pooling 

operation), and at the end, a fully connected layer for the 

result. The parameters are a convolutional window size 

of 16,384 and a sliding window of size 8 x 8. The first 

layer extracts features from the input using filters of 

2048 samples from the network weights. The pooling 

layer reduces the number of features to be evaluated for 

the classification done on the fully connected layer at the 

end.  

A multi-label classification, in the context of AMT, is 

the task of associating multiple musical notes to a piece of 

music [32]. Consider identifying notes in an audio segment x 

∈ χ as a multi-label classification problem, modelled as 

follows. Assign each audio segment a binary label vector y ∈ 

x = {0, 1}128, part (d) of Figure 1. The 128 dimensions 

correspond to note frequency codes, and yn = 1 if note n is 

present at the midpoint of x. Multivariate linear regression is 

trained to predict ŷ given f(x), which is optimized for the 

squared error. The vector ŷ can be interpreted as a multiple-

label estimate of the scores at x by choosing a threshold c 

and predicting the label n if and only if ŷn > c. Then, the 

search is performed for the value of c that maximizes the f1-

score on a sampled subset of MusicNet. 

Models are evaluated on three metrics: accuracy, recall, 

and average accuracy. Accuracy counts the correct model 

predictions (through all data points) divided by all model 

predictions. The recall is the count of correct model 

predictions divided by the total number of labels (ground or 

baseline truth) in the test set. The precision recovery curve is 

constructed when parametrizing the accuracy and recall with 

the threshold c, and varying it. Average accuracy is the area 

under the accuracy recovery curve, i.e., the Precision-Recall 

Area Under Curve Score. 
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Fig. 2 Separation of composer and composition sets for the two stages of job training 

3.3. Training 

Figure 2 presents a conceptual drawing of the 

composers' separation. In the first stage of training, a 

network trained by all composers is generated. In the second 

stage, new models are generated, resulting in a separate 

model for each composer.  

The test set and the parameters of the models were kept 

as the original ones, except for two of the parameters. One is 

the restore weights parameter, which indicates whether or not 

the original weights will be loaded and has changed 

depending on the experiment.  

The other parameter was the number of iterations, or 

epochs, for training the networks. Originally, the models ran 

with 500,000 iterations to learn the network weights, but for 

Model 4 and Model 5, this number of epochs exceeded the 

computational power available for the experiments.  

Thus, for Models 1, Model 2 and Model 3, 50,000 

iterations were kept, but for Model 4, 10,000 and for Model 

5, 1,000. The Loss Function parameter used for all models 

remained the original, the L2 Squared Error Loss, and the 

optimizer was the Stochastic Gradient Descent (SGD). 

The same proportion in the test dataset of all 

compositions used in Thickstun et al. [15] was kept for the 

test set for the composer's Bach, Beethoven, Brahms, 

Mozart, and Schubert, who have more than 100 minutes of 

recordings. For Cambini and Dvorak, who have more than 40 

minutes and less than 100 minutes of recording, a set of two 

records was chosen for testing, and for Faure, Haydn, and 

Ravel, only one record was chosen for the test set. 

4. Experiments and Results 
The experiments were carried out in the cloud, using the 

Google Cloud Services platform of type E2 Standard, with 

16 vCPUs, 64Gb of RAM, without GPU, and with a standard 

installation of Tensorflow Enterprise 1.15. The five models 

developed by Thickstun et al. [15] and available on Github 

[33] were used to carry out the experiments of this work. The 

results of the experiments were divided into three parts: 

 

• Resetting weights: The five models are loaded without 

previous training of the weights and are trained 

separately for each of the ten composers, thus generating 

50 different models with a single training phase; 

• Original weights: The five models are tested, with the 

weights resulting from the general training phase carried 

out by the work of Thickstun et al. [15]. There is no 

training phase in this experiment. This experiment is to 

ensure that the results presented were tested with the 

same holdout split test database performed in this 

investigation;  

• Proposal of this investigation: To use the weights 

resulting from the training carried out by Thickstun et al. 

[15] on the five models. Each model is trained in a 

second step for the data of each of the ten composers, 

thus generating 50 models.  

The results are shown in Table 2, Table 3 and Table 4. 

The columns represent the five models, from 1 to 5, and the 

lines show the grouping by composer, by type of experiment 

and by metrics. Bold marks are the highest column values 

(per model) of a given metric per composer.  
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Table 2. Results for five composers: Beethoven, Bach, Shubert, Brahms and Mozart 

Composer Experiment Metric Model 1 Model 2 Model 3 Model 4 Model 5 

Beethoven 

Resetting 

weights 

Average precision 0.66 0.64 0.74 0.51 0.61 

Precision 0.68 0.67 0.71 0.22 0.57 

Recall 0.62 0.59 0.70 0.86 0.62 

Original 

weights 

Average precision 0.73 0.68 0.75 0.73 0.82 

Precision 0.71 0.68 0.71 0.20 0.76 

Recall 0.69 0.63 0.70 0.96 0.77 

Proposal by 

this work 

Average precision 0.73 0.68 0.74 0.73 0.82 

Precision 0.73 0.68 0.71 0.20 0.78 

Recall 0.67 0.62 0.70 0.96 0.76 

Bach 

Resetting 

weights 

Average precision 0.65 0.62 0.72 0.06 0.35 

Precision 0.63 0.62 0.65 0.00 0.34 

Recall 0.68 0.63 0.72 0.00 0.46 

Original 

weights 

Average precision 0.70 0.64 0.70 0.70 0.81 

Precision 0.62 0.61 0.61 0.11 0.70 

Recall 0.73 0.65 0.72 0.93 0.80 

Proposal by 

this work 

Average precision 0.71 0.66 0.72 0.71 0.81 

Precision 0.67 0.62 0.65 0.13 0.70 

Recall 0.73 0.69 0.72 0.92 0.80 

Schubert 

Resetting 

weights 

Average precision 0.59 0.59 0.62 0.10 0.18 

Precision 0.52 0.52 0.54 0.00 0.00 

Recall 0.65 0.64 0.73 0.00 0.00 

Original 

weights 

Average precision 0.63 0.61 0.60 0.64 0.67 

Precision 0.55 0.53 0.53 0.18 0.57 

Recall 0.72 0.69 0.73 0.95 0.77 

Proposal by 

this work 

Average precision 0.64 0.62 0.62 0.64 0.68 

Precision 0.58 0.54 0.54 0.25 0.58 

Recall 0.69 0.69 0.73 0.92 0.76 

Brahms 

Resetting 

weights 

Average precision 0.52 0.51 0.61 0.14 0.16 

Precision 0.48 0.50 0.57 0.00 0.00 

Recall 0.64 0.59 0.67 0.00 0.00 

Original 

weights 

Average precision 0.60 0.57 0.61 0.61 0.68 

Precision 0.58 0.52 0.53 0.22 0.64 

Recall 0.66 0.68 0.72 0.93 0.72 

Proposal by 

this work 

Average precision 0.61 0.57 0.61 0.61 0.69 

Precision 0.55 0.56 0.57 0.20 0.63 

Recall 0.69 0.61 0.67 0.94 0.73 

Mozart 

Resetting 

weights 

Average precision 0.52 0.51 0.61 0.12 0.14 

Precision 0.51 0.49 0.55 0.00 0.05 

Recall 0.61 0.62 0.72 0.00 0.00 

Original 

weights 

Average precision 0.60 0.55 0.59 0.60 0.70 

Precision 0.55 0.56 0.57 0.21 0.66 

Recall 0.71 0.62 0.66 0.91 0.74 

Proposal by 

this work 

Average precision 0.61 0.57 0.61 0.61 0.70 

Precision 0.61 0.54 0.55 0.32 0.63 

Recall 0.66 0.69 0.72 0.87 0.78 
 

 

Numbers in blue are the highest values of a composer-

determined metric, regardless of model. The gray shaded 

lines are the medium precision lines that showed the highest 

results for more than three models. The order of composers 

shown in Table 1 was maintained in decreasing order of the 

number of compositions. The results can be observed from 

the three dimensions of the dataset (Composer, Experiment 

Type and Models) for three different metrics (Accuracy, 

Average Accuracy and Recall). They will be discussed in the 

next section. 
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Table 3. Results for five composers: Cambini, Dvorak, Faure, Ravel, and Haydn  

Composer Experiment Metric Model 1 Model 2 Model 3 Model 4 Model 5 

Cambini 

Resetting 

weights 

Average precision 0.61 0.61 0.74 0.20 0.20 

Precision 0.59 0.58 0.65 0.00 0.98 

Recall 0.59 0.60 0.75 0.00 0.01 

Original 

weights 

Average precision 0.70 0.66 0.70 0.71 0.81 

Precision 0.62 0.59 0.60 0.47 0.74 

Recall 0.74 0.72 0.76 0.88 0.73 

Proposal by 

this work 

Average precision 0.74 0.71 0.74 0.74 0.81 

Precision 0.67 0.68 0.65 0.43 0.67 

Recall 0.75 0.67 0.75 0.91 0.85 

Dvorak 

Resetting 

weights 

Average precision 0.30 0.30 0.45 0.10 0.10 

Precision 0.33 0.32 0.45 0.00 0.00 

Recall 0.46 0.47 0.53 0.00 0.00 

Original 

weights 

Average precision 0.41 0.35 0.39 0.41 0.57 

Precision 0.40 0.36 0.39 0.28 0.51 

Recall 0.57 0.52 0.55 0.76 0.61 

Proposal by 

this work 

Average precision 0.44 0.40 0.45 0.44 0.57 

Precision 0.45 0.40 0.45 0.38 0.50 

Recall 0.55 0.54 0.53 0.66 0.64 

Faure 

Resetting 

weights 

Average precision 0.31 0,31 0,55 0,13 0,12 

Precision 0.37 0.37 0.47 0.00 0.00 

Recall 0.34 0.34 0.70 0.00 0.00 

Original 

weights 

Average precision 0.57 0.50 0.57 0.57 0.69 

Precision 0.58 0.50 0.49 0.40 0.59 

Recall 0.55 0.55 0.71 0.76 0.73 

Proposal by 

this work 

Average precision 0.55 0.50 0.55 0,56 0.69 

Precision 0.50 0.48 0.47 0.43 0.57 

Recall 0.63 0.58 0.70 0.72 0.75 

Ravel 

Resetting 

weights 

Average precision 0.10 0.09 0.17 0.04 0.04 

Precision 0.13 0.11 0.19 0.00 0.00 

Recall 0.26 0.30 0.41 0.00 0.00 

Original 

weights 

Average precision 0.23 0.19 0.17 0.23 0.31 

Precision 0.24 0.23 0.19 0.19 0.29 

Recall 0.44 0.36 0.46 0.59 0.48 

Proposal by 

this work 

Average precision 0.22 0.19 0.17 0.23 0.31 

Precision 0.24 0.19 0.19 0.24 0.28 

Recall 0.42 0.47 0.41 0.44 0.52 

Haydn 

Resetting 

weights 

Average precision 0.29 0.28 0.62 0.13 0.13 

Precision 0.84 0.34 0.58 0.00 0.00 

Recall 0.01 0.31 0.62 0.00 0.00 

Original 

weights 

Average precision 0.57 0.52 0.60 0.57 0.73 

Precision 0.53 0.51 0.54 0.57 0.68 

Recall 0.66 0.60 0.64 0.60 0.66 

Proposal by 

this work 

Average precision 0.59 0.54 0.62 0.59 0.73 

Precision 0.60 0.60 0.58 0.52 0.62 

Recall 0.61 0.52 0.62 0.68 0.73 
 

5. Discussion 
Looking at the shaded rows in Table 2, all average 

accuracy rows of the "Proposal by this work" experiment 

type are marked. These lines represent the best average 

precision values by composer and type of experiment. There 

was a tie only for the composer Beethoven with the kind of 

experiment with the “Original Weights.” This result indicates 

that the second training stage improved average accuracy 

performance. Regarding Table 3, the marking of lines with 

the best average precision was better for Haydn in the 
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"Proposal of this investigation," but in the case of Faure and 

Ravel, the best marking was with the experiments in 

“Original weights.” One possible explanation for these 

results is that for composers with few compositions, the 

result of the fine-tuning may not improve the outcomes of 

the generic training step. It is also worth noting that no 

training lines resetting the original weights were marked in 

all Tables, with gray shading, indicating that only the 

separate training step has worse results than the other two 

forms of training. 

Considering the marking off numbers in blue, the best 

results are concentrated in Model 4 and Model 5 (in both 

tables). Average accuracy metrics are highest on Model 5 

(CNN) for the purposes of this investigation, often tied with 

the original weights. The precision metric of Model 5 for the 

purposes of this investigation is better for Beethoven, Bach, 

and Schubert, but for the rest of the composers, Model 5 with 

the original weights is better. Remembering the Model 4 

with the original weights is better for almost all composers 

except Ravel.  

In the experiment with the original weights, the same 

results from Thickstun et al. [15] were reproduced, the mean 

of the mean precision: Model 1 (0.562); model 2 (0.521); 

model 3 (0.600); Model 4 (0.564) and Model 5 (0.678). In 

the experiment proposed in this investigation, the average of 

the average precision: Model 1 (0.584), model 2 (0.544), 

model 3 (0.584), Model 4 (0.564) and Model 5 (0.678). 

There was an improvement in Model 1, Model 2, and Model 

4. Probably the window size of 16,384 in Models 3 and 5 

may have influenced the fine-tuning characteristics.  

In Model 3, the results of the metrics for training 

separately by the composer are similar to the results of this 

proposal. It is as if the training of the second stage is 

superimposing all the weights of the training of the first 

stage. Model 4 (MLP with average pooling and window of 

2048) with the type of experiment "Resetting the weights" 

only presents results greater than zero for Beethoven, who is 

the composer with the most significant number of musical 

compositions. 

The style of the music may have influenced the results, 

as the rhythm of the music changes its patterns and 

consequently influences the results of the models. Cambini, 

Haydn, Beethoven and Mozart belong to the classical period, 

which may justify the good performance of Cambini and 

Haydn in the models, despite having fewer registers than the 

others. Analyzing the result by the composer, Ravel presents 

the worst result among the composers, regardless of the 

model or training method. Haydn has the fewest songs in the 

database but has better results than Ravel. One possible 

explanation is that the musical movements of Ravel's 

compositions vary more than Haydn's. Ravel has only four 

musical compositions and each one has different movements: 

Allegro moderato - très doux; Assez vif - très rythmé; Très 

lent; and Vif et agité. Haydn has only three songs, all in 

faster movements, Allegro moderato, Adagio – Cantabile, 

and Menuetto Allegretto. Faure also has four musical 

compositions in the database, but three of the four 

compositions have movements from Allegro, and this may 

justify his better performance than Ravel's results. 

6. Conclusion 
This work's objective was to investigate the fine 

adjustment given by a second training step, retraining models 

separated by composer, and comparing the results of the 

trained network in general in the AMT task. Based on 

experiments in the MusicNet database, a minimum amount 

of at least 42 minutes of music is required for this second 

stage to be effective. And the fine-tuning results made a 

greater difference in the results of the MLP-type neural 

networks than in the CNN-type ones. 

Adding to the challenge of multi-label classification, the 

dataset is unbalanced to composers, musical instruments, and 

even the notes of each instrument. Also, the difference in 

period and musical style, as well as the type of musical 

movement of the songs in the database. 

Several future works are anticipated, such as the use of 

the models already proposed in the article by Thickstun et al. 

[19], which models translation-invariant characteristics, in 

addition to other forms of transformations in the input audio 

signal, such as Cheuk et al. [20], but with different 

representations. The universality proposal of Tamaazousti et 

al. [17], the third approach, being a combination of generic 

training and retraining, can be applied to MusicNet to 

confirm the results that this representation is better than the 

one implemented in this investigation. It would also be 

interesting if the investigation were transdisciplinary, adding 

the opinion of a specialist in the field of classical music who 

could evaluate the database. 
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