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Abstract - Localization of mobile nodes in Heterogeneous Wireless Sensor Network (HSWN) requires more research and 

experiments. The majority of the localization protocols discuss locating the static nodes in the wireless network. This paper 

proposes the localization of mobile nodes in an HWSN, considering energy efficiency. The protocol Aquila Optimized Monte 

Carlo Localization(AOMCL) is a novel attempt to combine the mobile node localizing algorithm MCL and the new swarm 

intelligence algorithm, Aquila Optimizer. The protocol AOMCL reduces the sampling and filtering process of traditional MCL. 

AOMCL localizes the unknown nodes by generating an MCL square around the location-aware anchor nodes. The method 

efficiently reduces the time and complexity of localizing the unknown nodes. The experimental analysis of AOMCL in the 

Matlab simulator illustrates that the proposed protocol, AOMCL, has high localization accuracy, better localization coverage, 

and reduced complexity compared with the existing protocols, DEMCL, RMCL, and QMCL.   
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1. Introduction 
Wireless Sensor Network (WSN) is a collection of 

sensor nodes deployed in ad-hoc environments to monitor 

and gather data from the environment. These sensor nodes 

are either static or mobile, and they transmit the collected 

data to sink nodes for further processing at the destination [1, 

2]. With the advancement in the Internet of Things (IoTs) 

and smart applications like healthcare, homes, cities, etc., 

connecting physical things with the digital world [3,4] has 

become mandatory. WSN plays an inevitable role in such 

applications. 

 

The deployment of sensor nodes should be efficient to 

optimize the quality of the network in all aspects like 

network coverage, lifetime, and connectivity[5,6]. 

Deployment of sensor nodes follows either a deterministic 

scheme or a random scheme. In the previous method, the 

location of each sensor node is predetermined, but for large-

scale networks having thousands of nodes [7,8], this method 

is infeasible. The drawback of such deployment is that it 

does not ensure complete coverage and connectivity. 

 

Once deployed, the sensor nodes start monitoring and 

collecting information from the environment. The collected 

data becomes useful when the sensor's location information 

and the timestamp are wrapped. Location information is 

important to retrieve the location identity of the observed 

events,  identify and locate target objects, assess the quality 

of coverage, facilitate geographic routing algorithms for 

position-aware data processing, etc. Determining the exact 

location or position of sensor nodes in WSN is called the 

localization problem. 

 

1.1 Motivation 

Global Positioning System(GPS) is a known technique 

to locate a gadget, but it is not practical in WSN, as 

providing GPS on each sensor node (that is energy 

constrained) is not feasible. Studies reveal that GPS 

consumes high power and reduces accuracy in indoor and 

urban areas [9-15]. Owing to this, many localization 

algorithms were proposed by researchers, and the 

localization problem is a trending research area.  

 

1.2 Objective 

Localization methods are broadly classified into two 

range-based and range free. Out of the two, range-free 

algorithms are less expensive and highly preferred than 

range-based methods, as additional hardware requirement is 

nullified and complexity is reduced in range-free methods. 

The popular range-free localization protocols are the centroid 

positioning algorithm[16], DV-HOP positioning 

algorithm[17], amorphous algorithm[18], etc. Though these 

algorithms have proved higher localization accuracy, 

network robustness, and efficient energy consumption, they 

are all suitable for static sensor nodes. Mobility of the sensor 

nodes in WSN is not regarded in most of the proposed 
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localization algorithms, which is a mandate for current 

WSNs such as IoT, underground mining, etc. 

 

1.3 Problem Statement 

Mobile node localization of WSN was earlier performed 

by the periodic localization and calculation of static nodes, 

resulting in high communication costs and tedious 

calculations[19-21]. Monte Carlo node Localization(MCL) 

algorithm with its particle filtering scheme is a perfect 

solution for localizing mobile nodes. Still, it has certain 

limitations like inaccurate positioning and location coverage, 

more number of anchor nodes, less efficiency, etc. This paper 

proposes a novel model for determining the location of 

mobile nodes in WSN with reduced effort and time. The 

proposed algorithm AOMCL is an innovative scheme for 

localizing the mobile nodes in a Heterogeneous WSN, 

coalescing MCL with Aquila optimizer. AOMCL has the 

following characteristics 

1. Identifying suitable Anchor nodes based on residual 

energy of nodes 

2. Location estimation of Mobile nodes by generating 

an MCL square reduces the localization error as the 

search area is minimized. 

3. Optimized the location information using a bio-

inspired Aquila optimizer. 

The remaining sections of the paper are Section 2 details 

the literature review and related works. The preliminaries 

and basic concepts of the proposed work are specified in 

Section 3. Section 4 eloborates the phases and framework of 

the proposed AOMCL algorithm. Section 5 analyzes the 

experimented results and has detailed discussions.  

  

2. Related Works 
Range-free localization algorithms are popular and 

widely used as they don't require specific hardware for the 

location estimation of nodes[22] and use network 

connectivity for localization. Many researchers proposed the 

effect of heterogeneity of nodes on range-free localization 

methods. In “Low-Cost optimization for HWSN”[23], the 

localization protocol for heterogeneous WSN with varied 

transmission capabilities is proposed. The initial estimation 

of the locations is through the analysis of hop progress, a 

correction mechanism that minimizes localization error. 

“Effective range-free localization with elliptical distance 

correction in HWSN” [24] is a range-free elliptical distance 

correction method for accuracy in distance estimation. “Node 

localization based on multiple transmission power 

levels”[25] is an algorithm for localizing nodes in HWSN 

with multi-scale virtual factors. High localization accuracy is 

achieved using multiple transmission powers at different 

levels. Mobility of nodes was not considered in the above-

proposed methods. 

 

 

Two positioning methods are used to localize mobile 

nodes in WSN; one approach is to use a static positioning 

scheme in a dynamic network which is done periodically to 

assess the location of nodes. The method includes high 

communication costs and tedious calculations and negatively 

impacts localization accuracy if the maximum speed at which 

a node’s movement rises. The second method is the Monte 

Carlo Localization for mobile nodes proposed by Hu and 

Evans [26]. The Monte Carlo Box (MCB) algorithm was 

proposed by Baggio and Langendoen [27], which improved 

sampling efficiency and energy consumption using anchor 

box and sample box concepts. “Mobile node localization 

based on fuzzy theory"[28] has accurate filtering conditions 

that overcome the drawback of the traditional MCL with 

reduced localization time. “Adaptive MC method for 

dynamic sensor nodes” [29] is an improved protocol with the 

dead reckoning method and ensured high positioning 

accuracy. But the method requires additional hardware. 

“Time sequence-based MCL algorithm"[30] represents the 

sampling area formed using feedback signals from nearby 

one-hop anchor nodes. Here the positioning task becomes 

inaccurate when the anchor nodes are scanty. In [31], MCL is 

combined with the differential evolution algorithm for 

positioning accuracy. But the scheme consumes more energy 

due to the hardware equipment used for measuring the 

distance. 

 

Meta-heuristic optimization algorithms inspired by 

nature that mimic biological or physical phenomena are the 

popular ones used in real-world applications [32]. These are 

straightforward and flexible algorithms and are used to solve 

many tricky and complex optimization problems. Swarm 

intelligence algorithms are extensively used in optimization 

protocols based on the behavior of swarms of creatures, the 

most popular of them is the “Particle Swarm 

Optimization”(PSO)[33]. Other algorithms include “Ant 

Colony Optimization Algorithm (ACO)” [34], “Bat 

Algorithm (BA)” [35], “Grey Wolf Optimizer (GWO)” [36], 

“Cuckoo Search (CS) Algorithm” [37], “Whale Optimization 

Algorithm (WOA)” [38], “Harris Hawks Optimizer (HHO)” 

[39], etc. Aquila Optimizer (AO) [40] is a new algorithm in 

the series that simulates Aquila's hunting tricks and methods 

for its prey. Aquila uses different methods for different types 

of prey. For rapid-moving prey, it uses global exploration, 

while for slow-moving prey, it exhibits local exploitation 

features. Optimization has stepped into networking to find 

the efficient route between source and destination. Bio-

Optimization based routing protocols give the best solution 

to routing issues [41-45] 

 

 

 

 

 

 



Swapna M P & G. Satyavathy / IJETT, 70(4), 245-257, 2022 

 

247 

3. Preliminaries of the proposed work 
3.1 Mobile node localization by Monte Carlo Scheme 

The Monte Carlo approach was frequently used in robotics [46,47], with the concept that a robot does localization 

depending on its movement and the perception of its environment. This theory was extended by Hu and Evans[48] to localize 

sensors in hostile environments and irregular terrain. Localization algorithms based on the mobility of sensor nodes are a real-

time model and a prime requisite for WSN. Monte Carlo Localization(MCL) guarantees localization on mobile sensor nodes 

and ensures accuracy in estimating positions. 

 

MCL algorithm for mobile nodes is as follows.    

• It is assumed that time is segregated into discrete intervals. At every time interval, a node relocalizes (being a mobile 

node)   

• A set of N random samples, 𝐿0 =  {𝑙0 
0 , 𝑙 0

1 , … . . , 𝑙0
𝑁−1}, is selected by the sensor node from the deployment area(𝐿𝑡). 

• The prediction and filtering process is carried out on the samples. 

 

3.1.1 Prediction  

• At time t, a new collection of samples are produced by sensor nodes based on the preceding set, Lt_1.  

• From a known location lit _1 of Lt_1, arbitrary location lit is estimated in a circular region with the radius vmax. 

Considering the Euclidean distance d(l1,l2) between any two points l1 & l2 and the even distribution of velocity 

between(0, vmax), the current probable position estimation would be distributed as   

 

𝑝(𝑙𝑡 , 𝑙𝑡−1 ) = {
0             ,   𝑑(𝑙𝑡,𝑙𝑡−1 )≥vmax

1

𝜋𝑣𝑚𝑎𝑥
2 ,   𝑑(𝑙𝑡,𝑙𝑡−1 )<vmax

 
(1) 

 

3.1.2 Filtering  

• All the irrelevant and unfeasible locations are eliminated from the new collection of samples.  

• Removal is based on the position information obtained from a group(X) of anchors that are believed to be within the 

sensor node's radio range (r). And from the group(M) of anchors who are neighbors of the first group (lying outside 

the radio range), the filtering formula is as follows 

 

𝑓 = ∀𝑥 ∈ 𝑋, 𝑑(𝑓, 𝑥) ≤ 𝑟∆∀𝑠 ∈ 𝑀, 𝑑(𝑓, 𝑥) ≤ 2𝑟 (2) 

 

• The prediction and filtering process is repeated until the desired number of samples has been obtained, until the 

effective sample list (Ne) is higher than the threshold list((Nt).  

• The mean of all potential locations from the sample set Lt predicts a sensor's location at time t. 

 

3.2 Aquila Optimizer 

The novel meta-heuristic swarm intelligence, the Aquila algorithm, is based on the hunting ability of Aquila. The bird 

exhibits the hunting nature of humans and follows different strategies for hunting different prey. It flexibly switches among the 

strategies and hunts with speedy action, powerful feet, and claws. The Aquila optimization procedure is a population-based 

method. The optimization initiates with the population of identified solutions as candidates(X) ranging between the boundaries 

UB and LB. The optimal solution is determined from the best solutions in each iteration, using the formula in equation 3. 

 

𝑋𝑖𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗   𝑖 = 1,2, … , 𝑁 𝑗 = 1,2, … 𝐷𝑖𝑚 (3) 

 

where N indicates the total population(candidate solutions) and Dim is the volume of the problem.   The mathematical model 

of Aquila Optimizer has the following steps 

 

3.2.1 Expanded Exploration 

The Aquila identifies the presence of prey in a specific area with its ability to fly high and vertical stoop. It explores 

the search space extensively. The wide analysis and exploration give a clear picture of the prey resulting in a vertical dive. This 

behavior of expanded exploration can be represented as 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑀(t) - 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑟) (4) 
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Where 𝑋1(𝑡 + 1) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑋𝑏𝑒𝑠𝑡(𝑡), represents the best position identified, the 

approximate position of prey. 𝑋𝑀(t) is the average position of all the locations in the present iteration, 

𝑋𝑀(t) =
1

N
∑ Xi (t)

N

i=1

 

(5) 

the current iteration is t, while the maximum number of iterations is T, N represents the population size, and 𝑟 is a random 

value between 0 and 1 

 

3.2.2 Narrowed Exploration 

Once Aquila identifies the prey, it circles the prey to focus it and then attacks. This is represented as the contour flight 

attack, where the explored space of the previous step is narrowed down for an attack. This is mathematically represented as 

 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑉(𝐷) + 𝑋𝑅(t)+(y-x)*r (6) 

 

where D specifies the dimension space,  

𝐿𝑉(𝐷) = 𝑠 ×
𝑖 × 𝜎

|𝑗|
1
𝜑

 
(7) 

 is the flight distribution function with s being a constant value(0.01), i & j are random numbers ranging from 0 to 1, 𝜑  is a 

constant value(0.5) and  

𝜎 = (
Ґ(1 + 𝜑) × 𝑠𝑖𝑛(

𝜋𝜑
2

)

Ґ(
1 + 𝜑

2
) × 𝜑 × 2(

𝜑−1
2

)
) 

(8) 

y and x are spiral searches given as 

𝑦 = 𝑟 × cos(𝜃) (9) 

𝑥 = 𝑟 × sin(𝜃) (10) 

𝑟 = 𝑟𝑐 × 0.00565 × 𝐷1 (11) 

𝜃 = −0.005 × 𝐷1 ×
3 × 𝜋

2
 

(12) 

rc is the number of search cycles ranging from 1 to 20, D1is the number from 1 to D(dimension size) 

3.2.3 Expanded Exploitation 

Upon identifying the prey accurately, Aquila makes the initial attack on the prey by descending vertically and 

observing the prey's reaction. It’s a slow descent attack. This is represented as 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)) ×∝ −𝑟 + (𝑈 − 𝐿) × 𝑟 + 𝐿) × 𝛿) (13) 
 

Where ∝ and 𝛿 are the parameters to adjust exploitation with a value (0.1),  U is the higher limit, L is the lower limit of the 

problem, respectively, and r is the random value as utilized in the previous steps. 𝑋𝑏𝑒𝑠𝑡(𝑡) & 𝑋𝑀(𝑡) indicates the best position 

and the value of positions, respectively. 

3.2.4 Narrowed Exploitation 

Aquila gets closer to the prey, attacks from land, and grabs the prey. This is represented as the optimized location of 

the identified prey. This behavior is shown as 

𝑋4(𝑡 + 1) = (𝑄𝑓 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝑀1 × 𝑋(𝑡) × 𝑟) − 𝑀2 × 𝐿𝑉(𝐷) + 𝑟 × 𝑀1) (14) 

where 𝑄𝑓 is the quality function to stabilize search strategies calculated as  

𝑄𝑓(𝑡) = 𝑡
𝑀1
𝑀2 

(15) 

M1 represents various motions of Aquila during the tracking sequence of its prey. M2 is the decreasing value from 2 to 0, 

representing the flight slope from step1 (first location) to step 4(last location-t) 

𝑀1 = 2 × 𝑟𝑎𝑛𝑑( ) − 1 (16) 

𝑀2 = (1 − 𝑇)2 (17) 

t & T is the current iteration and the maximum iteration respectively, r is the random value (0 to 1). 
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Algorithm1 – Aquila Optimizer 

1. Initialize the population(P) and parameters of AO 

2. While(stop condition is not met) do 

3.           Compute the fitness values of Pi 

4.           Determine the best solution Pbest(t) 

5.           For (i=1,2,3,4,5…..,N) do 

6.             Update PM(t),x,y,G1,G2,LV(D) [Exploration-I] 

7.             If 𝑡 ≤
2

3
∗ 𝑇 then 

8.                          Update Pi using equation 4 

9.                          If Fitness(P1(t+1)< Fitness (P(t)) then 

10.                           P(t)= (P1(t+1) 

11.                                     If Fitness (P1(t+1))< Fitness(Pbest(t)) then 

12.                                       Pbest(t)= P1(t+1) 

13.                                     End if 

14.                          End if  

15.             Update Pi using equation 6 [Exploration-II] 

16.            If Fitness (P2(t+1)< Fitness (P(t)) then 

17.           P(t)= (P2(t+1) 

18.       If Fitness (P2(t+1))< Fitness(Pbest(t)) then 

19.          Pbest(t)= P2(t+1) 

20.         End if 

21.      End if  

22.          Else 

23.         Update Pi using equation 13 [Exploitation-I] 

24.          If Fitness (P3(t+1)< Fitness (P(t)) then 

25.          P(t)= (P3(t+1) 

26.         If Fitness (P3(t+1))< Fitness(Pbest(t)) then 

27.          Pbest(t)= P3(t+1) 

28.      End if 

29.          End if  

30.        Update Pi using equation 14[Exploitation-II] 

31.      If Fitness (P4(t+1)< Fitness(P(t)) then 

32.        P(t)= (P4(t+1) 

33.      If Fitness (P4(t+1))< Fitness(Pbest(t)) then 

34.      Pbest(t)= P4(t+1) 

35.     Endif 

36.       Endif  

37.     Endif 

38.     Endfor 

39. Endwhile 

40. Return Pbest 

4. Aquila Optimized Monte Carlo Localization(AOMCL) of Mobile nodes in HWSN 

4.1 Heterogeneity of Network Nodes 

Heterogeneous Wireless Sensor Network has nodes of different manufacturers with varied battery levels, sensing, and 

transmission capabilities. In HWSN, the coverage area and transmission range of nodes varies.  

 

4.2 Detailed Phases of AOMCL 

Step 1 – Selection of Anchor Node from the Heterogeneous set of Nodes 

Nodes in HWSN vary in terms of initial energy and residual energy. A candidate for being an Anchor Node must have a 

high energy level. Otherwise, it may lead to the death of the node. Selection of the apt node to be the anchor is vital in HWSN 
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to sustain the energy and lifetime of the network. The parameters, Node Degree and Residual Energy of a node are considered 

for appropriate selection of candidates to become Anchors. 

Node Degree (Nd) is the count of one-hop neighbors of a node (N).  

𝑁𝑑  =  ∑ 𝑁𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑁𝑗 ∈ 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑁 (18) 

The residual energy(𝐸𝑅(𝑁)) of a node is given as 

𝐸𝑅(𝑁) = 𝐸𝐼 − (𝐸𝑇 + 𝐸𝐶 ) (19) 
 

It is the difference between the initial energy from the combined energy utilized for transmission and computation.  

Step 2 – Location estimation of unknown nodes using MCL Square 

Though MCL is the most favored and accurate algorithm for mobile node localization, it has certain setbacks like having a 

bigger sampling area, low sampling efficiency, and a dead sampling cycle. The sampling and filtering process consumes more 

energy and time for the energy-constrained WSN nodes. To mitigate the discussed problems of traditional MCL, the proposed 

algorithm has the following improvements in setting the sampling area. 

4.2.1 Sampling area by MCL Square generation 

MCL square is an innovative method of reducing the sampling area. Minimizing the sampling area implies a reduced 

search area, which could reduce localization errors. This method is intended to generate good samples and decrease the 

filtration process's effort. It creates the deployment area for localizing the node. A square is built for every unknown node (N) 

based on the nearby anchor nodes (either one-hop or two-hop). The generated MCL square is an overlapped region of all the 

nearest anchors. N's identification of nearby anchor nodes is by using Received Signal Strength Indication(RSSI). The closest 

anchor node is determined when the RSSI value is high. The unknown node broadcasts a message to get the RSSI signals from 

the nearest anchor nodes. As represented in figure 1, the grey portion is the generated sampling area. 

The box coordinates are (𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥) and (𝑌𝑚𝑖𝑛 , 𝑌𝑚𝑎𝑥). 

𝑋𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑖=1
𝑛 (𝑥𝑖 −  𝑟) (20) 

𝑋𝑚𝑎𝑥 = 𝑚𝑖𝑛𝑖=1
𝑛 (𝑥𝑖 +  𝑟) (21) 

𝑌𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑖=1
𝑛 (𝑦𝑖 −  𝑟) (22) 

𝑌𝑚𝑎𝑥 = 𝑚𝑖𝑛𝑖=1
𝑛 (𝑦𝑖 +  𝑟) (23) 

 

where (𝑥𝑖 , 𝑦𝑖 )  are the coordinates of the node(i), n is the totality of nearby anchors, r represents the radio range of one-hop 

anchors, and 2r replaces this in the case of two-hop anchors. A node draws samples from the generated square region, 

restricting the generation of more accurate and appropriate samples.  

The above-specified square of sampling area is applicable if the sample set is empty (initially), but when there is a sample set 

available previously, then the coordinates of the square must include the movement of the node with a speed of 𝑉𝑚𝑎𝑥 , and it 

is given as  

𝑋𝑚𝑖𝑛 = 𝑚𝑎𝑥 
 (𝑥𝑚𝑖𝑛 , 𝑥𝑡−1

𝑖 − 𝑣𝑚𝑎𝑥) (24) 

𝑋𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 , 𝑥𝑡−1
𝑖 + 𝑣𝑚𝑎𝑥) (25) 

𝑌𝑚𝑖𝑛 = 𝑚𝑎𝑥 
 (𝑦𝑚𝑖𝑛 , 𝑦𝑡−1

𝑖 −  𝑣𝑚𝑎𝑥) (26) 

𝑌𝑚𝑖𝑛 = 𝑚𝑎𝑥 
 (𝑦𝑚𝑖𝑛 , 𝑦𝑡−1

𝑖 +  𝑣𝑚𝑎𝑥) (27) 

 

Fig. 1 Sampling area by MCL square generation 
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Fig. 1 Sampling area by MCL square generation 

 

4.2.2 Predicting the location 

Based on the location information of anchor nodes(i) within the MCL square at time t, and with the assumption that the 

node is likely to move randomly in any path within the square at speed between 0 and Vmax, location is predicted as  

𝑝(𝑙𝑡  |𝑙𝑡−1) =1 

 

(27) 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑋𝑚𝑖𝑛
𝑖 ≤ 𝑋𝑡

𝑖 ≤  𝑋𝑚𝑎𝑥 
𝑖  & 𝑌𝑚𝑖𝑛

𝑖 ≤ 𝑌𝑡
𝑖                ≤  

𝑌𝑚𝑎𝑥 
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

 

  

4.2.3 Filtering the samples 

Considering r as the radio range, O as the set of anchors that are one-hop, T as two-hop anchors, the filtering process is 

specified as 

𝑝(𝑂𝑏𝑡|𝑙𝑡
𝑖)  =  1, (28) 

If ∀𝑠 ∈ 𝑂, 𝑑(𝑙𝑡 , 𝑠) ≤ 𝑟 ⋀ ∀𝑠 ∈ 𝑇, 𝑑(𝑙𝑡 , 𝑠) ≤ 2𝑟, otherwise 0  

Where 𝑑(𝑙𝑡 , 𝑠) is the Euclidean distance between the anchor s and the generated sample lt, obt is the set of observations at the 

time t. The above three steps are repeated until the maximum count of samples is generated to fill the set. 

 

4.2.4 Location Estimation of the samples is given as 

∑ 𝑙𝑡
𝑖𝑁

𝑖=1

𝑁
 

(29) 

 

Step 3 –  Optimization of predicted locations by Aquila Optimizer(AO) 

The goal of the optimization is to normalize the distance between the estimated position and the anchor node. AOMCL 

doesn’t use the weighted average of the generated samples to localize the unknown nodes; here, the optimal node position is 

determined using AO within the MCL square. The generated samples of the above phase are AO's initial population(X). The 

nodes with minimum fitness are retained during the iterative process of AO as specified in Algorithm 1. The fitness function is 

given by equation 30. 

∑  

N

i=1

√(xk − xi)
2 + (yk − yi)

2−dik 

(30) 

where dik denotes the estimated distance between unknown node i and anchor node k, (xi,yi) and (xk,yk) are the coordinates of 

the unknown node and anchor node. N represents the total count of anchor nodes within a one-hop distance. 

Anchor 

node 
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4.3 Phases AOMCL 

 Figure 2 illustrates the phases of the proposed AOMCL. 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

Fig. 2 Flowchart representing the phases of AOMCL 

5. Simulation Results & Discussions 
The set-up of the simulation environment in Matlab 

2015b is as specified in the table. Random WayPoint is the 

most used model for mobile networks. Each node in the 

network moves at speeds ranging from 0 and Vmax. A node 

can reach another node within the radio range 'r .'A 

heterogeneous network is a group of nodes with a difference 

in the transmission power of each node. The variation in 

transmission powers results in varied communication ranges 

for nodes. The communication range of nodes is within 10 

m to 30 m. The simulation experimented with the proposed 

algorithm with the existing algorithms RMCL, DEMCL, 

and QMCL, for positioning accuracy/localization error, 

positioning coverage, anchor node density, and energy 

consumption. 

✓ The Localization Error (LE) variation in the 

node's actual and estimated position. 

✓ Positioning coverage/Localization coverage is the 

percentage of nodes whose location is 

determined. 

✓ Energy Consumption depends on the algorithm's 

communication cost and computational 

complexity. 

 
Table 1. Simulation settings for experimenting with AOMCL 

Parameters Value 

Number of Nodes 250-300 

Area 500*500m 

Number of Anchor nodes 30 

Initial Energy of  Node 1000J 

Starting DTV 0.5 

Transmission Range 100m 

 Model of Mobility Randomway Point  

Speed of Mobility  4 m/s to 45 m/s  

 

N 

Y 

1. Identification of anchor nodes from 

the Heterogeneous set of Nodes 

(Residual Energy and RSSI) 

 

2. Location Estimation of Unknown nodes 

(MCL) 

Is the Size of samples 

at a specified time <  

Max? Size of 

intended 

samples(Threshold 

value) 

2.1 Generation of MCL square 

 

Gener 

 

2.2 Location Prediction 

2.3 Filtration of Samples 

 

Gener 

 

3. Optimizing the predicted Locations 

(AO) 
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5.1 Localization Error based on Anchor node density 

The count of anchor nodes attributes to the cost of the 

mobile WSN. High positioning accuracy must be 

maintained with low anchor node density. Figure 3 is the 

effect of  Localization Error(LE) with the change in density 

of anchor nodes on the AOMCL localization algorithm. The 

localization error of AOMCL is relatively low for all node 

densities than that of the existing protocols. As anchor 

nodes in the network increase, the filtered samples are 

closer to posterior distribution probability, and hence the 

error in localization reduces. As the number of anchor 

nodes increases, the distance to the unknown node 

decreases, resulting in the quick generation of MCL square 

that produces reduced search area, reduced filtration 

process, best sampling set, and better localization accuracy. 

Table 2 gives the numerical representation. 

 

 
Fig. 3 Localization Error percentage of AOMCL 

 

Table 2. Localization Accuracy of AOMCL 

 

5.2 Localization Error based on moving speed 

 With the increase in Vmax, the activity of the node increases per unit time, leading to enhanced communication with the 

anchor nodes. Thus, the invalid samples can be filtered more effectively, allowing better localization accuracy. One of the 

major problems of MCL was the unrestricted size of the sampling area that got enlarged as Vmax is increased, resulting in poor 

localization accuracy. When Vmax increases within a specified range, the localization accuracy will increase, but the effect may 

reverse beyond the range. From figure 4, it is evident that the existing protocols have better localization accuracy than MCL 

due to reduced sampling area. In AOMCL, the sampling area is further reduced due to MCL square and proves to have low 

localization error compared to the counterparts. Table 3 represents the numerical representation of the analysis. 
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 Anchor nodes 

 

Algorithm 

1 2 3 4 5 

AOMCL 0.3 0.2 0.18 0.09 0.06 
RMCL 0.4 0.29 0.24 0.2 0.21 
QMCL 0.56 0.4 0.38 0.35 0.26 
DEMCL 0.65 0.55 0.51 0.48 0.43 
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Fig. 4 Location Accuracy against speed( Vmax) 

Table 3. Localization Accuracy of AOMCL with respect to Speed 

          Vmax (r distance 

per time) 

Protocol 0.2 0.4 0.6 0.8 1 1.2 1.4 

AOMCL 0.3 0.2 0.18 0.21 0.23 0.27 0.31 

RMCL 0.4 0.29 0.24 0.25 0.27 0.33 0.4 

QMCL 0.56 0.4 0.38 0.42 0.46 0.48 0.53 

DEMCL 0.65 0.55 0.51 0.55 0.59 0.63 0.67 
 

5.3 Location Coverage Rate 

The ratio of nodes successfully located to all unknown nodes in a given time period defines the location coverage. As 

shown in Figure 5, the AOMCL algorithm exhibits the highest location coverage rate, which is approximately 92~97% 

compared to the existing DEMCL, RMCL, and QMCL algorithms. The generation of MCL square based on anchor nodes 

around the unknown nodes reduces the search and sampling area, resulting in high localization coverage.   

 

 
Fig. 5 Location Coverage percentage of AOMCL 
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5.3 Computational Complexity 

The energy utilization and time consumption of the protocols are computational complexity measures. Figure 6  

demonstrates the computational time of different algorithms based on varied node densities. The proposed AOMCL considers 

the best nodes with high residual energy as anchor nodes. Being HWSN, the energy level of nodes varies. Hence this 

mechanism guarantees energy retention and efficiency. The complexity of the actual MCL is reduced in AOMCL with the 

generation of MCL square and effective sample set within the region. With the increase in anchor nodes, sampling rounds get 

reduced. It is analyzed that, at a lower node count, the time taken is somewhat similar for all the algorithms. But, as node 

density goes up, the computational time is higher for DEMCL, RMCL & QMCL. 

 

Fig. 6 Computational Complexity of AOMCL 

Table 4. Computational complexity values of AOMCL 

Nodes 

Algorithm 100 125 150 175 200 225 

QMCL 0.19 0.21 0.25 0.28 0.31 0.35 

RMCL 0.22 0.26 0.28 0.3 0.32 0.39 

DEMCL 0.2 0.25 0.27 0.32 0.41 0.48 

AOMCL 0.17 0.19 0.22 0.26 0.3 0.33 

6. Conclusion 
Localization of mobile nodes in WSN was earlier done 

using periodic localization and calculation of static nodes. It 

was a hectic task with high communication costs and tedious 

calculations. Monte Carlo node Localization(MCL) 

algorithm with particle filtering scheme is an efficient 

method for localizing mobile nodes. It has limitations like 

inaccurate positioning and low location coverage, more 

number of anchor nodes, less efficiency, etc. Many variations 

of MCL were proposed for effective results, but the 

heterogeneity of sensor nodes was not keenly considered. 

The proposed work, Aquila Optimized Monte Carlo 

Localization(AOMCL), localizes the unknown  

 

heterogeneous nodes of HWSN with reduced complexity 

using  MCL square. The research work is a coalition of 

mobile node localization protocol, MCL, and novel 

metaheuristic optimization protocol AO. The proposed 

protocol AOMCL was experimented with using Matlab. The 

results disclose that the proposed protocol is superior in 

localization accuracy and coverage percentage to the existing 

algorithms RMCL, DEMCL, and QMCL. The energy 

utilization is efficient as the complexity and searching space 

are reduced with the introduction of the MCL square. The 

work can be extended in the future to decrease the anchor 

node density in the network to minimize the hardware 

component and overall cost. 
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