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Abstract - The exponential rise in global competitiveness and quality concern has forced software enterprises to ensure cost-

efficiency with uncompromising product reliability. Software developers often intend to use the free-open-source software or 

class-reuse paradigm to reduce development costs. However, excessive reuse of software components often leads to pre-

mature ageing, smells, and malfunction. To alleviate such issues, assessing each class for its reusability can be of great 

significance. Despite the numerous efforts, the existing approaches have failed to address the problems like class imbalance, 

shallow feature learning, and, more importantly, low accuracy. In this paper, a robust semantic-feature-driven consensus-

based software reusability prediction model is developed for software reliability assessment. To achieve it, at first, it exploits a 

set of 17 Chidamber and Kamerer OOP matrices obtained by means of WSImport and the CKJM tool. To further enrich 

intrinsic feature information for future learning, s-Skip Gram-based semantic feature extraction over each metric for every 

class and SMOTE-ENNresampling algorithm has been employed with variance threshold algorithm and Mann-Whitney 

significant predictor tests. Min-Max normalization was done on the results to handle issues that rose from convergence and 

the over-fitting behaviour of classifiers. The simulation results confirmed that the proposed semantic-feature-driven consensus 

model achieves an accuracy of 98.27%, F-score of 0.983, and AUC of 0.996, which is the highest performance across the 

existing state-of-art methods. 

Keywords - Software Reliability, Reusability Prediction, Consensus Learning, Semantic Features, Software Metrics. 

 

1. Introduction  
In the past few decades, software technology has 

become an inevitable need of contemporary human society, 

though the thrust to innovate and improve at-hand solutions 

is still the key driving force behind the software industry 

[1][2]. On the other hand, increasing global competitiveness 

and decentralized and global operating culture too have 

forced the industry to produce software solutions with 

minimum development cycle delay and cost [1]. In this 

reference, developers or enterprises have been trying to reuse 

free-open-source software components (FOSS) or even 

function-reuse concepts to reduce time as well as cost [2][3]. 

Despite the cost-efficiency of the software reuse paradigm, 

the events of ageing [4], smelling [4][5], fault [6][7], etc., 

remain the key challenge, particularly due to excessive reuse 

of the FOSS or software components [8][9]. The exceedingly 

high reuse of software components often leads to software 

faults and malfunction and hence impacts software reliability 

[2-9]. Consequently, it raises questions on the efficacy and 

reliability of such (software) solutions for critical 

applications. In the past, numerous events can be found 

which were caused due to inappropriate software design and 

allied failures [4][6][7][9]. As a matter of fact is that there 

are numerous strategically important and sensitive software 

computing environments such as financial software, 

healthcare computer-aided diagnosis as well as electronic 

healthcare records, science and technologies, defence, and 

industrial monitoring and control where the reliability of the 

software remains as an uncompromisable need [9][10]. Thus, 

ensuring software reliability is a must while preserving cost-

factor or allied expectations.  

To address software reliability demands, software 

reusability and fault detection have always been the two key 

practices [9]. However, unlike software fault detection [8], 

reusability prediction has always remained a challenge due to 

higher complexity, inter-class dependency, and coupling 

demands [9]. The software reusability prediction methods 

demand assessing the need as well as tolerance of each class 

or function, or component in the program while ensuring that 

it doesn’t cause aforesaid adversaries like software smells, 
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refactoring, ageing, and faults [4-7][9]. So far, the industry 

has been applying classical manual testing methods, 

including regression and or black-box approaches; however, 

it is resource exhaustive and time-consuming that eventually 

hindering the goal of enterprise [6]. Considering it as 

motivation, automatic reusability prediction approaches have 

been proposed, which exploit the different software metrics 

characterizing the software design features and machine 

learning methods [11-18]. In this reference, though a few 

efforts are made to exploit software metrics information to 

analyze the reusability of every single class (or function) in 

software; however, such approaches merely applied the 

feature association to perform classification and failed in 

employing semantic associations amongst the multiple 

classes. On the other hand, a few methods applied standalone 

machine learning methods [11-13][15-18] to perform two-

class classification. On the contrary, with the same data, the 

various classifiers have shown different performances that 

raise questions over their generalization. 

The existing reusability prediction methods, especially 

employing either code structure such as the line of code 

(LOC), or depth of inheritance tree (DIT), often ignore the 

intrinsic association amongst the classes or components, such 

as cohesion and coupling. Similarly, those approaches 

mainly focus on the complexity aspect to perform reusability 

prediction with standalone classifiers. On the contrary, 

merely employing complexity as the code feature can’t be 

suitable as the coupling and cohesion are equally important 

to be considered when assessing the reuse-proneness of a 

class [8][9][11-18]. This, as a result, gives rise to the class-

imbalance issue, and hence training a machine learning 

model with such class-imbalanced data (with non-reusable 

classes as the minority samples and reusable classes as the 

majority sample) can give skewed performance [19]. This 

problem has not been solved in any at-hand solution. 

Considering these facts, in this paper, more stress has been 

put on inculcating superior feature engineering, class-

imbalance problems as well as classification methods to 

achieve highly accurate and reliable software reusability 

prediction [9][14][17][19][20].  

Considering the above-stated problems, in this research 

paper, a standardized, stable semantic feature-driven 

consensus-based model is developed for reusability 

prediction towards software reliability assessment. In other 

words, this research proposes a reusability prediction-based 

model for software reliability assessment, especially for 

software that is developed using the objective-oriented 

programming (OOP) concept for development. To achieve it, 

the proposed model at first exploits a total of 22 software 

metrics obtained by means of the Chidamber and Kamerer 

(CK) Java Machine tool, often called CKJM-tool. More 

specifically, CKJM-tool was employed to extract OOP 

software metrics from a standard software solution. Some of 

the key metrics are Lines of Code, Inheritance tree depth, 

The weight of the methods per class, Number of child 

classes, Object Coupling, Cohesion or lack thereof between 

methods,  Response for a Class (RFC), Public methods, 

Efferent Couplings (Ce), Afferent Couplings (Ca), Data 

Access Metric (DAM), Aggregation Measure (MOA), 

Cohesion Among Methods of Class (CAM), Functional 

Abstraction Measure (MFA), Cyclomatic Complexity (CC), 

Lines of Code IC- Inheritance Coupling (LOC), Coupling 

Between Methods (CBM), and Average Method Complexity 

(AMC). To perform reliability assessment, we perform a 

two-class classification for each software function or class 

where the above stated OOP-metrics are considered as the 

antecedent variable while the corresponding reuse-proneness 

is defined as the class variable. In this manner, the software 

reusability and hence reliability are defined as a function of 

OOP metrics. Once obtaining the aforesaid OOP-metrics, it 

is semantic feature extraction, which is achieved by means of 

the word2vec method named n-Skip Gram (SKG). Now, the 

extracted features are processed for SMOTE resampling to 

remove any possibility of data skewness or skewed 

classification results. Subsequently, to reduce redundant 

computation, the variance threshold method and Mann-

Whitney significant prediction test are applied distinctly over 

the SKG features. Here, the key motive is to identify the 

feature selection method which could yield superior 

performance. Once selecting the features, the Min-Max 

normalization algorithm was applied over the specific 

features that were selected, which helped in alleviating any 

probable convergence and over-fitting problems. Now, the 

normalized features are projected for two-class classification 

by means of a consensus-based model encompassing the 

following binary classifiers. Naïve Bayes, Decision Tree, k-

NN, Logistic Regression, ANN-LM, AdaBoost, Gradient 

Boosting, Random Forest, and Extra Tree classifier. Here, 

each base classifier predicts each class or function as 

Reusable or Non-Reusable and labels it as 1 and 0, 

respectively. Thus, with the obtained labels for each class, 

the proposed ensemble method estimated Consensus, also 

called maximum voting score, which was later used to 

perform reusability prediction. Unlike standalone classifier-

based methods, our proposed consensus-based method 

provides better reliability and superior generalizable 

performance.  

 

2. Literature Survey 
In the initial days, the problem of reusability prediction 

was considered an analytical issue that explored the use of 

hierarchical analytical process (AHP) [21] to examine the 

different factors of testability of software. However, such 

approaches failed in addressing the inter-relation amongst the 

different code aspects like coupling, cohesion, etc., towards 

reuse-proneness estimation. To alleviate such limitations, in 

later years, authors explored the different software metrics, 

including LOC, WMC, DIT, and NLOC, for reusability 

prediction [22-28]. Despite the fact that these OOP metrics 

have a high impact on reuse-proneness [29], it could use 

merely structural artefacts to check the reusability of each 
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class. Authors suggested the different OOP metrics 

representing cohesion, coupling, structure, and inter-

dependency features to perform reusability prediction [29]. 

Most of the above-stated methods failed in defining a 

specific threshold with respect to which a class of function is 

called as non-Reusable [30]. In this reference, authors 

[30][31] proposed a predefined threshold-based model where 

for each OOP metric, authors applied a threshold called 

tolerability. A class with tolerability lower than the threshold 

was considered reusable else was classified as non-reusable. 

Yet, the use of a predefined threshold over a non-linear or 

unpredictable input source puts a question mark on its 

generalizability.  
 

Authors in [32][33] intended to use multiple software 

metrics and their association to perform reusability 

prediction; however, it failed in addressing the class 

imbalance problem. Moreover, the use of standalone 

classifiers limited its generalizability. In [34], the authors 

applied a regression method to check the reuse-proneness of 

each class. Similarly, [35][36] applied OOP-CK metrics for 

reusability prediction. In [37], the authors applied OOP-CK 

metrics characterizing complexity, customizability, and 

reusability to perform software reliability. The authors 

applied component reuse level (CRL) to assess reusability. 

Interestingly, the authors found that the LOC metric can be 

vital as a reuse proneness indicator. Though the use of 

machine learning has shown superior performance toward 

reusability prediction; however, no significant efforts were 

made to address the class imbalance, inferior performance. 

Authors [14][38-44] indicated that the use of ensemble 

learning could be superior to standalone methods [39]. 
 

To further improve performance, authors [45] suggest 

re-sampling [46], which could help in achieving better 

classification. To gain higher accuracy, the authors [46] 

recommended using the AdaBoost classifier. Though, 

numerous algorithms, including neuro-computing [14][15], 

have exhibited better accuracy. In [14], the authors suggested 

decision level fusion to improve classification accuracy; 

however, these approaches could not address the reusability 

prediction problem. Summarily, these approaches indicated 

that the use of the consensus approach could give more 

reliable and generalizable performance [14]. Authors [38] 

suggested that the use of heterogeneous ensembles can yield 

better accuracy than the classical machine learning algorithm 

or homogeneous ensemble [47]. In addition to the 

improvement scope in classification, authors [39] suggested 

using principal component analysis (PCA) for feature 

selection. Authors can achieve higher accuracy even with 

reduced redundant computation. However, the authors 

indicated that the use of feature selection is more effective 

with superior classifiers such as random forest [39] and 

AdaBoost [40]. In [48], the authors suggested a 

heterogeneous ensemble using k-NN, Rocchio, and SVM 

algorithms with Dempster’s rule of decision level fusion for 

reusability prediction. As discussed in the previous sections, 

this research primarily focuses on improving both computing 

environments as well as feature engineering to attain higher 

accuracy and reliability towards software reusability 

prediction. Functionally, a combined system of multiple 

algorithms was utilized. 

 

3. Methods  
This method primarily focuses on alleviating any 

possibility of data imbalance or skewed learning. Once 

resampling the feature, two different feature extraction 

methods named variance threshold and Mann-Whitney 

significant predictor test were applied to select the most 

important features while dropping the insignificant feature 

elements. Here, the key goal is to improve features for 

learning while reducing redundant computation. Thus, based 

on the maximum voting or the Consensus, the proposed 

model performs per-class reusability prediction. The 

proposed model is represented as shown in Fig.1. in the next 

section. The details of the design and implementation are as 

follows. 

 

3.1 JM-assisted Software Metrics Retrieval 

Considering benchmark software, based on availability, 

random software available at SourceForge was considered. 

Additionally, since the overall proposed model is designed to 

perform reusability assessment in reference to the OOP 

metrics, only the software designed with the OOP paradigm 

was taken into consideration. The considered software 

program was developed in the Java programming language. 

Now, to retrieve software matrices, a well-known web 

application tool named Chidamber and Kamrer JavaVirtual 

Machine (CKJM) [26] was applied. Here, the CKJM tool 

helped extract a total of 22 OOO-metrices; however, 

considering missing elements and discontinuity, only 17 

features were retained. To improve feature efficiency and 

intrinsic characteristics, 
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Fig. 1 Proposed reusability prediction model 

 
 

 

In the proposed work, before executing CKJM, Web-

service description language (WSDL) was applied concept 

that represents an XML-based interface definition language, 

identifying the distinct components or the software functions. 

Here, each function was considered as a component, also 

called a port type. These ports, in fact, perform varied tasks 

 by transferring input into the corresponding output . 

During this process, the functional component, along with its 

port type, is defined in the form of a unique nomenclature. 

These components contain the instructions to perform a 

certain task as defined to perform in the target software. 

Moreover, each data element represents specific categorical 

definitions, which are defined in terms of XML, while XML 

is stated in the form of XML Schema Definition (XSD) 

language representing the data type definition. In this 

method, the activities like encapsulation, restrictions, 

extension, strings, and integers are used to represent the 

complex software structure. Next, the XSD code was stored 

in a separate file which was connected to the WSDL 

document to estimate the type reuse. Here, initially, the 

services were coded, which was followed by the conversion 

of codes into the corresponding WSDL document. As 

depicted in Fig. 2, the use of the WSImport tool helped 

towards the conversion of the WSDL document into a Java 

file, which was subsequently used by CKJM to extract the 

OOP-metrices.  

 

 

 

 

3.2 n-Skip Gram (Word2Vec Method) Based Feature 

Extraction 

Unlike classical approaches toward software reusability 

prediction, where univariate logistic regression (ULR) 

[14][15] is applied to preserve the appropriate set of features 

for further analysis, in this paper Word2Vec method was 

applied for feature extraction. This approach intends to 

exploit the semantic features pertaining to each class of 

function and hence can yield a more efficient feature set for 

further learning and classification. Though, Word2Vec is a 

well-known semantic feature extraction method often used 

for text analysis, its variant called N-skip Gram (SKG) can 

be used to obtain the latent feature. In other words, in the 

proposed model, the feature set pertaining to each class is 

transformed into the corresponding word presentation, also 

called the feature vector. 

 
Fig. 2 OOP-Metrics estimation 
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 In this work, the Gensim Word2Vec method was applied; 

it had a two-layered neuro-computing model encompassing 

two hidden layers. It helped extract sparser and more 

information-rich (semantic) features for each class and allied 

metrices values. Unlike the continuous bag of words 

(CBOW) method, in which the current token (here., metrics) 

is predicted based on the window of the neighboring context 

window, in SKG with a token , the set of possible tokens 

   is predicted, which are highly related 

to . This kind of semantic feature can be highly effective 

toward reusability prediction under uncertain design 

conditions or environments [49]. To assess the efficacy of 

this method, SKG was utilized to generate corresponding 

features, where a hierarchical Softmax layer model was 

applied for training and feature vector generation. A snippet 

of the SKG method used for the semantic feature extraction 

per class information is given as follows:  

3.3 N-Skip Gram (SKG) 

A typical SKG feature extraction model learns the 

vector-formation of each token  specific to the provided set 

of words  obtained from the 17 OOP-software 

metrices per class. These vector representations were trained 

to predict the different metrics values with a higher 

likelihood to exist within the range of a central context of a 

specific keyword. Thus, with the provided sequence of 

tokens (often called training corpus or ), it 

enhances the log-likelihood of the context word in a 

testimonial to the specific centre word. In the proposed 

model, the key intention was defined as per (1).  

 

(1) 

 In (1)  states, the context window is present around the 

centre token . The likelihood of the context word around 

 is the Softmax over the scoring function (2).  

 

(2) 

 In (2)  represents the scoring function signifying the 

multiplication of  and the context word. Thus, the 

objective function , which is expected to be minimized 

with extended training, was obtained as the estimation of the 

feature metric in the presence of noise. Mathematically, it is 

defined as (3).   

        (3) 

  

 

The objective function (3)  signifies the noise 

distributions that were used to generate -noise samples. The 

proposed SKG model employed the embedding matrices 

belonging to the n-gram (n=1), a number of elements/tokens 

in n-gram vocabulary, to generate context words. Moreover, 

it employed a token-only embedding matrix with n=1, skip-

gram size 1, and the window size of 5. Functionally, with 

each mini-batch of input corpus and allied feature labels 

exchanged during each run, it passed allied mapping to the n-

gram. This, as a result, estimated the embedding vectors, 

which were then added using word-only embedding to 

constitute the needed word-vector representations. Finally, 

these word vectors were passed to the loss estimation 

function, where a stochastic and holistic back-propagation 

method was used to evaluate and reassign the embedding 

metrics. After extracting the SKG feature vector for each 

metric per class (of the software), it was processed for data 

resampling.  

3.4 Edited Nearest Neighbor SMOTE (SMOTE-ENN) 

In a software solution, the likelihood of non-reusable 

component(s) would be relatively significantly smaller than 

the usable classes. In such cases, the probability of class 

imbalance can’t be denied. In such conditions, where the 

samples pertaining to the minority class are significantly 

lower than the majority class, the learning and eventual 

prediction results can be skewed. Such data skewness might 

force the learning model to often show the results inclined 

towards the majority class and hence false-positive. 

Considering this unavoidable problem, in this paper, 

resampling was performed over the extracted SKG feature 

vectors. Unlike conventional random sampling methods of 

the up/down sampling methods, where the fraction of 

resampled data might vary and can eventually impact the 

final classification results, an extended SMOTE (SMOTE-

ENN) resampling method was applied[50]. In fact, the use of 

random sampling, especially in those cases where the 

fraction of the minority class is significantly small, the use of 

random sampling might even increase the majority class 

examples and hence more skewed performance. Similarly, 

up-sampling approaches might increase non-reusable (say, 

minority class) samples or allied features uncontrollably and 

hence can impact the overall performance [50]. Considering 

these at hand issues, in this paper, an extended SMOTE 

resampling method named SMOTE-ENN was applied to 

estimate the suitable set of (resampled) feature vectors for 

further computing.  

The classical SMOTE (resampling) algorithm model 

generated synthetic positive samples using a k-NN 

algorithm. In this method, n-nearest neighborhood elements 

are selected for the minority “non-Reusable” class, which 

was followed by equalization of the samples in such a 

manner that it yields the number of minority classes the same 

as the number of the majority class. Despite the superior 

performance over the classical random or up-sampling 

methods, the classical SMOTE, as stated above, undergoes 

limitations like over-generalization and variance [51]. In a 

real-time problem, there can be many conditions where there 
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would not be clear class boundaries as the synthetic minority 

class instances, in an uncontrollable fashion, can cross over 

or come close to the majority class [52]. Such problems can 

be more frequent in the case of non-linear data with 

broadened feature space [52]. It can later cause mislabeling 

of the synthetic samples in the minority class and can give 

higher false-positive results [53]. To alleviate this problem, 

in the proposed work, SMOTE-ENN was applied, specially 

designed in sync with the SMOTE and Edited ENN 

algorithms to pre-process the samples in the synthetic set. In 

our proposed SMOTE-ENN method, the label of each 

synthetic instance was compared with the Consensus-based 

value of the first k-NN. In case of any inconsistency with 

reference to its k-nearest neighbors, the instance was 

removed, while the consistent instances were retained, and 

accordingly, the feature vectors were updated.  

3.5 Variance Threshold and Significant Predictor Test-

based Hybrid Feature Selection 

Undeniably, the use of SMOTE-ENN helped our 

proposed model to address and possibly solve the key 

problem of class imbalance or skewness; however, at the cost 

of increased samples and hence computation. In sync with 

this issue, in our proposed model, feature selection has been 

performed where the focus is to retain the more diverse and 

significant features while dropping the low-significant 

feature elements. In this work, two different feature selection 

algorithms were applied - the first algorithm acts as a filter 

element while the subsequent method identifies the most 

suitable or significant set of features for further computation. 

As the first layer of filtering, variance threshold-based 

feature selection (VTFS) was applied, while in the 

subsequent step Mann-Whitney Predictor Test (MSPT) was 

applied.  

3.5.1 Variance Threshold Feature Selection (VTFS) Methods  

Typically, the VT method is considered the baseline 

concept for feature selection; however, its ability to eliminate 

those all samples or feature elements whose variance doesn’t 

fulfill some predefined or expected threshold makes it a goal-

oriented method that results in satisfactory performance. 

Functionally, the VT method eliminates all zero-variance 

feature elements, signifying those all features have the same 

value in all samples. We hypothesize that the feature 

elements with high variance can have more significant 

information to make predictions. Noticeably, unlike 

correlation test-based approaches, VT doesn’t consider any 

correlation or relationship between features. In this work, the 

VT threshold as 0 was applied, signifying features with zero-

variance. And thus, those elements having low variance or 

zero-variance were dropped, while the remaining were 

retained for further computation.  

3.5.2 Mann-Whitney Significant Predictor Test (MSPT) 

Over the retained features by the VTFS algorithm, 

Mann-Whitney Rank Sum Test or the significant predictor 

test was executed to further refine the feature set. The 

proposed MSPT model estimated correlation amidst the 

different elements to evaluate the extent of significance 

towards the reusability. Here, the Mann-Whitney algorithm 

helped in estimating the correlation amidst the resampled 

features. The resampled feature for every class was 

interpreted as an independent variable, while its 

corresponding reuse-proneness was defined as the class label 

or consequent variable. Hence, once recovering the 

significance level of every feature, the feature with a higher 

probability of affecting the reusability was preserved, while 

the samples with a lower level of significance were removed 

from further consideration. The significance level  

was assigned. In this manner, the feature elements of higher 

significance than 0.05 were selected, while the others were 

taken off. Now, after performance features are selected, it is 

hypothesized that the chosen features maintain lower feasible 

significant elements than that of performance prediction. 

Now, once the input feature vectors were obtained, data 

normalization was executed to alleviate any possible 

convergence or over-fitting problem. Normalization used for 

this purpose is iterated in the next section. 

3.6 Min-Max Normalization 

In almost all major classification or prediction systems 

that utilize large dataset-based models, data imbalance and 

convergence are the key problems which hinder the gross 

performance of the system. Post feature extraction and 

selection, the heterogeneity of the retrieved data elements 

causes a vast amount of hindrance to the learning model and 

makes it undergo premature convergence and even over-

fitting. It can affect overall computational efficiency, and 

therefore to alleviate it, Min-Max normalization was 

performed over the retained salient features. The proposed 

Min-Max normalization algorithm, as indicated in (4), 

normalized features or mapped values in the range of zero to 

one. The Min-Max normalization method linearly transforms 

all data using binary normalization. Functionally it maps all 

values to a fixed range between [0,1] inclusive of both limits. 

An equation in (4) was applied to approximate the 

normalized value(s) of the input data  . 

 

(4) 

In (4), the data elements max  and  state the 

maximum and minimum values of , respectively. 

3.7 Heterogenous Ensemble Driven Consensus-based 

Reusability Prediction 

Though several machine learning methods have been 

applied to perform software aging detection, smell detection, 

reusability prediction, etc.; however, an interesting inference 

can be derived that the different machine learning methods 

perform differently on the same data or feature. In other 

words, the different machine learning algorithm or classifier 

results in different performance for the same problem, 

putting the question on their generalization. In such cases, 
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considering or proposing a specific machine learning method 

as the best or optimal solution doesn’t guarantee its 

optimality. Taking into consideration the above-cited, in this 

research work, unlike the existing classical standalone 

classifier-based software prediction model, the 

heterogeneous ensemble learning model was designed to 

encompass multiple base learners. Noticeably, our key 

purpose was to use the machine learning classifiers from the 

different categories to provide a diversity of performance. 

Noticeably, unlike classical methods where authors often use 

different base classifiers one-after-another, in the proposed 

model, the heterogeneous ensemble learning model was 

designed in a manner that inputting the same data as input to 

all classifiers they function in parallel. Thus, such parallel 

computation ability enables the proposed model to achieve 

time efficiency as well as a great diversity of results. 

Additionally, reusability prediction as a two-class 

classification problem classifies each class as Reusable or 

Non-Reusable, and labels each class as 1 and 0, respectively. 

In the current work, a total of 9 machine learning algorithms 

were applied as the base classifier to perform ensemble or 

consensus-based classification. These key algorithms are 

given as follows: 

3.7.1 Naïve Bayes  

It is typically used as a probabilistic classification 

approach that applies Bayes’ rules with autonomous 

hypotheses to classify input patterns. Being a probabilistic 

approach, it is also expressed as an “independent feature 

model”, which presumes that all allied features are 

independent of one another and do not affect the 

classification result decisively. It assumes that the presence 

of a particular feature in a class is not related to the existence 

of another feature. Functionally, the NB algorithm allocates 

an object  to the class  as per the 

Bayes′ rule. Mathematically, it is derived as (5).  

 

 

 

(5) 
 

 

In (5)  refers to the class-prior probability of . The 

other parameter  states the likelihood of  the data 

element while  states the predictor prior probability and 

is defined as (6).  

 

 

(6) 
 

 

In this work, the multinomial Naïve Bayes algorithm was 

applied to classify each class as reusable or non-reusable. 

Unlike Gaussian NB, Multinomial NB (MNB) learns on the 

basis of the count’s frequency, signifying the number of 

times  it occurs over  trails. Here, feature vectors state the 

frequency with which a specific event is caused by a 

multinomial function. The applied multinomial NB classifier 

applies the occurrence(s) of the binary terms to classify the 

input. Functionally, the NB algorithms classify each query as 

reusable and non-reusable and label it as “0” and “1”, 

respectively.  

3.7.2 Decision Tree (DT)  

Decision trees and their many variants have been some of 

the most applied machine learning tools for the classification 

of data. There are limitations to the classic DT, but they have 

been overcome using many improvements to the algorithm in 

its application and the pre-processing data stages. Some 

advanced variants are ID3, CART, DT C 4.5, and DT 5.0. 

These methods are specifically developed for data mining on 

complex data sets. The tree traditionally starts at the root 

node and maps the consequences to their respective 

antecedents using an association rule. Wherever a split in the 

rule is observed, the branches are formed at each node of the 

tree. Then, using the information gain ratio (IGR) in the next 

phase, each node gives rise to two branches. Thus, the 

proposed C5.0 decision tree algorithm labelled each class as 

Reusable (label- ‘0’) and non-Reusable (label- ‘1’). 

3.7.3 k-NN  

k-NN, a commonly known classifier, is one of the most 

popular models that classify unlabeled observations or 

patterns by assigning it the class of the most similar labeled 

examples. The simple implementation of k-NN enables it to 

be used for major data mining and predictive regression 

purposes; however, it has been found robust for numerous 

classification scenarios. By default, Euclidean distance is 

applied to estimate inter-attribute distance using (7) fork-NN 

classifiers. 

   (7) 

In (7),  and  are compared with n features. In addition 

to it, even Manhattan distance can also be used.  

Summarily, the driving force in maintaining an optimal 

balance between performance and computation depends on 

maintaining a better balance between overfitting and under-

fitting. In the majority of the classical approaches, authors 

have assigned the value of K as the square root of the number 

of instances or observations in the training data; however, its 

efficacy for large-scale data with varying patterns can’t be 

guaranteed. In the majority of the existing approaches, K 

values are applied based on sample size by applying the 

cross-validation scheme; however, at the cost of increased 

time exhaustion. Unlike classical k-NN algorithms, in this 

paper, a kTree learning model has been developed that 

enables learning varied optimal k values for the different 

training samples by encompassing the training stage when 

performing k-NN based reusability prediction. During the 

training phase, three models first perform learning the 

optimal value of k for all data samples under study by 

applying a sparse reconstruction mechanism.  
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3.7.4 Logistic Regression  

Logistic regression is the most favored regression 

mechanism when dealing with multivariate systems. In the 

software of the present reusability prediction problem, 

Logistic regression applies regression over the selected OOP-

CK metrics, where CK metrics and finally obtained fused 

feature set, was the causal or antecedent whereas the reuse-

proneness or the probability of reuse has been taken as the 

consequent or effect variable. Hence, the regression provides 

two results, signifying non-reusable and reusable. 

Mathematically, (7) was applied to perform linear regression 

over the input features.  

 

(8) 
 

In (8), is the intermediate output variable 

while represents the input variable. This method transforms 

the variable output into a limited variance output varying 

in the range of 0 to 1  . Observing (9), the value 

implies the total available input variables, while the 

prospect of a reuse-proneness of each class is given by .  
 

 

(9) 

 

3.7.5 Artificial Neural Network Variants  

Amongst the major machine learning algorithms, the 

neural network, often called ANN, has been applied 

extensively for data learning and classification purposes. The 

robustness of ANN makes it efficient to be used in diverse 

classification problems, though based on computational 

complexities and adaptive computation ANN has evolved 

through different phases. Investigating in-depth, it can be 

found that the performance of ANN is directly related to the 

corresponding learning method. Thus, based on the learning 

method, ANN has been evolved as ANN with the steepest 

gradient (SD), ANN with RBF (ANN-RBF), ANN with 

Levenberg Marquardt (ANN-LM), ANN with gradient 

descent (GD),  Probabilistic Neural Network and Extreme 

Learning Machine (ELM) algorithms, etc. ANN-LM 

possesses higher robustness than ANN-SD and ANN-GD, 

individually. Functionally, it can be configured to possess 

features of ANN-GD as well as ANN-SD and therefore 

provides higher stability and exhibits better performance 

characteristics even with large, non-linear, and 

heterogeneous data.  

Artificial Neural Network (ANN), in essence, attempts 

to copy the way a human brain learns patterns from a series 

of input data or update knowledge using those patterns. Thus, 

learning over such input patterns classifies unrevealed input 

into target categories. An illustration of the ANN model is 

given in Fig. 3. As depicted in the figure, ANN typically has 

three layers, output layer, hidden layer, and input layer. 

Considering the architecture of ANN, it generally involves 

multiple inputs being brought into it via input neurons titled 

perceptrons and pushed into the next layers for trigger-based 

classification. To display any learning, ANN performs two 

phases of functions. The first is an error function using 

difference identification, and the second is back-propagation, 

where the error is fed into the network repeatedly till the 

error function reaches a near 0 value. In this research paper, 

the ANN algorithms perform two-class classification, where 

it classifies each class as reusable or non-reusable and labels 

them as “1” and “0”, respectively. Being a two-class 

classification problem, the ANN designs have one output 

layer, as given in Fig. 2.  In our proposed neuro-computing 

or allied learning model, the final features selected pertaining 

to each class of the software are fed as input to the ANN 

(Fig. 2), while the number of hidden layers is varied. At the 

input layer of the ANN, a rather simple linear activation is 

performed, which generates an output equal in magnitude to 

the input (i.e., ); the output layer, however, takes the 

input from the final hidden layer where a summing function 

is present to get the highest contributor. Noticeably, the 

output layer applies the Sigmoid function (10) to generate 

. 

 

(10) 
 

 
 

ANN applies certain error functions such as mean square 

error (MSE) as a measure of accuracy, which is estimated 

using (11).  

 

(11) 

 

Input Layer

Hidden Layer

Output Layer

OOP-CK_1

W

Wk

OOP-CK_2

OOP-CK_17

 

Fig. 3 ANN-LM architecture with a single hidden layer with one output 

node 

In (11),  is the observed value, while  is the expected 

value. Typically, the ANN model is applied (12-13) to 

perform learning while minimizing the error values as given 

in (11).   

 

(12) 
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(13) 

 

Unlike classical ANN-GD and ANN-SD, ANN-LM 

possesses more robustness in learning over large non-linear 

data input. It confines the multivariate function to its base 

values, called Sum of Squares (SoS), thus converting the 

non-linear real-valued functions to linear integral valued 

functions. This feature enables ANN-LM to perform fast and 

more efficient weight updates. Also, this feature aids ANN-

LM to avoid issues arising from convergence and local 

minima. Hence, this method is better suited for large data 

sets. As already stated, ANN-LM has the ability of both 

ANN-GD and ANN-SD ANN-GD, which provides retrieving 

swift error minimization. ANN-LM utilizes (14) to perform 

weight updates during learning.  

 

(14) 
 

In (14), the parameter  signifies the at-hand weight 

while  providing the updated weight.  Similarly,  

represent the identity matrix, while the  indicate the 

jacobian matrix (15). Equation(15)  contains the 

combination coefficient and the minimum value of changes 

in the behavior of ANN-LM to ANN-GD. On the other hand, 

the maximum value pushes it towards ANN-SD. 

 

 (15) 

 

 In (15),  indicate input features. The output is given by 

the total weight counts are represented by N. 

3.7.6 Random Forest (RF) 

Random Forest is one of the most successful ensemble-

learning algorithms that structurally encompasses multiple 

tree-based classifiers, behaving as an ensemble learning 

model. In the proposed tree model (or tree structure), each 

tree provides its corresponding choice for the feature with the 

highest probability for each class. Let the total training 

samples be , and then a sample encompassing cases is 

randomly selected from the initial data. These selected 

samples are further utilized as the training set to generate a 

new tree. Now, if  input variables, then the optimal split on 

these  is initiated to split the node. Here, the value  was 

maintained as constant during forest development, also called 

the growing phase. In this manner, each tree is developed to 

the maximum possible limit. Unlike classical machine 

learning methods, the random forest algorithm needs a 

smaller number of parameters to be estimated during 

classification. It makes overall computation more efficient 

and suitable for real-time uses. A complete random forest 

algorithm can be eventually defined as the combination of 

the different tree structures, as presented in (16).  

 

(16) 

In (16), the parameter  signifies the classifier function 

while  presenting the random vector. An individual tree 

contains a vote for the maximum probable class as input . 

Tree formation governs the dimensionality . In fact, the key 

reason behind random forest success is its ability the 

formation of each decision tree that forms the forest. In the 

proposed method, the random forest was developed to 

accommodate about 70% of the samples using a 

bootstrapped data set and achieve the training, whereas the 

remaining samples were treated as out-of-the-bag samples, 

and the model was validated using the same. This validation 

provided the data for inter-class validation as well. 

3.7.7 AdaBoost (ADAB) 

AdaBoost is a type of adaptive boosting method that 

possesses the potential to enhance the characterization ability 

recursively. The prerequisite tests that are used to initialize 

the boosting are initially weak learners with data pre-

processing given the higher emphasis. Functionally, post 

each cycle of computation, the applied ADAB model [54] 

calculates the error rate for the weak classifier. Then the 

weights of the correctly classified samples are expanded to 

counter the weights for the incorrectly classified samples. 

Eventually, the weak learner turns out to be a strong learner 

that finally classifies each class of the software as the 

reusable or non-reusable class and labels them as “0” and 

:1”, respectively. 

Like the above stated AdaBoost method, the gradient 

boost algorithm as well has been applied as a base classifier.  

3.7.8 Extra Tree Classifier (EXT) 

The EXT classifier establishes a bunch of unpruned or 

unshaped choice trees according to the traditional 

hierarchical methodology. Dissimilar to RF calculation, it 

includes randomization of both properties just as a cut-point 

choice while parting a hub of a tree. However, it can likewise 

make a total arrangement of randomized trees that are totally 

autonomous of one another in their group results, structures, 

and the info for preparing tests. Basically, it is separating 

itself from other tree-based outfit techniques because of two 

key variables. These are, it divides hubs by choosing cut-foci 

totally blind and utilizes the total preparing test to empower 

tree development. Along these lines, the ordered results, or 

the forecasts of the relative multitude of trees, are joined to 

give the last expectation yield by applying the MVE strategy. 

Immediately, the critical idea driving EXT is that the total 

randomization of the cut-point and characteristic out and out 

with troupe averaging diminishes the difference better in 

contrast with the more fragile randomization approaches 

utilized in different strategies. In addition, the utilization of 
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the first preparing tests rather than the bootstrap imitations 

also diminishes the probability of inclination and thus 

accomplishes more exact and effective grouping yields. 

The above-discussed machine learning algorithms were 

applied as base classifiers to perform two-class classification. 

Each of the classifiers labeled each class of the software as 

reusable (“0”) or non-reusable (“1”). Thus, a consensus value 

using the concept of the maximum voting ensemble (MVE) 

was applied to estimate the highest label value per class, and 

the highest prediction output (1 or 0) for a class was 

predicted as a result. Thus, applying this consensus approach, 

each class is predicted as reusable or non-reusable.  

4. Results and Discussion 
Recalling the fact that the excessive reuse of the 

software component might lead to aging, refactoring, 

premature shutdown, computational errors, etc. This research 

work hypothesizes that the use of an automated reusability 

prediction can help identify the components with reuse-

proneness. This, as a result, can help design a robust and 

highly efficient software solution to meet up-surging 

demands. Though a few efforts have been made towards 

reusability prediction; however, most of the existing methods 

could not address an inevitable (and unavoidable) problem of 

class imbalance, feature-sensitiveness, and diversity of 

performance with the different machine learning methods. 

On the contrary, these computational issues do have a direct 

impact on the performance of the overall reusability 

prediction systems(s), and hence most of the existing 

methods can’t be generalized, especially under an unknown 

environment (i.e., the software under test (SUT) with 

different size, component size, and design paradigm).  

Unlike classical approaches, this research leaned on latent 

or developmental features from each OOP-metrics for the 

comprising classes or functions. To achieve it, this research 

first obtained an OOP-based software solution from 

www.sourceforge.com. The considered software program 

had 1000s of classes incorporated to perform different 

correlated as well as independent tasks. Once obtaining the 

software solution, it was processed for WSImport, followed 

by the CKJM tool [14], which obtained a total of 22 OOP 

metrics. However, processing the extracted features for 

missing elements and outliers, a total of 17 features 

characterizing coupling, cohesion, complexity, and structural 

details were taken into consideration. The retained OOP 

metrics were WMC, DIT, NOC, Ce, NPM, DAM, MOA, 

MFA, CBO, RFC, LCOM, Ca CAM, CC, LOC, CBM, and 

AMC. Once obtaining these OOP metrics using CKJM, 

unlike classical approaches where these features are directly 

passed to the classifiers, semantic feature extraction was 

processed using n-Skip Gram (SKG), a Word2Vec method. 

The applied SKG method obtained the set of semantic 

features for each metric pertaining to each class. 

Subsequently, to address the problem of class imbalance or 

skewed learning, SMOTE-ENN resampling was applied over 

the extracted SKG features, which was followed by a hybrid 

feature selection process. As a matter of fact that the use of 

SKG followed by SMOTE-ENN increased the sample size, 

and hence a cascaded feature selection method was applied 

for avoiding repetitive computation and improving the 

learning curve. In this approach, two distinct feature 

selection algorithms named the Variance Threshold method, 

and MSPT were applied in a cascade manner. Here, the 

prime motive is to retain only significant features while 

removing the relatively insignificant or redundant feature 

values. Once selecting the feature, Min-max normalization 

was applied to alleviate the problem of convergence and 

over-fitting. Realizing the fact that not only the feature 

engineering can help achieve superior performance but also 

demands a better learning environment. 

To alleviate any possibility of time exhaustion, these 

nine base classifiers were applied in parallel, which classified 

each class as “Reusable” and “Non-Reusable”, and labeled 

them as “0” and “1”, respectively. Now, once obtaining the 

labeled output for each class of the considered SUT, the 

maximum voting ensemble (MVE) was executed, driven 

consensus model, which obtained the highest score or 

majority voting for each class. A class with a minimum of 

five ‘0s’ was classified as “Reusable”, while a class with a 

minimum of five ‘1s’ was predicted as “non-Reusable”. 

Thus, applying this methodology, the proposed model 

exhibited the reusability prediction for each class of the SUT. 

Eventually, with the predicted output, the software can be 

designed or redesigned to retain higher reliability.  

Intra-model assessment, the performance is assessed in 

terms of the different base classifiers, while in inter-model 

assessment, the comparison is done with the existing 

contemporary methods. A detailed discussion of the overall 

results is given as follows: 

4.1 Intra-Model Characterization  

As an intra-model comparison, the performance with the 

different machine learning classifiers as well as the proposed 

consensus-based classifier is analyzed. Here, our key 

objective is to assess the efficacy of the different standalone 

classifiers in comparison to the proposed MVE-driven 

consensus learning model. The relative performance 

outcomes in terms of accuracy (Fig. 4), F-Measure or F-score 

(Fig. 4), and AUC (Fig. 5) are given as follows. To be noted, 

the results obtained in Fig. 4, Fig. 5, and Fig. 6 are in 

reference to the SKG (i.e., n-Skip Gram) features followed 

by the SMOTE-ENN resampling cascaded hybrid feature 

selection method.   

http://www.sourceforge.com/
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Fig. 4 Accuracy performance by the different standalone classifiers as 

well as the proposed Consensus driven model 

From Fig. 4, .the proposed CONS (Consensus) learning 

method, which is derived as a heterogeneous ensemble with 

nine distinct base classifiers (Fig. 4), outperforms other 

approaches. It is observable that the proposed model exhibits 

an accuracy of 98.27%, which is significantly higher than 

other base classifiers. Though, the other classifiers like 

ANN-LM (98.14%), AdaBoost (ADAB, 97.8%), and 

Random Forest (RF, 98.16%), too, have performed 

significantly well. The other ensemble method, named Extra 

Tree Classifier (EXT) too, has exhibited a prediction 

accuracy of 96.8%. The decision tree (DT) model may show 

an accuracy of 76.21%, which is the least amongst the nine-

base classifiers. The k-NN based prediction too resulted in 

92.3% accuracy, which is higher than the multinomial naïve 

Bayes method and logistic regression (LOGR, 89.92%). The 

proposed consensus-driven model (CONS) achieves the 

highest accuracy of 98.27% of other methods. The proposed 

CONS model encompasses the voting from the multiple base 

classifiers to perform eventual classification. Its reliability is 

higher than other standalone methods. Table 1 depicts the 

accuracy values for each developed method. 

 

Fig. 5 F-Score performance by the different standalone classifiers as 

well as the proposed Consensus driven model 

 

In software computing, especially in classification 

problems under data imbalance conditions or non-linear 

pattern scenarios, it is always expected to have higher F-

score or F-measure values signifying superior precision and 

recall under different test conditions. In sync with this 

statement, the results obtained in Fig. 5 affirm that the 

proposed CONS (Consensus)-based classification model 

achieves a superior F-score (0.983) than other standalone 

classifiers. Observing the result (Fig. 5), it can also be 

observed that though the key standalone methods like ANN-

LM (0.971), ADAB (0.968), RF (0.979), and EXT (0.968) 

have exhibited satisfactory F-score signifying its suitability 

towards learning under imbalanced data with significantly 

large features. However, the higher efficacy of the CONS 

method outperforms these standalone classifiers. The 

minimum F-Score obtained was with the DT (decision tree 

4.5) algorithm, which could achieve the F-score of 84%, 

though the highest value observed was 0.920. Thus, similar 

to the accuracy performance (Fig. 4), the result in terms of F-

score (Fig. 5) confirms the superiority of the proposed CONS 

model towards software reusability prediction.  

 

Fig. 6 AUC performance by the different standalone classifiers as well 

as the proposed Consensus driven model 

The AUC parameter not only signifies the robustness of a 

machine learning model under an imbalanced, non-linear test 

environment but also represents the sensitivity of a model to 

yield higher accuracy. To assess the robustness of the 

proposed reusability prediction model, the AUC performance 

was obtained for the different machine learning algorithms. 

The results obtained (Fig. 6) reveal that the proposed CONS-

driven learning model exhibits an AUC of 0.996, which is 

higher than the other standalone classifier. An interesting fact 

can be observed that though the proposed CONS model 

exhibits the highest AUC value; however, the efficacy of 

ANN-LM (0.983) and ensemble variants like ADAB (0.972), 

RF (0.985), and EXT (0.980) can’t be ignored. This result 

(Fig. 6) affirms the robustness of the proposed model toward 

reusability prediction. Despite the fact that the other 

standalone classifiers as stated above (i.e., ADAB, RF, EXT, 

and ANN-LM) too have shown satisfactory performance, 

being a Consensus driven approach, our proposed model can 

be more efficient, reliable towards hand reusability 

prediction.  
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Table 1. Performance values for each method 

 Accuracy F-score AUC 

MNB 97% 0.98 1.0 

DT 76.21% 0.83 0.93 

KNN 92.3% 0.97 0.96 

ANN-LB 98.14% 0.971 0.983 

LOGR 89.93% 0.98 0.97 

ADAB 97.8% 0.968 0.972 

RF 98.16% 0.979 0.985 

GRB 95% 0.95 0.97 

EXT 96.8% 0.968 0.980 

CONS 98.27% 0.99 0.99 
 

From Fig 4 through Fig 6, the proposed CONS-driven 

model with SKG features followed by SMOTE-ENN 

resampling and cascaded hybrid feature selection (VTFS and 

MSPT) can yield optimal and the best results towards 

reusability prediction. The higher accuracy (98.27%), F-

score (0.983), and AUC (0.996) affirm the robustness of the 

proposed model toward reusability prediction.  

4.2 Inter-Model Characterization 

To assess relative performance, its performance has been 

compared with some other existing approaches. The detailed 

discussion of the inter-model comparison and analysis is 

given as follows:  

Authors in [11] made an effort to exploit the efficacy of 

the OOP metrics towards reusability prediction using the 

Leven Marquardt ANN (LM-ANN) model. Interestingly, the 

highest accuracy observed was below 90%, which is less 

than the proposed consensus-based model, which achieves an 

accuracy of almost 98.27%. In [12], the authors applied a 

total of six software metrics representing DIT, WMC, LOC, 

CBO, LCOM, and NOC features to perform reusability 

prediction. The authors applied K-Means clustering over the 

extracted features, which were subsequently processed for 

classification using a decision tree classifier with 10-fold 

cross-validation. Interestingly, the highest accuracy observed 

in [12] was 67.22%, which lags significantly from the 

proposed model of 98.27%. A similar effort was made in 

[13] as well, where authors applied the aforesaid six software 

metrics to perform reusability prediction. As classifiers, 

authors applied regression and decision tree; however, they 

underwent reduced performance (accuracy <90%). Though 

the authors tried to improve feature engineering using the 

rough set method; however, they could not achieve an 

accuracy of more than 90%. This alone is sufficient proof of 

the robustness of the proposed model over the existing 

methods [11][12]. Authors [3] too applied CK metrics to 

perform reusability prediction, where two metrics, DIT and 

WMC, were taken into consideration. To improve the 

performance, the authors applied a self-organizing map 

(SOP) to cluster CK metrics, followed by a threshold 

definition with reference to which it performed a reusability 

severity assessment. Noticeably, the authors [13] primarily 

focused on assessing the role and impact of the different 

software metrics on reusability. In our previous research as 

well, six different CK metrics with the ensemble learning 

method were applied for reusability prediction. The highest 

accuracy obtained was 97.02%, which is almost 1.25% lower 

than the proposed method in this paper. Recalling the 

previous work [14], DIT, WMC, LOC, CBO, LCOM, and 

NOC features were applied, which were further trained using 

machine learning classifiers named NB, LOGR, DT, Linear 

regression (LR), SVM, and MARS. As a feature selection 

method, univariate logistic regression and rough set 

algorithms have been used. Despite the heterogeneous 

ensemble learning, a maximum of 97% of accuracy was 

achieved and a 0.961 F-score, which is considerably lesser 

than the proposed method in this paper. It affirms that the 

proposed semantic feature set using the SKG method over a 

total of 17 OOP metrics provides sufficiently large feature 

information to perform reusability prediction. Moreover, the 

role of the proposed SMOTE-ENN cannot be ignored as it 

could have helped avoid class imbalance. Additionally, the 

proposed cascaded feature selection method with VTFS and 

MSPT too could have helped in achieving superior 

performance. Authors [15][16] too applied CK metrics 

followed by machine learning algorithms for software 

reusability prediction; however, the relative performance 

affirms that the proposed model in the paper exhibits 

superior and more reliable reusability prediction. In [17], the 

authors applied the aforesaid six CK metrics as features, 

which were learnt using the different machine learning 

algorithms, including regression techniques (LR, LOGR, 

MARS), NB, SVM, and ANN variants. Though to alleviate 

convergence issues, the authors applied genetic algorithms. 

However, the highest accuracy (with genetic algorithm-based 

ANN) could be 97.71%, while the F-score was 93.20%. In 

comparison to our proposed model in this paper, the 

proposed method exhibits superior to the existing work [17]. 

The same authors in [18] applied a total of 11 machine 

learning algorithms over six OOP-metrices for reusability 

prediction; however, the highest accuracy obtained was 

97.71%, and F-score was 96.71% with adaptive genetic 

algorithm-based ANN (AGA-ANN). Noticeably, authors 

[15-18] had applied different machine learning algorithms as 

the standalone classifier and have obtained the performance 

independently.  

In reference to the above inferences, it can be now 

confirmed that the use of semantic features extracted onto the 

OOP-metrics can provide a more significant feature vector 

for reusability prediction. Additionally, with the above-

extracted features, the use of the SMOTE-ENN algorithm 

followed by the proposed cascaded hybrid feature selection 

method cannot only alleviate the class imbalance problem 

but also improve learning while removing redundant 
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computation. It makes learning more efficient and hence 

helps achieve superior performance. Last but not the least, 

the use of consensus models with classical machine learning 

methods as well as ensemble classifiers has strengthened the 

proposed model to achieve superior performance. The set of 

techniques, as stated above, can be applied for real-time 

reusability prediction tasks.  

5. Conclusion  
 In this paper, a highly robust and optimally calibrated 

software reusability prediction model was developed for 

reliable software engineering or design. This research mainly 

focused on feature engineering followed by classification or 

computing environment to achieve higher prediction 

accuracy. In this reference, recalling the fact that most 

contemporary software solutions are designed based on the 

OOP concept, large OOP metrics were extracted representing 

coupling, cohesion, connectivity, structural artifacts, and 

complexity to perform reusability prediction. Unlike 

conventional methods, this research processed semantic 

feature extraction onto the extracted OOP-metrics per class 

that provided an information-rich semantic feature vector 

characterizing the depth code features and their association 

with the reusability. More specifically, this work applied n-

Skip Gram (SKG), a well-known Word2Vec embedding 

concept, to generate high-dimensional semantic features. 

Realizing the unavoidable presence of a class imbalance in at 

hand reusability prediction problem, the extracted semantic 

feature was processed for resampling using SMOTE-ENN. 

Noticeably, the use of SMOTE-ENN not only helped in 

alleviating the class-imbalance problem but also retained 

optimal intrinsic features and synthetic sample ratio to enable 

accurate learning. Subsequently, over the SMOTE-ENN 

resampled features, a novel cascaded hybrid feature selection 

method was applied using the Variance threshold method 

VTFS and Mann-Whitney significant predictor test (MSPT). 

The cascaded implementation of VTFS and MSPT helped 

ensure the retention of the most suitable feature set while 

dropping insignificant or redundant samples. It can be highly 

effective to improve the computation ecosystem. 

Normalization was carried out to handle the issues with over-

fitting and convergence. Finally, the proposed model 

presents a highly robust heterogeneous ensemble method 

encompassing MNB, k-NN, LOGR, DT, RF, AdaBoost, 

Gradient Boost, and Extra Tree classifier to perform 

consensus-based prediction. The consensus-based 

classification helped achieve more accurate and reliable 

prediction results. In the depth performance analysis over a 

test software model, the proposed model achieved an 

accuracy of 98.27%, F-score of 0.983, and AUC of 0.996, 

which is higher than any known algorithm so far. 

Undeniably, the use of more OOP-metrices and allied 

semantic feature learning with class-imbalance resilient 

feature engineering and eventual consensus-based prediction 

could be the prime reason behind such superlative 

performance. The tools and technologies used in this work 

are relevant to major analytics tasks, and therefore its 

implementation for real-time computation could be easier 

and more scalable. Additionally, the proposed analytics 

concept address almost major at hand issues of Big data 

analytics, and therefore it can be applied to any analytics 

problem. In the future, researchers can use the proposed 

model for other Bigdata analytics tasks as well.  
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