
International Journal of Engineering Trends and Technology Volume 70 Issue 4, 107-121, April 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I4P209 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Semantic Feature Driven Consensus-Based Model for

Software Reliability Assessment: A Reusability Sensitive

Verification Paradigm

Prakash V. Parande1, M K. Banga2

1School of Computing and Information Technology, Reva University, Karnataka, India.
2Dayanand Sagar University, Karnataka, India.

1prakashvp2010@gmail.com

Received: 03 February 2022 Revised: 04 April 2022 Accepted: 04 April 2022 Published: 25 April 2022

Abstract - The exponential rise in global competitiveness and quality concern has forced software enterprises to ensure cost-

efficiency with uncompromising product reliability. Software developers often intend to use the free-open-source software or

class-reuse paradigm to reduce development costs. However, excessive reuse of software components often leads to pre-

mature ageing, smells, and malfunction. To alleviate such issues, assessing each class for its reusability can be of great

significance. Despite the numerous efforts, the existing approaches have failed to address the problems like class imbalance,

shallow feature learning, and, more importantly, low accuracy. In this paper, a robust semantic-feature-driven consensus-

based software reusability prediction model is developed for software reliability assessment. To achieve it, at first, it exploits a

set of 17 Chidamber and Kamerer OOP matrices obtained by means of WSImport and the CKJM tool. To further enrich

intrinsic feature information for future learning, s-Skip Gram-based semantic feature extraction over each metric for every

class and SMOTE-ENNresampling algorithm has been employed with variance threshold algorithm and Mann-Whitney

significant predictor tests. Min-Max normalization was done on the results to handle issues that rose from convergence and

the over-fitting behaviour of classifiers. The simulation results confirmed that the proposed semantic-feature-driven consensus

model achieves an accuracy of 98.27%, F-score of 0.983, and AUC of 0.996, which is the highest performance across the

existing state-of-art methods.

Keywords - Software Reliability, Reusability Prediction, Consensus Learning, Semantic Features, Software Metrics.

1. Introduction
In the past few decades, software technology has

become an inevitable need of contemporary human society,

though the thrust to innovate and improve at-hand solutions

is still the key driving force behind the software industry

[1][2]. On the other hand, increasing global competitiveness

and decentralized and global operating culture too have

forced the industry to produce software solutions with

minimum development cycle delay and cost [1]. In this

reference, developers or enterprises have been trying to reuse

free-open-source software components (FOSS) or even

function-reuse concepts to reduce time as well as cost [2][3].

Despite the cost-efficiency of the software reuse paradigm,

the events of ageing [4], smelling [4][5], fault [6][7], etc.,

remain the key challenge, particularly due to excessive reuse

of the FOSS or software components [8][9]. The exceedingly

high reuse of software components often leads to software

faults and malfunction and hence impacts software reliability

[2-9]. Consequently, it raises questions on the efficacy and

reliability of such (software) solutions for critical

applications. In the past, numerous events can be found

which were caused due to inappropriate software design and

allied failures [4][6][7][9]. As a matter of fact is that there

are numerous strategically important and sensitive software

computing environments such as financial software,

healthcare computer-aided diagnosis as well as electronic

healthcare records, science and technologies, defence, and

industrial monitoring and control where the reliability of the

software remains as an uncompromisable need [9][10]. Thus,

ensuring software reliability is a must while preserving cost-

factor or allied expectations.

To address software reliability demands, software

reusability and fault detection have always been the two key

practices [9]. However, unlike software fault detection [8],

reusability prediction has always remained a challenge due to

higher complexity, inter-class dependency, and coupling

demands [9]. The software reusability prediction methods

demand assessing the need as well as tolerance of each class

or function, or component in the program while ensuring that

it doesn’t cause aforesaid adversaries like software smells,

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

108

refactoring, ageing, and faults [4-7][9]. So far, the industry

has been applying classical manual testing methods,

including regression and or black-box approaches; however,

it is resource exhaustive and time-consuming that eventually

hindering the goal of enterprise [6]. Considering it as

motivation, automatic reusability prediction approaches have

been proposed, which exploit the different software metrics

characterizing the software design features and machine

learning methods [11-18]. In this reference, though a few

efforts are made to exploit software metrics information to

analyze the reusability of every single class (or function) in

software; however, such approaches merely applied the

feature association to perform classification and failed in

employing semantic associations amongst the multiple

classes. On the other hand, a few methods applied standalone

machine learning methods [11-13][15-18] to perform two-

class classification. On the contrary, with the same data, the

various classifiers have shown different performances that

raise questions over their generalization.

The existing reusability prediction methods, especially

employing either code structure such as the line of code

(LOC), or depth of inheritance tree (DIT), often ignore the

intrinsic association amongst the classes or components, such

as cohesion and coupling. Similarly, those approaches

mainly focus on the complexity aspect to perform reusability

prediction with standalone classifiers. On the contrary,

merely employing complexity as the code feature can’t be

suitable as the coupling and cohesion are equally important

to be considered when assessing the reuse-proneness of a

class [8][9][11-18]. This, as a result, gives rise to the class-

imbalance issue, and hence training a machine learning

model with such class-imbalanced data (with non-reusable

classes as the minority samples and reusable classes as the

majority sample) can give skewed performance [19]. This

problem has not been solved in any at-hand solution.

Considering these facts, in this paper, more stress has been

put on inculcating superior feature engineering, class-

imbalance problems as well as classification methods to

achieve highly accurate and reliable software reusability

prediction [9][14][17][19][20].

Considering the above-stated problems, in this research

paper, a standardized, stable semantic feature-driven

consensus-based model is developed for reusability

prediction towards software reliability assessment. In other

words, this research proposes a reusability prediction-based

model for software reliability assessment, especially for

software that is developed using the objective-oriented

programming (OOP) concept for development. To achieve it,

the proposed model at first exploits a total of 22 software

metrics obtained by means of the Chidamber and Kamerer

(CK) Java Machine tool, often called CKJM-tool. More

specifically, CKJM-tool was employed to extract OOP

software metrics from a standard software solution. Some of

the key metrics are Lines of Code, Inheritance tree depth,

The weight of the methods per class, Number of child

classes, Object Coupling, Cohesion or lack thereof between

methods, Response for a Class (RFC), Public methods,

Efferent Couplings (Ce), Afferent Couplings (Ca), Data

Access Metric (DAM), Aggregation Measure (MOA),

Cohesion Among Methods of Class (CAM), Functional

Abstraction Measure (MFA), Cyclomatic Complexity (CC),

Lines of Code IC- Inheritance Coupling (LOC), Coupling

Between Methods (CBM), and Average Method Complexity

(AMC). To perform reliability assessment, we perform a

two-class classification for each software function or class

where the above stated OOP-metrics are considered as the

antecedent variable while the corresponding reuse-proneness

is defined as the class variable. In this manner, the software

reusability and hence reliability are defined as a function of

OOP metrics. Once obtaining the aforesaid OOP-metrics, it

is semantic feature extraction, which is achieved by means of

the word2vec method named n-Skip Gram (SKG). Now, the

extracted features are processed for SMOTE resampling to

remove any possibility of data skewness or skewed

classification results. Subsequently, to reduce redundant

computation, the variance threshold method and Mann-

Whitney significant prediction test are applied distinctly over

the SKG features. Here, the key motive is to identify the

feature selection method which could yield superior

performance. Once selecting the features, the Min-Max

normalization algorithm was applied over the specific

features that were selected, which helped in alleviating any

probable convergence and over-fitting problems. Now, the

normalized features are projected for two-class classification

by means of a consensus-based model encompassing the

following binary classifiers. Naïve Bayes, Decision Tree, k-

NN, Logistic Regression, ANN-LM, AdaBoost, Gradient

Boosting, Random Forest, and Extra Tree classifier. Here,

each base classifier predicts each class or function as

Reusable or Non-Reusable and labels it as 1 and 0,

respectively. Thus, with the obtained labels for each class,

the proposed ensemble method estimated Consensus, also

called maximum voting score, which was later used to

perform reusability prediction. Unlike standalone classifier-

based methods, our proposed consensus-based method

provides better reliability and superior generalizable

performance.

2. Literature Survey
In the initial days, the problem of reusability prediction

was considered an analytical issue that explored the use of

hierarchical analytical process (AHP) [21] to examine the

different factors of testability of software. However, such

approaches failed in addressing the inter-relation amongst the

different code aspects like coupling, cohesion, etc., towards

reuse-proneness estimation. To alleviate such limitations, in

later years, authors explored the different software metrics,

including LOC, WMC, DIT, and NLOC, for reusability

prediction [22-28]. Despite the fact that these OOP metrics

have a high impact on reuse-proneness [29], it could use

merely structural artefacts to check the reusability of each

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

109

class. Authors suggested the different OOP metrics

representing cohesion, coupling, structure, and inter-

dependency features to perform reusability prediction [29].

Most of the above-stated methods failed in defining a

specific threshold with respect to which a class of function is

called as non-Reusable [30]. In this reference, authors

[30][31] proposed a predefined threshold-based model where

for each OOP metric, authors applied a threshold called

tolerability. A class with tolerability lower than the threshold

was considered reusable else was classified as non-reusable.

Yet, the use of a predefined threshold over a non-linear or

unpredictable input source puts a question mark on its

generalizability.

Authors in [32][33] intended to use multiple software

metrics and their association to perform reusability

prediction; however, it failed in addressing the class

imbalance problem. Moreover, the use of standalone

classifiers limited its generalizability. In [34], the authors

applied a regression method to check the reuse-proneness of

each class. Similarly, [35][36] applied OOP-CK metrics for

reusability prediction. In [37], the authors applied OOP-CK

metrics characterizing complexity, customizability, and

reusability to perform software reliability. The authors

applied component reuse level (CRL) to assess reusability.

Interestingly, the authors found that the LOC metric can be

vital as a reuse proneness indicator. Though the use of

machine learning has shown superior performance toward

reusability prediction; however, no significant efforts were

made to address the class imbalance, inferior performance.

Authors [14][38-44] indicated that the use of ensemble

learning could be superior to standalone methods [39].

To further improve performance, authors [45] suggest

re-sampling [46], which could help in achieving better

classification. To gain higher accuracy, the authors [46]

recommended using the AdaBoost classifier. Though,

numerous algorithms, including neuro-computing [14][15],

have exhibited better accuracy. In [14], the authors suggested

decision level fusion to improve classification accuracy;

however, these approaches could not address the reusability

prediction problem. Summarily, these approaches indicated

that the use of the consensus approach could give more

reliable and generalizable performance [14]. Authors [38]

suggested that the use of heterogeneous ensembles can yield

better accuracy than the classical machine learning algorithm

or homogeneous ensemble [47]. In addition to the

improvement scope in classification, authors [39] suggested

using principal component analysis (PCA) for feature

selection. Authors can achieve higher accuracy even with

reduced redundant computation. However, the authors

indicated that the use of feature selection is more effective

with superior classifiers such as random forest [39] and

AdaBoost [40]. In [48], the authors suggested a

heterogeneous ensemble using k-NN, Rocchio, and SVM

algorithms with Dempster’s rule of decision level fusion for

reusability prediction. As discussed in the previous sections,

this research primarily focuses on improving both computing

environments as well as feature engineering to attain higher

accuracy and reliability towards software reusability

prediction. Functionally, a combined system of multiple

algorithms was utilized.

3. Methods
This method primarily focuses on alleviating any

possibility of data imbalance or skewed learning. Once

resampling the feature, two different feature extraction

methods named variance threshold and Mann-Whitney

significant predictor test were applied to select the most

important features while dropping the insignificant feature

elements. Here, the key goal is to improve features for

learning while reducing redundant computation. Thus, based

on the maximum voting or the Consensus, the proposed

model performs per-class reusability prediction. The

proposed model is represented as shown in Fig.1. in the next

section. The details of the design and implementation are as

follows.

3.1 JM-assisted Software Metrics Retrieval

Considering benchmark software, based on availability,

random software available at SourceForge was considered.

Additionally, since the overall proposed model is designed to

perform reusability assessment in reference to the OOP

metrics, only the software designed with the OOP paradigm

was taken into consideration. The considered software

program was developed in the Java programming language.

Now, to retrieve software matrices, a well-known web

application tool named Chidamber and Kamrer JavaVirtual

Machine (CKJM) [26] was applied. Here, the CKJM tool

helped extract a total of 22 OOO-metrices; however,

considering missing elements and discontinuity, only 17

features were retained. To improve feature efficiency and

intrinsic characteristics,

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

110

Fig. 1 Proposed reusability prediction model

In the proposed work, before executing CKJM, Web-

service description language (WSDL) was applied concept

that represents an XML-based interface definition language,

identifying the distinct components or the software functions.

Here, each function was considered as a component, also

called a port type. These ports, in fact, perform varied tasks

 by transferring input into the corresponding output .

During this process, the functional component, along with its

port type, is defined in the form of a unique nomenclature.

These components contain the instructions to perform a

certain task as defined to perform in the target software.

Moreover, each data element represents specific categorical

definitions, which are defined in terms of XML, while XML

is stated in the form of XML Schema Definition (XSD)

language representing the data type definition. In this

method, the activities like encapsulation, restrictions,

extension, strings, and integers are used to represent the

complex software structure. Next, the XSD code was stored

in a separate file which was connected to the WSDL

document to estimate the type reuse. Here, initially, the

services were coded, which was followed by the conversion

of codes into the corresponding WSDL document. As

depicted in Fig. 2, the use of the WSImport tool helped

towards the conversion of the WSDL document into a Java

file, which was subsequently used by CKJM to extract the

OOP-metrices.

3.2 n-Skip Gram (Word2Vec Method) Based Feature

Extraction

Unlike classical approaches toward software reusability

prediction, where univariate logistic regression (ULR)

[14][15] is applied to preserve the appropriate set of features

for further analysis, in this paper Word2Vec method was

applied for feature extraction. This approach intends to

exploit the semantic features pertaining to each class of

function and hence can yield a more efficient feature set for

further learning and classification. Though, Word2Vec is a

well-known semantic feature extraction method often used

for text analysis, its variant called N-skip Gram (SKG) can

be used to obtain the latent feature. In other words, in the

proposed model, the feature set pertaining to each class is

transformed into the corresponding word presentation, also

called the feature vector.

Fig. 2 OOP-Metrics estimation

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

111

 In this work, the Gensim Word2Vec method was applied;

it had a two-layered neuro-computing model encompassing

two hidden layers. It helped extract sparser and more

information-rich (semantic) features for each class and allied

metrices values. Unlike the continuous bag of words

(CBOW) method, in which the current token (here., metrics)

is predicted based on the window of the neighboring context

window, in SKG with a token , the set of possible tokens

 is predicted, which are highly related

to . This kind of semantic feature can be highly effective

toward reusability prediction under uncertain design

conditions or environments [49]. To assess the efficacy of

this method, SKG was utilized to generate corresponding

features, where a hierarchical Softmax layer model was

applied for training and feature vector generation. A snippet

of the SKG method used for the semantic feature extraction

per class information is given as follows:

3.3 N-Skip Gram (SKG)

A typical SKG feature extraction model learns the

vector-formation of each token specific to the provided set

of words obtained from the 17 OOP-software

metrices per class. These vector representations were trained

to predict the different metrics values with a higher

likelihood to exist within the range of a central context of a

specific keyword. Thus, with the provided sequence of

tokens (often called training corpus or), it

enhances the log-likelihood of the context word in a

testimonial to the specific centre word. In the proposed

model, the key intention was defined as per (1).

(1)

 In (1) states, the context window is present around the

centre token . The likelihood of the context word around

 is the Softmax over the scoring function (2).

(2)

 In (2) represents the scoring function signifying the

multiplication of and the context word. Thus, the

objective function , which is expected to be minimized

with extended training, was obtained as the estimation of the

feature metric in the presence of noise. Mathematically, it is

defined as (3).

 (3)

The objective function (3) signifies the noise

distributions that were used to generate -noise samples. The

proposed SKG model employed the embedding matrices

belonging to the n-gram (n=1), a number of elements/tokens

in n-gram vocabulary, to generate context words. Moreover,

it employed a token-only embedding matrix with n=1, skip-

gram size 1, and the window size of 5. Functionally, with

each mini-batch of input corpus and allied feature labels

exchanged during each run, it passed allied mapping to the n-

gram. This, as a result, estimated the embedding vectors,

which were then added using word-only embedding to

constitute the needed word-vector representations. Finally,

these word vectors were passed to the loss estimation

function, where a stochastic and holistic back-propagation

method was used to evaluate and reassign the embedding

metrics. After extracting the SKG feature vector for each

metric per class (of the software), it was processed for data

resampling.

3.4 Edited Nearest Neighbor SMOTE (SMOTE-ENN)

In a software solution, the likelihood of non-reusable

component(s) would be relatively significantly smaller than

the usable classes. In such cases, the probability of class

imbalance can’t be denied. In such conditions, where the

samples pertaining to the minority class are significantly

lower than the majority class, the learning and eventual

prediction results can be skewed. Such data skewness might

force the learning model to often show the results inclined

towards the majority class and hence false-positive.

Considering this unavoidable problem, in this paper,

resampling was performed over the extracted SKG feature

vectors. Unlike conventional random sampling methods of

the up/down sampling methods, where the fraction of

resampled data might vary and can eventually impact the

final classification results, an extended SMOTE (SMOTE-

ENN) resampling method was applied[50]. In fact, the use of

random sampling, especially in those cases where the

fraction of the minority class is significantly small, the use of

random sampling might even increase the majority class

examples and hence more skewed performance. Similarly,

up-sampling approaches might increase non-reusable (say,

minority class) samples or allied features uncontrollably and

hence can impact the overall performance [50]. Considering

these at hand issues, in this paper, an extended SMOTE

resampling method named SMOTE-ENN was applied to

estimate the suitable set of (resampled) feature vectors for

further computing.

The classical SMOTE (resampling) algorithm model

generated synthetic positive samples using a k-NN

algorithm. In this method, n-nearest neighborhood elements

are selected for the minority “non-Reusable” class, which

was followed by equalization of the samples in such a

manner that it yields the number of minority classes the same

as the number of the majority class. Despite the superior

performance over the classical random or up-sampling

methods, the classical SMOTE, as stated above, undergoes

limitations like over-generalization and variance [51]. In a

real-time problem, there can be many conditions where there

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

112

would not be clear class boundaries as the synthetic minority

class instances, in an uncontrollable fashion, can cross over

or come close to the majority class [52]. Such problems can

be more frequent in the case of non-linear data with

broadened feature space [52]. It can later cause mislabeling

of the synthetic samples in the minority class and can give

higher false-positive results [53]. To alleviate this problem,

in the proposed work, SMOTE-ENN was applied, specially

designed in sync with the SMOTE and Edited ENN

algorithms to pre-process the samples in the synthetic set. In

our proposed SMOTE-ENN method, the label of each

synthetic instance was compared with the Consensus-based

value of the first k-NN. In case of any inconsistency with

reference to its k-nearest neighbors, the instance was

removed, while the consistent instances were retained, and

accordingly, the feature vectors were updated.

3.5 Variance Threshold and Significant Predictor Test-

based Hybrid Feature Selection

Undeniably, the use of SMOTE-ENN helped our

proposed model to address and possibly solve the key

problem of class imbalance or skewness; however, at the cost

of increased samples and hence computation. In sync with

this issue, in our proposed model, feature selection has been

performed where the focus is to retain the more diverse and

significant features while dropping the low-significant

feature elements. In this work, two different feature selection

algorithms were applied - the first algorithm acts as a filter

element while the subsequent method identifies the most

suitable or significant set of features for further computation.

As the first layer of filtering, variance threshold-based

feature selection (VTFS) was applied, while in the

subsequent step Mann-Whitney Predictor Test (MSPT) was

applied.

3.5.1 Variance Threshold Feature Selection (VTFS) Methods

Typically, the VT method is considered the baseline

concept for feature selection; however, its ability to eliminate

those all samples or feature elements whose variance doesn’t

fulfill some predefined or expected threshold makes it a goal-

oriented method that results in satisfactory performance.

Functionally, the VT method eliminates all zero-variance

feature elements, signifying those all features have the same

value in all samples. We hypothesize that the feature

elements with high variance can have more significant

information to make predictions. Noticeably, unlike

correlation test-based approaches, VT doesn’t consider any

correlation or relationship between features. In this work, the

VT threshold as 0 was applied, signifying features with zero-

variance. And thus, those elements having low variance or

zero-variance were dropped, while the remaining were

retained for further computation.

3.5.2 Mann-Whitney Significant Predictor Test (MSPT)

Over the retained features by the VTFS algorithm,

Mann-Whitney Rank Sum Test or the significant predictor

test was executed to further refine the feature set. The

proposed MSPT model estimated correlation amidst the

different elements to evaluate the extent of significance

towards the reusability. Here, the Mann-Whitney algorithm

helped in estimating the correlation amidst the resampled

features. The resampled feature for every class was

interpreted as an independent variable, while its

corresponding reuse-proneness was defined as the class label

or consequent variable. Hence, once recovering the

significance level of every feature, the feature with a higher

probability of affecting the reusability was preserved, while

the samples with a lower level of significance were removed

from further consideration. The significance level

was assigned. In this manner, the feature elements of higher

significance than 0.05 were selected, while the others were

taken off. Now, after performance features are selected, it is

hypothesized that the chosen features maintain lower feasible

significant elements than that of performance prediction.

Now, once the input feature vectors were obtained, data

normalization was executed to alleviate any possible

convergence or over-fitting problem. Normalization used for

this purpose is iterated in the next section.

3.6 Min-Max Normalization

In almost all major classification or prediction systems

that utilize large dataset-based models, data imbalance and

convergence are the key problems which hinder the gross

performance of the system. Post feature extraction and

selection, the heterogeneity of the retrieved data elements

causes a vast amount of hindrance to the learning model and

makes it undergo premature convergence and even over-

fitting. It can affect overall computational efficiency, and

therefore to alleviate it, Min-Max normalization was

performed over the retained salient features. The proposed

Min-Max normalization algorithm, as indicated in (4),

normalized features or mapped values in the range of zero to

one. The Min-Max normalization method linearly transforms

all data using binary normalization. Functionally it maps all

values to a fixed range between [0,1] inclusive of both limits.

An equation in (4) was applied to approximate the

normalized value(s) of the input data .

(4)

In (4), the data elements max and state the

maximum and minimum values of , respectively.

3.7 Heterogenous Ensemble Driven Consensus-based

Reusability Prediction

Though several machine learning methods have been

applied to perform software aging detection, smell detection,

reusability prediction, etc.; however, an interesting inference

can be derived that the different machine learning methods

perform differently on the same data or feature. In other

words, the different machine learning algorithm or classifier

results in different performance for the same problem,

putting the question on their generalization. In such cases,

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

113

considering or proposing a specific machine learning method

as the best or optimal solution doesn’t guarantee its

optimality. Taking into consideration the above-cited, in this

research work, unlike the existing classical standalone

classifier-based software prediction model, the

heterogeneous ensemble learning model was designed to

encompass multiple base learners. Noticeably, our key

purpose was to use the machine learning classifiers from the

different categories to provide a diversity of performance.

Noticeably, unlike classical methods where authors often use

different base classifiers one-after-another, in the proposed

model, the heterogeneous ensemble learning model was

designed in a manner that inputting the same data as input to

all classifiers they function in parallel. Thus, such parallel

computation ability enables the proposed model to achieve

time efficiency as well as a great diversity of results.

Additionally, reusability prediction as a two-class

classification problem classifies each class as Reusable or

Non-Reusable, and labels each class as 1 and 0, respectively.

In the current work, a total of 9 machine learning algorithms

were applied as the base classifier to perform ensemble or

consensus-based classification. These key algorithms are

given as follows:

3.7.1 Naïve Bayes

It is typically used as a probabilistic classification

approach that applies Bayes’ rules with autonomous

hypotheses to classify input patterns. Being a probabilistic

approach, it is also expressed as an “independent feature

model”, which presumes that all allied features are

independent of one another and do not affect the

classification result decisively. It assumes that the presence

of a particular feature in a class is not related to the existence

of another feature. Functionally, the NB algorithm allocates

an object to the class as per the

Bayes′ rule. Mathematically, it is derived as (5).

(5)

In (5) refers to the class-prior probability of . The

other parameter states the likelihood of the data

element while states the predictor prior probability and

is defined as (6).

(6)

In this work, the multinomial Naïve Bayes algorithm was

applied to classify each class as reusable or non-reusable.

Unlike Gaussian NB, Multinomial NB (MNB) learns on the

basis of the count’s frequency, signifying the number of

times it occurs over trails. Here, feature vectors state the

frequency with which a specific event is caused by a

multinomial function. The applied multinomial NB classifier

applies the occurrence(s) of the binary terms to classify the

input. Functionally, the NB algorithms classify each query as

reusable and non-reusable and label it as “0” and “1”,

respectively.

3.7.2 Decision Tree (DT)

Decision trees and their many variants have been some of

the most applied machine learning tools for the classification

of data. There are limitations to the classic DT, but they have

been overcome using many improvements to the algorithm in

its application and the pre-processing data stages. Some

advanced variants are ID3, CART, DT C 4.5, and DT 5.0.

These methods are specifically developed for data mining on

complex data sets. The tree traditionally starts at the root

node and maps the consequences to their respective

antecedents using an association rule. Wherever a split in the

rule is observed, the branches are formed at each node of the

tree. Then, using the information gain ratio (IGR) in the next

phase, each node gives rise to two branches. Thus, the

proposed C5.0 decision tree algorithm labelled each class as

Reusable (label- ‘0’) and non-Reusable (label- ‘1’).

3.7.3 k-NN

k-NN, a commonly known classifier, is one of the most

popular models that classify unlabeled observations or

patterns by assigning it the class of the most similar labeled

examples. The simple implementation of k-NN enables it to

be used for major data mining and predictive regression

purposes; however, it has been found robust for numerous

classification scenarios. By default, Euclidean distance is

applied to estimate inter-attribute distance using (7) fork-NN

classifiers.

 (7)

In (7), and are compared with n features. In addition

to it, even Manhattan distance can also be used.

Summarily, the driving force in maintaining an optimal

balance between performance and computation depends on

maintaining a better balance between overfitting and under-

fitting. In the majority of the classical approaches, authors

have assigned the value of K as the square root of the number

of instances or observations in the training data; however, its

efficacy for large-scale data with varying patterns can’t be

guaranteed. In the majority of the existing approaches, K

values are applied based on sample size by applying the

cross-validation scheme; however, at the cost of increased

time exhaustion. Unlike classical k-NN algorithms, in this

paper, a kTree learning model has been developed that

enables learning varied optimal k values for the different

training samples by encompassing the training stage when

performing k-NN based reusability prediction. During the

training phase, three models first perform learning the

optimal value of k for all data samples under study by

applying a sparse reconstruction mechanism.

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

114

3.7.4 Logistic Regression

Logistic regression is the most favored regression

mechanism when dealing with multivariate systems. In the

software of the present reusability prediction problem,

Logistic regression applies regression over the selected OOP-

CK metrics, where CK metrics and finally obtained fused

feature set, was the causal or antecedent whereas the reuse-

proneness or the probability of reuse has been taken as the

consequent or effect variable. Hence, the regression provides

two results, signifying non-reusable and reusable.

Mathematically, (7) was applied to perform linear regression

over the input features.

(8)

In (8), is the intermediate output variable

while represents the input variable. This method transforms

the variable output into a limited variance output varying

in the range of 0 to 1 . Observing (9), the value

implies the total available input variables, while the

prospect of a reuse-proneness of each class is given by .

(9)

3.7.5 Artificial Neural Network Variants

Amongst the major machine learning algorithms, the

neural network, often called ANN, has been applied

extensively for data learning and classification purposes. The

robustness of ANN makes it efficient to be used in diverse

classification problems, though based on computational

complexities and adaptive computation ANN has evolved

through different phases. Investigating in-depth, it can be

found that the performance of ANN is directly related to the

corresponding learning method. Thus, based on the learning

method, ANN has been evolved as ANN with the steepest

gradient (SD), ANN with RBF (ANN-RBF), ANN with

Levenberg Marquardt (ANN-LM), ANN with gradient

descent (GD), Probabilistic Neural Network and Extreme

Learning Machine (ELM) algorithms, etc. ANN-LM

possesses higher robustness than ANN-SD and ANN-GD,

individually. Functionally, it can be configured to possess

features of ANN-GD as well as ANN-SD and therefore

provides higher stability and exhibits better performance

characteristics even with large, non-linear, and

heterogeneous data.

Artificial Neural Network (ANN), in essence, attempts

to copy the way a human brain learns patterns from a series

of input data or update knowledge using those patterns. Thus,

learning over such input patterns classifies unrevealed input

into target categories. An illustration of the ANN model is

given in Fig. 3. As depicted in the figure, ANN typically has

three layers, output layer, hidden layer, and input layer.

Considering the architecture of ANN, it generally involves

multiple inputs being brought into it via input neurons titled

perceptrons and pushed into the next layers for trigger-based

classification. To display any learning, ANN performs two

phases of functions. The first is an error function using

difference identification, and the second is back-propagation,

where the error is fed into the network repeatedly till the

error function reaches a near 0 value. In this research paper,

the ANN algorithms perform two-class classification, where

it classifies each class as reusable or non-reusable and labels

them as “1” and “0”, respectively. Being a two-class

classification problem, the ANN designs have one output

layer, as given in Fig. 2. In our proposed neuro-computing

or allied learning model, the final features selected pertaining

to each class of the software are fed as input to the ANN

(Fig. 2), while the number of hidden layers is varied. At the

input layer of the ANN, a rather simple linear activation is

performed, which generates an output equal in magnitude to

the input (i.e.,); the output layer, however, takes the

input from the final hidden layer where a summing function

is present to get the highest contributor. Noticeably, the

output layer applies the Sigmoid function (10) to generate

.

(10)

ANN applies certain error functions such as mean square

error (MSE) as a measure of accuracy, which is estimated

using (11).

(11)

Input Layer

Hidden Layer

Output Layer

OOP-CK_1

W

Wk

OOP-CK_2

OOP-CK_17

Fig. 3 ANN-LM architecture with a single hidden layer with one output

node

In (11), is the observed value, while is the expected

value. Typically, the ANN model is applied (12-13) to

perform learning while minimizing the error values as given

in (11).

(12)

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

115

(13)

Unlike classical ANN-GD and ANN-SD, ANN-LM

possesses more robustness in learning over large non-linear

data input. It confines the multivariate function to its base

values, called Sum of Squares (SoS), thus converting the

non-linear real-valued functions to linear integral valued

functions. This feature enables ANN-LM to perform fast and

more efficient weight updates. Also, this feature aids ANN-

LM to avoid issues arising from convergence and local

minima. Hence, this method is better suited for large data

sets. As already stated, ANN-LM has the ability of both

ANN-GD and ANN-SD ANN-GD, which provides retrieving

swift error minimization. ANN-LM utilizes (14) to perform

weight updates during learning.

(14)

In (14), the parameter signifies the at-hand weight

while providing the updated weight. Similarly,

represent the identity matrix, while the indicate the

jacobian matrix (15). Equation(15) contains the

combination coefficient and the minimum value of changes

in the behavior of ANN-LM to ANN-GD. On the other hand,

the maximum value pushes it towards ANN-SD.

 (15)

 In (15), indicate input features. The output is given by

the total weight counts are represented by N.

3.7.6 Random Forest (RF)

Random Forest is one of the most successful ensemble-

learning algorithms that structurally encompasses multiple

tree-based classifiers, behaving as an ensemble learning

model. In the proposed tree model (or tree structure), each

tree provides its corresponding choice for the feature with the

highest probability for each class. Let the total training

samples be , and then a sample encompassing cases is

randomly selected from the initial data. These selected

samples are further utilized as the training set to generate a

new tree. Now, if input variables, then the optimal split on

these is initiated to split the node. Here, the value was

maintained as constant during forest development, also called

the growing phase. In this manner, each tree is developed to

the maximum possible limit. Unlike classical machine

learning methods, the random forest algorithm needs a

smaller number of parameters to be estimated during

classification. It makes overall computation more efficient

and suitable for real-time uses. A complete random forest

algorithm can be eventually defined as the combination of

the different tree structures, as presented in (16).

(16)

In (16), the parameter signifies the classifier function

while presenting the random vector. An individual tree

contains a vote for the maximum probable class as input .

Tree formation governs the dimensionality . In fact, the key

reason behind random forest success is its ability the

formation of each decision tree that forms the forest. In the

proposed method, the random forest was developed to

accommodate about 70% of the samples using a

bootstrapped data set and achieve the training, whereas the

remaining samples were treated as out-of-the-bag samples,

and the model was validated using the same. This validation

provided the data for inter-class validation as well.

3.7.7 AdaBoost (ADAB)

AdaBoost is a type of adaptive boosting method that

possesses the potential to enhance the characterization ability

recursively. The prerequisite tests that are used to initialize

the boosting are initially weak learners with data pre-

processing given the higher emphasis. Functionally, post

each cycle of computation, the applied ADAB model [54]

calculates the error rate for the weak classifier. Then the

weights of the correctly classified samples are expanded to

counter the weights for the incorrectly classified samples.

Eventually, the weak learner turns out to be a strong learner

that finally classifies each class of the software as the

reusable or non-reusable class and labels them as “0” and

:1”, respectively.

Like the above stated AdaBoost method, the gradient

boost algorithm as well has been applied as a base classifier.

3.7.8 Extra Tree Classifier (EXT)

The EXT classifier establishes a bunch of unpruned or

unshaped choice trees according to the traditional

hierarchical methodology. Dissimilar to RF calculation, it

includes randomization of both properties just as a cut-point

choice while parting a hub of a tree. However, it can likewise

make a total arrangement of randomized trees that are totally

autonomous of one another in their group results, structures,

and the info for preparing tests. Basically, it is separating

itself from other tree-based outfit techniques because of two

key variables. These are, it divides hubs by choosing cut-foci

totally blind and utilizes the total preparing test to empower

tree development. Along these lines, the ordered results, or

the forecasts of the relative multitude of trees, are joined to

give the last expectation yield by applying the MVE strategy.

Immediately, the critical idea driving EXT is that the total

randomization of the cut-point and characteristic out and out

with troupe averaging diminishes the difference better in

contrast with the more fragile randomization approaches

utilized in different strategies. In addition, the utilization of

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

116

the first preparing tests rather than the bootstrap imitations

also diminishes the probability of inclination and thus

accomplishes more exact and effective grouping yields.

The above-discussed machine learning algorithms were

applied as base classifiers to perform two-class classification.

Each of the classifiers labeled each class of the software as

reusable (“0”) or non-reusable (“1”). Thus, a consensus value

using the concept of the maximum voting ensemble (MVE)

was applied to estimate the highest label value per class, and

the highest prediction output (1 or 0) for a class was

predicted as a result. Thus, applying this consensus approach,

each class is predicted as reusable or non-reusable.

4. Results and Discussion
Recalling the fact that the excessive reuse of the

software component might lead to aging, refactoring,

premature shutdown, computational errors, etc. This research

work hypothesizes that the use of an automated reusability

prediction can help identify the components with reuse-

proneness. This, as a result, can help design a robust and

highly efficient software solution to meet up-surging

demands. Though a few efforts have been made towards

reusability prediction; however, most of the existing methods

could not address an inevitable (and unavoidable) problem of

class imbalance, feature-sensitiveness, and diversity of

performance with the different machine learning methods.

On the contrary, these computational issues do have a direct

impact on the performance of the overall reusability

prediction systems(s), and hence most of the existing

methods can’t be generalized, especially under an unknown

environment (i.e., the software under test (SUT) with

different size, component size, and design paradigm).

Unlike classical approaches, this research leaned on latent

or developmental features from each OOP-metrics for the

comprising classes or functions. To achieve it, this research

first obtained an OOP-based software solution from

www.sourceforge.com. The considered software program

had 1000s of classes incorporated to perform different

correlated as well as independent tasks. Once obtaining the

software solution, it was processed for WSImport, followed

by the CKJM tool [14], which obtained a total of 22 OOP

metrics. However, processing the extracted features for

missing elements and outliers, a total of 17 features

characterizing coupling, cohesion, complexity, and structural

details were taken into consideration. The retained OOP

metrics were WMC, DIT, NOC, Ce, NPM, DAM, MOA,

MFA, CBO, RFC, LCOM, Ca CAM, CC, LOC, CBM, and

AMC. Once obtaining these OOP metrics using CKJM,

unlike classical approaches where these features are directly

passed to the classifiers, semantic feature extraction was

processed using n-Skip Gram (SKG), a Word2Vec method.

The applied SKG method obtained the set of semantic

features for each metric pertaining to each class.

Subsequently, to address the problem of class imbalance or

skewed learning, SMOTE-ENN resampling was applied over

the extracted SKG features, which was followed by a hybrid

feature selection process. As a matter of fact that the use of

SKG followed by SMOTE-ENN increased the sample size,

and hence a cascaded feature selection method was applied

for avoiding repetitive computation and improving the

learning curve. In this approach, two distinct feature

selection algorithms named the Variance Threshold method,

and MSPT were applied in a cascade manner. Here, the

prime motive is to retain only significant features while

removing the relatively insignificant or redundant feature

values. Once selecting the feature, Min-max normalization

was applied to alleviate the problem of convergence and

over-fitting. Realizing the fact that not only the feature

engineering can help achieve superior performance but also

demands a better learning environment.

To alleviate any possibility of time exhaustion, these

nine base classifiers were applied in parallel, which classified

each class as “Reusable” and “Non-Reusable”, and labeled

them as “0” and “1”, respectively. Now, once obtaining the

labeled output for each class of the considered SUT, the

maximum voting ensemble (MVE) was executed, driven

consensus model, which obtained the highest score or

majority voting for each class. A class with a minimum of

five ‘0s’ was classified as “Reusable”, while a class with a

minimum of five ‘1s’ was predicted as “non-Reusable”.

Thus, applying this methodology, the proposed model

exhibited the reusability prediction for each class of the SUT.

Eventually, with the predicted output, the software can be

designed or redesigned to retain higher reliability.

Intra-model assessment, the performance is assessed in

terms of the different base classifiers, while in inter-model

assessment, the comparison is done with the existing

contemporary methods. A detailed discussion of the overall

results is given as follows:

4.1 Intra-Model Characterization

As an intra-model comparison, the performance with the

different machine learning classifiers as well as the proposed

consensus-based classifier is analyzed. Here, our key

objective is to assess the efficacy of the different standalone

classifiers in comparison to the proposed MVE-driven

consensus learning model. The relative performance

outcomes in terms of accuracy (Fig. 4), F-Measure or F-score

(Fig. 4), and AUC (Fig. 5) are given as follows. To be noted,

the results obtained in Fig. 4, Fig. 5, and Fig. 6 are in

reference to the SKG (i.e., n-Skip Gram) features followed

by the SMOTE-ENN resampling cascaded hybrid feature

selection method.

http://www.sourceforge.com/

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

117

Fig. 4 Accuracy performance by the different standalone classifiers as

well as the proposed Consensus driven model

From Fig. 4, .the proposed CONS (Consensus) learning

method, which is derived as a heterogeneous ensemble with

nine distinct base classifiers (Fig. 4), outperforms other

approaches. It is observable that the proposed model exhibits

an accuracy of 98.27%, which is significantly higher than

other base classifiers. Though, the other classifiers like

ANN-LM (98.14%), AdaBoost (ADAB, 97.8%), and

Random Forest (RF, 98.16%), too, have performed

significantly well. The other ensemble method, named Extra

Tree Classifier (EXT) too, has exhibited a prediction

accuracy of 96.8%. The decision tree (DT) model may show

an accuracy of 76.21%, which is the least amongst the nine-

base classifiers. The k-NN based prediction too resulted in

92.3% accuracy, which is higher than the multinomial naïve

Bayes method and logistic regression (LOGR, 89.92%). The

proposed consensus-driven model (CONS) achieves the

highest accuracy of 98.27% of other methods. The proposed

CONS model encompasses the voting from the multiple base

classifiers to perform eventual classification. Its reliability is

higher than other standalone methods. Table 1 depicts the

accuracy values for each developed method.

Fig. 5 F-Score performance by the different standalone classifiers as

well as the proposed Consensus driven model

In software computing, especially in classification

problems under data imbalance conditions or non-linear

pattern scenarios, it is always expected to have higher F-

score or F-measure values signifying superior precision and

recall under different test conditions. In sync with this

statement, the results obtained in Fig. 5 affirm that the

proposed CONS (Consensus)-based classification model

achieves a superior F-score (0.983) than other standalone

classifiers. Observing the result (Fig. 5), it can also be

observed that though the key standalone methods like ANN-

LM (0.971), ADAB (0.968), RF (0.979), and EXT (0.968)

have exhibited satisfactory F-score signifying its suitability

towards learning under imbalanced data with significantly

large features. However, the higher efficacy of the CONS

method outperforms these standalone classifiers. The

minimum F-Score obtained was with the DT (decision tree

4.5) algorithm, which could achieve the F-score of 84%,

though the highest value observed was 0.920. Thus, similar

to the accuracy performance (Fig. 4), the result in terms of F-

score (Fig. 5) confirms the superiority of the proposed CONS

model towards software reusability prediction.

Fig. 6 AUC performance by the different standalone classifiers as well

as the proposed Consensus driven model

The AUC parameter not only signifies the robustness of a

machine learning model under an imbalanced, non-linear test

environment but also represents the sensitivity of a model to

yield higher accuracy. To assess the robustness of the

proposed reusability prediction model, the AUC performance

was obtained for the different machine learning algorithms.

The results obtained (Fig. 6) reveal that the proposed CONS-

driven learning model exhibits an AUC of 0.996, which is

higher than the other standalone classifier. An interesting fact

can be observed that though the proposed CONS model

exhibits the highest AUC value; however, the efficacy of

ANN-LM (0.983) and ensemble variants like ADAB (0.972),

RF (0.985), and EXT (0.980) can’t be ignored. This result

(Fig. 6) affirms the robustness of the proposed model toward

reusability prediction. Despite the fact that the other

standalone classifiers as stated above (i.e., ADAB, RF, EXT,

and ANN-LM) too have shown satisfactory performance,

being a Consensus driven approach, our proposed model can

be more efficient, reliable towards hand reusability

prediction.

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

118

Table 1. Performance values for each method

 Accuracy F-score AUC

MNB 97% 0.98 1.0

DT 76.21% 0.83 0.93

KNN 92.3% 0.97 0.96

ANN-LB 98.14% 0.971 0.983

LOGR 89.93% 0.98 0.97

ADAB 97.8% 0.968 0.972

RF 98.16% 0.979 0.985

GRB 95% 0.95 0.97

EXT 96.8% 0.968 0.980

CONS 98.27% 0.99 0.99

From Fig 4 through Fig 6, the proposed CONS-driven

model with SKG features followed by SMOTE-ENN

resampling and cascaded hybrid feature selection (VTFS and

MSPT) can yield optimal and the best results towards

reusability prediction. The higher accuracy (98.27%), F-

score (0.983), and AUC (0.996) affirm the robustness of the

proposed model toward reusability prediction.

4.2 Inter-Model Characterization

To assess relative performance, its performance has been

compared with some other existing approaches. The detailed

discussion of the inter-model comparison and analysis is

given as follows:

Authors in [11] made an effort to exploit the efficacy of

the OOP metrics towards reusability prediction using the

Leven Marquardt ANN (LM-ANN) model. Interestingly, the

highest accuracy observed was below 90%, which is less

than the proposed consensus-based model, which achieves an

accuracy of almost 98.27%. In [12], the authors applied a

total of six software metrics representing DIT, WMC, LOC,

CBO, LCOM, and NOC features to perform reusability

prediction. The authors applied K-Means clustering over the

extracted features, which were subsequently processed for

classification using a decision tree classifier with 10-fold

cross-validation. Interestingly, the highest accuracy observed

in [12] was 67.22%, which lags significantly from the

proposed model of 98.27%. A similar effort was made in

[13] as well, where authors applied the aforesaid six software

metrics to perform reusability prediction. As classifiers,

authors applied regression and decision tree; however, they

underwent reduced performance (accuracy <90%). Though

the authors tried to improve feature engineering using the

rough set method; however, they could not achieve an

accuracy of more than 90%. This alone is sufficient proof of

the robustness of the proposed model over the existing

methods [11][12]. Authors [3] too applied CK metrics to

perform reusability prediction, where two metrics, DIT and

WMC, were taken into consideration. To improve the

performance, the authors applied a self-organizing map

(SOP) to cluster CK metrics, followed by a threshold

definition with reference to which it performed a reusability

severity assessment. Noticeably, the authors [13] primarily

focused on assessing the role and impact of the different

software metrics on reusability. In our previous research as

well, six different CK metrics with the ensemble learning

method were applied for reusability prediction. The highest

accuracy obtained was 97.02%, which is almost 1.25% lower

than the proposed method in this paper. Recalling the

previous work [14], DIT, WMC, LOC, CBO, LCOM, and

NOC features were applied, which were further trained using

machine learning classifiers named NB, LOGR, DT, Linear

regression (LR), SVM, and MARS. As a feature selection

method, univariate logistic regression and rough set

algorithms have been used. Despite the heterogeneous

ensemble learning, a maximum of 97% of accuracy was

achieved and a 0.961 F-score, which is considerably lesser

than the proposed method in this paper. It affirms that the

proposed semantic feature set using the SKG method over a

total of 17 OOP metrics provides sufficiently large feature

information to perform reusability prediction. Moreover, the

role of the proposed SMOTE-ENN cannot be ignored as it

could have helped avoid class imbalance. Additionally, the

proposed cascaded feature selection method with VTFS and

MSPT too could have helped in achieving superior

performance. Authors [15][16] too applied CK metrics

followed by machine learning algorithms for software

reusability prediction; however, the relative performance

affirms that the proposed model in the paper exhibits

superior and more reliable reusability prediction. In [17], the

authors applied the aforesaid six CK metrics as features,

which were learnt using the different machine learning

algorithms, including regression techniques (LR, LOGR,

MARS), NB, SVM, and ANN variants. Though to alleviate

convergence issues, the authors applied genetic algorithms.

However, the highest accuracy (with genetic algorithm-based

ANN) could be 97.71%, while the F-score was 93.20%. In

comparison to our proposed model in this paper, the

proposed method exhibits superior to the existing work [17].

The same authors in [18] applied a total of 11 machine

learning algorithms over six OOP-metrices for reusability

prediction; however, the highest accuracy obtained was

97.71%, and F-score was 96.71% with adaptive genetic

algorithm-based ANN (AGA-ANN). Noticeably, authors

[15-18] had applied different machine learning algorithms as

the standalone classifier and have obtained the performance

independently.

In reference to the above inferences, it can be now

confirmed that the use of semantic features extracted onto the

OOP-metrics can provide a more significant feature vector

for reusability prediction. Additionally, with the above-

extracted features, the use of the SMOTE-ENN algorithm

followed by the proposed cascaded hybrid feature selection

method cannot only alleviate the class imbalance problem

but also improve learning while removing redundant

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

119

computation. It makes learning more efficient and hence

helps achieve superior performance. Last but not the least,

the use of consensus models with classical machine learning

methods as well as ensemble classifiers has strengthened the

proposed model to achieve superior performance. The set of

techniques, as stated above, can be applied for real-time

reusability prediction tasks.

5. Conclusion
 In this paper, a highly robust and optimally calibrated

software reusability prediction model was developed for

reliable software engineering or design. This research mainly

focused on feature engineering followed by classification or

computing environment to achieve higher prediction

accuracy. In this reference, recalling the fact that most

contemporary software solutions are designed based on the

OOP concept, large OOP metrics were extracted representing

coupling, cohesion, connectivity, structural artifacts, and

complexity to perform reusability prediction. Unlike

conventional methods, this research processed semantic

feature extraction onto the extracted OOP-metrics per class

that provided an information-rich semantic feature vector

characterizing the depth code features and their association

with the reusability. More specifically, this work applied n-

Skip Gram (SKG), a well-known Word2Vec embedding

concept, to generate high-dimensional semantic features.

Realizing the unavoidable presence of a class imbalance in at

hand reusability prediction problem, the extracted semantic

feature was processed for resampling using SMOTE-ENN.

Noticeably, the use of SMOTE-ENN not only helped in

alleviating the class-imbalance problem but also retained

optimal intrinsic features and synthetic sample ratio to enable

accurate learning. Subsequently, over the SMOTE-ENN

resampled features, a novel cascaded hybrid feature selection

method was applied using the Variance threshold method

VTFS and Mann-Whitney significant predictor test (MSPT).

The cascaded implementation of VTFS and MSPT helped

ensure the retention of the most suitable feature set while

dropping insignificant or redundant samples. It can be highly

effective to improve the computation ecosystem.

Normalization was carried out to handle the issues with over-

fitting and convergence. Finally, the proposed model

presents a highly robust heterogeneous ensemble method

encompassing MNB, k-NN, LOGR, DT, RF, AdaBoost,

Gradient Boost, and Extra Tree classifier to perform

consensus-based prediction. The consensus-based

classification helped achieve more accurate and reliable

prediction results. In the depth performance analysis over a

test software model, the proposed model achieved an

accuracy of 98.27%, F-score of 0.983, and AUC of 0.996,

which is higher than any known algorithm so far.

Undeniably, the use of more OOP-metrices and allied

semantic feature learning with class-imbalance resilient

feature engineering and eventual consensus-based prediction

could be the prime reason behind such superlative

performance. The tools and technologies used in this work

are relevant to major analytics tasks, and therefore its

implementation for real-time computation could be easier

and more scalable. Additionally, the proposed analytics

concept address almost major at hand issues of Big data

analytics, and therefore it can be applied to any analytics

problem. In the future, researchers can use the proposed

model for other Bigdata analytics tasks as well.

References
[1] Q. Li and H. Pham, A Generalized Software Reliability Growth Model with Consideration of the Uncertainty of Operating

Environments, in IEEE Access,. 7(2019)84253-84267.

[2] Martínez-Fernández et al., Continuously Assessing and Improving Software Quality with Software Analytics Tools: A Case Study,

in IEEE Access 7(2019). 68219-68239.

[3] Stapic M. M. Reusability metrics of Software Components: Survey, Conference Paper (2015).

[4] M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-Tamimi, Code Smells Analysis Mechanisms, Detection Issues, and

Effect on Software Maintainability, IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology

(2019)663-666.

[5] H. Liu, Q. Liu, Z. Niu, and Y. Liu, Dynamic and Automatic Feedback-Based Threshold Adaptation for Code Smell Detection, in IEEE

Transactions on Software Engineering, 42(6) (2016)544-558.

[6] Baaba, H. B. Zulzalil, S. Hassan and S. B. Baharom, Software Architecture Degradation in Open-Source Software: A Systematic

Literature Review, in IEEE Access, 8(2020) 173681-173709.

[7] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto, Toward a Smell-Aware Bug Prediction Model, in IEEE

Transactions on Software Engineering, 45(2) (2019)194-218.

[8] J. L. Barros Justo, N. Martinez Araujo, and A. Gonzalez Garcia, Software Reuse and Continuous Software Development: A Systematic

Mapping Study, in IEEE Latin America Trans 16(5) (2018)1539-1546.

[9] Diwaker et al., A New Model for Predicting Component-Based Software Reliability Using Soft Computing, in IEEE Access, 7(2019)

pp. 147191-203.

[10] M. -C. Chiang, C. -Y. Huang, C. -Y. Wu and C. -Y. Tsai, Analysis of a Fault-Tolerant Framework for Reliability Prediction of Service-

Oriented Architecture Systems, in IEEE Trans. on Reliability, 70(1)(2021) 13-48.

[11] S. Maggo and C. Gupta, A Machine Learning-based Efficient Software Reusability Prediction Model for Java-Based Object-Oriented

Software, Intl. Journal of Information Tech. And Comp. Sci. 6(2)(2014)1-13.

[12] Sanyam, Prediction of Reusability of Object-Oriented Software Systems using Clustering Approach, World Academy of Science,

Engineering and Technology, 43(2010)853-56.

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

120

[13] Huda, A. Huneiti and I. Othman, Software Reusability Classification and Predication Using Self-Organizing Map (SOM),

Communications and Network, 8(2016)179-192.

[14] P. V. Parande and M. K. Banga, Web-of-Service Software Reusability Prediction using Heterogeneous Ensemble Classifier, Intl.

Journal of Innovative Tech. And Exploring Engg., 8(9S3)(2019)1276-82.

[15] N. Padhy, S. C. Stapathy, J. R. Mohanty and R. Panigrahi, Software Reusability Metrics Prediction by Using Evolutionary Algorithms:

The Interactive Mobile Learning Application RozGaar, International Journal of Knowledge-based and Intelligent Engg. Sys.

22(4)(2018) 261-276.

[16] R. Panigrahi, S. K. Kunar, L. Kumar, N. Padhy and S. C. Satapathy, Software reusability metrics prediction and cost estimation by

using machine learning algorithms, International Journal of Knowledge-based and Intelligent Engineering Systems, 23(4)(2019)317-

328.

[17] N. Padhy, R. P. Singh, S. C. Stapathy, Cost-effective and fault-resilient reusability prediction model by using adaptive genetic

algorithm-based neural network for web-of-service applications, Cluster Computing, 22(2019)14559-81.

[18] N. Padhy, R. P. Singh, S. C. Stapathy, Enhanced Evolutionary Computing Based Artificial Intelligence Model for Web-Solutions

Software Reusability Estimation, Cluster Computing, 22(2019)9787–9804.

[19] L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian, A Novel Class-Imbalance Learning Approach for Both Within-Project and Cross-

Project Defect Prediction, in IEEE Trans. on Reliability, 69(1)(2020)40-54.

[20] P. R. Bal and S. Kumar, WR-ELM: Weighted Regularization Extreme Learning Machine for Imbalance Learning in Software Fault

Prediction, in IEEE Transactions on Reliability, 69(4)(2020)1355-1375.

[21] Singhani H., Suri R. P. Testability Assessment model for Object-Oriented Software Based on Internal and External Quality Factors,

Global Journal of Computer Science and Technology: C Software & Data Engineering, 15(5)(2015).

[22] Mijac M., Stapic Z. Reusability Metrics of Software Components: Survey, Central European conf. On Information and Intelligent sys.

(2015).

[23] Srivastava S. and Kumar R. An Indirect Method to Measure Software Quality using CK-OO suite, Intelligent Systems and Signal

Processing (ISSP), International Conference on, Gujarat, (2013) 47-51.

[24] Goel B.M. and Bhatia P.K. Analysis of reusability of an object-oriented system using CK metrics, International Journal of Computer

Applications, 60(10) (2012)0975–8887.

[25] Rosenberg L.H. and Hyatt L.E. Software Quality Metrics for Object-Oriented Environments, Crosstalk Journal, 10(1997)1-16.

[26] Chidamber S.R. and. Kemerer C. F. A metrics suite for object-oriented design, IEEE Transactions on Software Engineering, IEEE

Press Piscataway, NJ, USA. 20(1994) 476-493.

[27] Antony P.J. Predicting Reliability of Software Using Thresholds of CK Metrics, Intl. Journal of Advanced Networking &Appl,

4(6)(2013).

[28] Hudiab A., Al-Zaghoul F., Saadeh M., and Saadeh H. ADTEM—Architecture Design Testability Evaluation Model to Assess Software

Architecture Based on Testability Metrics, Journal of Software Engineering and Applications, 8 (2015)201-210.

[29] Berander P., Damm L-O-, Eriksson J., Gorschek T., Henningsson K., Jönsson P., Kågström S., Milicic D., Mårtensson F., Rönkkö K.

Software quality attributes and trade-offs. Blekinge Instt. of Tech, Blekinge. (2005).

[30] Shatnawi R. A Quantitative Investigation of the Acceptable Risk levels of Object-oriented metrics in open-source systems, IEEE

Transactions on Software Engineering, 36 (2010)216-225.

[31] Shatnawi R., Li W., Swain J., and Newman T. Finding software metrics threshold values using roc curves, Journal of Software

Maintenance and Evolution: Research and Practice, John Wiley & Sons, Inc. New York, NY, USA. 22 (2010)1-16.

[32] Neelamdhab P., Satapathy S., Singh R. Utility of an Object-Oriented Reusability Metrics and Estimation Complexity. Indian Journal of

Science and Technology, 10(3)(2017).

[33] Normi Sham Awang Abu Bakar. The analysis of object-oriented metrics in C++ programs, Lecture Notes on Software Engineering,

Springer, 4(1)(2016).

[34] Zahara S. I., Ilyas M., and Zia T. A study of Comparative Analysis of Regression Algorithms for Reusability Evaluation of Object-

oriented based Software Components, Open-Source Systems and Technologies (ICOSST), International Conference on, Lahore, (2013)

75-80.

[35] Torkamani M. A. Metric suite to evaluate reusability of software product line, International Journal of Electrical and Computer

Engineering (ICE), 4(2) (2014)285-294.

[36] Aloysius A., and Maheswar K. A review on component-based software metrics, Intern. J. Fuzzy Mathematical Archive, vol. 7(2)

(2015)185-194. ISSN: 2320 –3242 (P), (2015) 2320 –3250.

[37] Cho E.S., Kim M.S., and Kim S.D. Component metrics to measure component quality, Proceedings of the 8th Asia Pacific Software

Engineering Conference (APSEC), Macau,. 4-7 (2001) 419-426.

[38] Canul-Reich J., Shoemaker L., Hall L.O. Ensembles of fuzzy Classifiers, in IEEE International Fuzzy Systems Conference, (2007)1–6.

[39] Rodriguez J.J., Kuncheva L.I. Rotation forest: a new classifier ensemble method, IEEE Transactions on Pattern Analysis and Machine

Intelligence 28 (10) (2006)1619–1630.

[40] Z. Chun-Xia, Zhang Jiang-She. RotBoost: a technique for combining rotation forest and AdaBoost, Pattern Recognition Letters

29(2008)1524–1536.

[41] Nanni L., Lumini A. Ensemble generation and feature selection for the identification of students with learning disabilities, Expert

Systems with Applications 36 (2009)3896–3900.

[42] Zhang X., Wang S., Shan T., Jiao L.C. Selective SVMs Ensemble-driven by Immune Clonal Algorithm, in Rothlauf, F. (Ed.) Proc. of

the EvoWork- Shops, Springer, Berlin, (2005) 325–333.

Prakash V. Parande & M K. Banga / IJETT, 70(4), 107-121, 2022

121

[43] Zhou Z.H., Wu J., Tang W. Ensembling Neural Networks: many could be Better than all, Artificial Intelligence 137 (1–2) (2002)

239–263.

[44] Partalas I., Tsoumakas G., Vlahavas I. Focused Ensemble selection: a Diversity-based Method for Greedy Ensemble selection, in

Proceedings of the 18th International Conference on Artificial Intelligence, (2008)117–121.

[45] Dong YS., Han KS. A Comparison of Several Ensemble methods for Text Categorization, Services Computing, (SCC 2004).

Proceedings. IEEE International Conference (2004) 419-422.

[46] Roli F., Giacinto G., Vernazza G. Methods for Designing Multiple Classifier Systems. Proceedings of the Second International

Workshop on Multiple Classifier Systems. Cambridge, UK, (2001)78–87.

[47] Banfield R. (2007). A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Trans. on Pattern Analysis and Mach. Intell,

29 (2007) 173–180.

[48] Nanni L., Lumini A. Ensemble generation and Feature Selection for the Identification of Students with Learning disabilities, Expert

Systems with Applications 36 (2009)3896–3900.

[49] Zhang X., Wang S., Shan T., Jiao L.C. Selective SVMs Ensemble-driven by Immune Clonal Algorithm, in Rothlauf, F. (Ed.) Proc. of

the EvoWork- shops, Springer, Berlin, (2005)325–33.

[50] Bi Y., Bell D., Wang H., Guo G., Guan J. Combining Multiple Classifiers Using Dempster's Rule for Text Categorization. Appl. Artif.

Intell. 21(2007) 211-239.

[51] Y. An, F. Qin, B. Chen, R. Simon, and H. Wu, OntoPLC: Semantic Model of PLC Programs for Code Exchange and Software Reuse,

in IEEE Trans. on Industrial Informatics,17(3) (2021) 1702-1711.

[52] N. V. Chawla, K.W. Bowyer, L. O. Hall, and. P. Kegelmeyer, SMOTE: Synthetic Minority Over-Sampling Technique, J. Artif. Intell.

Res., 16(2002)321–357.

[53] He H, Garcia EA Learning from Imbalanced Data. IEEE Trans Knowledge Data Eng 21(2009)1263–1284.

[54] García V, Sánchez JS, Mollineda RA On the Effectiveness of Pre-processing Methods when Dealing with Different Levels of Class

Imbalance. Knowl Based Syst. (2012)

[55] Galar M, Fernández A, Barrenechea E, Herrera F EUSBoost: Enhancing Ensembles for Highly Imbalanced data-sets by Evolutionary

Undersampling. Pattern Recognit 46 (2013) 3460–3471.

[56] Q. Li, W. Li, J. Wang, and M. Cheng, A SQL Injection Detection Method Based on Adaptive Deep Forest, IEEE Access, 7(2019)

145385-94.

