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Abstract - With the ongoing pandemic of COVID-19, numerous bits of intelligence are required to analyse the type of infection 

and mutation that is undergoing around the globe. However, while processing these data, privacy is another major field that 

requires concentration since it involves user data privacy. Hence, preserving privacy while processing the images is required 

for optimal management and security consideration of big data analytics. In this paper, the study models a machine learning 

method that is integrated with encryption models for optimal data encryption and thereby maintaining the privacy 

preservation of data. The privacy preservation using the proposed data encryption model is tested under two problems 

involving digit recognition and medical image application in classifying the computed tomography images of lungs from 

various covid-19 patients. The simulation was conducted to test the efficacy of the privacy preservation method in providing 

data privacy while the data has been classified. The simulation results show that the proposed machine learning encryption 

model enables optimal privacy of user data than other existing methods. 

Keywords - Privacy Preservation, Bigdata Analytics, Covid-19, Machine Learning. 

1. Introduction 
With the closed training approach, machine learning has 

evolved into an intelligent and complex system. The 

operation in a cloud environment makes it possible to 

leverage massive amounts of data and computing power for 

large-scale data processing [1] [2]. At the same time, cloud 

computing enables artificial intelligence to be convenient, 

where its security issues are still a major concern. Using 

cloud storage means that customers will lose the ability to 

store machine learning data in a physically isolated location 

and protect their data [3].  

 

It is also common practice to outsource some of the 

more complicated computations for artificial intelligence 

techniques and machine learning (ML) onto the servers in a 

cloud environment, which can result in illegal intrusion or 

data loss, as well as a host of other security problems [4]. 

Consequently, the preservation of privacy in the cloud 

environment has become a critical aspect of the advancement 

of machine learning [5] [6] [24] [25]. 
 

Homomorphic encryption theory has increased research 

into preserving machine learning data privacy [7] [8]. The 

work uses a support vector machine (SVM) classification to 

demonstrate ML based on the Homomorphic encryption 

technique. Using a cloud server, a user can develop a 

machine learning classifier without revealing the sensitive 

data using a huge data source and the cloud server assistance 

(see Fig. 1) 

 
Fig. 1 Privacy Preserved Machine Learning 

 

Model parameters are randomly initialized, and relevant 

configuration is encrypted using a specific model when the 

user interacts. The user then sends the ciphertexts and any 

relevant configuration information to the cloud server. As a 

final step, the server uses model parameters to classify with 

the help of ciphertexts. Then it returns the label associated 

with the users without disclosing their private data. 

 

In this paper, the machine learning model is built by 

integrating the encryption process models for encryption and 

decryption, thereby preserving the covid-19data privacy.  
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The main support of the paper involves the subsequent: 

• The authors developed a machine learning model to 

preserve the privacy of covid-19 data uploaded from 

various devices to a common cloud center. 

• The privacy preservation using the machine 

learning-based data encryption model is tested on 

the feeding of privacy preserved data inputs digit 

recognition system and medical imaging data 

classification for lungs in relation with covid-19 

patients.  

• The simulation was conducted to test the efficacy of 

the privacy preservation method in providing data 

privacy while the data has been classified. 

 

2. Related works 
For the past ten years, ML algorithms have been built 

using homomorphic encryption. Based on homomorphism, 

encryption utilizing ElGamal multiplicative principle was 

developed by Chen et al. [9]. This study developed an 

algorithm for two-party distributed back propagation in 

multi-layer neural networks. It is possible to train neural 

networks without revealing encrypted data. 

 

Homomorphic encryption was used with gradient 

descent algorithms for classification. [10] Paillier 

homomorphic encryption was used to secure a new 

classification strategy for users and servers presented by 

Mathavan [11] based on SVM. 

 

Bost et al. [12] used to create certain classification 

protocols, such as hyperplane judgment and Naive Bayes, 

using additive homomorphism encryption. An asymmetric 

ciphertext-decryption method that allows the calculation of 

the nearest-neighbor algorithm was devised by Wong et al. 

[13] In the same year. Three algorithms were developed by 

Aslett et al. [14] to classify FHE ciphertexts using an FHE 

scheme: Naive Bayes, Complete Random Forest (CRF), and 

Logical Regression (LR). 

 

According to Liu et al. [15], additive homomorphism 

uses a classifier called Naive Bayes to preserve sensitive 

data. It successfully estimates the risk of patient disease, 

according to Liu et al. [15]. Further, Dowlin et al. [16] 

developed an approximation machine learning model that 

uses neural network classifiers, and the encryption is 

conducted using CryptoNets with 99% accuracy. 

 

Baryalai et al. [26] developed a dual cloud model to 

decentralise cloud power while improving the security of 

neural network systems. The authors in [18] developed SVM 

classifiers based on homomorphic encryption. Phong et al. 

[19] constructed a privacy protection system using deep 

learning to protect sensitive information by applying additive 

homomorphism encryption. 

 

Homomorphic encryption is further developed over real 

numbers in [20, 21]. The authors in [20] created an approach 

using logic regression with a parallelization homomorphic 

encryption model. The homomorphic ciphertext is further 

developed in [22]. A secret key is required to further the 

decryption of intermediate ciphertext outcomes. 

3. Proposed Method 
Homomorphic encryption is performed on the input data 

in this section. For real-number encryption purposes, a 

matrix ring was proposed for homomorphic encryption. 

Finally, the study ensures that ML classification in COVID-

19 input data is protected from privacy violations. 

3.1. Homomorphic Encryption 

Multiple users can benefit from homomorphic 

encryption to foresee the computations aggregating sensitive 

data. An extra attribute, dubbed threshold-HE in the study, is 

highly recommended for shared settings with numerous 

users. Interactive processes are used for the key generation 

and decryption algorithms, in which the participants work 

together to generate and decrypt keys.  

3.2. Definition and Notations 

ParamGen(𝜆, 𝑃, 𝐾, 𝐵) are considered the parameters. 

Parameters are generated using the parameter generation 

algorithm, which is explained below. It requires the 

following as input:  

 

𝜆 is the intended level of security for the mechanisms. 

For example, 128bits or 256-bit security (𝜆 =128). A 

plaintext number modulus, P, is the number one that wants to 

encrypt. It is assumed that P = 1024 means that all operations 

on individual message elements are performed in the range 

(0, 1023) modulo P.  

 

The encoding vectors have a dimension of K. For 

example, 𝐾 = 100, 𝑃 = 1024 means that the messages 

sensitive to the users are encrypted of vector type (𝑉1, … , 𝑉𝐾) 

whereas all the vectors 𝑉𝑖 is always selected between the 

range [0, 1023], and functions were conducted mostly in the 

order of components. According to the definition 

(𝑉1, … , 𝑉𝐾)  + (𝑉1
′, … , 𝑉𝐾

′ )  =  (𝑉1  +  𝑉1
′, … , 𝑉𝐾  +  𝑉𝐾

′ ). 

Multiplying a pair of vectors is defined the same way. The 

message space refers to the set of all conceivable vectors 
(𝑉1, … , 𝑉𝐾).  

 

The study uses an auxiliary parameter, say B, which is 

useful in controlling the complexity associated with 

communication and computation of encryptions. As a rule of 

thumb, the lower the parameters, the smaller the program or 

circuit is. The smaller the scheme parameters, the more likely 

it is to have fewer parameters. As a result, the ciphertexts are 

smaller, and the assessment procedures are more efficient. 

The more parameters you use, the larger your keys and 
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ciphertext will be, and the more difficult it will be to evaluate 

them. More complicated programs necessitate higher 

parameters for evaluation.  

 

• PubKeygen(Params) → SK, PK, EK 

Secret and public keys are generated using a private key 

generation technique. Anyone can encrypt messages using 

the public key. For decrypting encrypted messages, a user 

must access the confidential key. An evaluation key is further 

generated for the execution of operations of homomorphic 

encryption conducted on ciphertexts generated by the method 

itself. Entities performing homomorphic computations on the 

ciphertexts deserve this key. It is impossible to decipher a 

message using only the ciphertexts if you only have access to 

the public and calculation keys. 

 

• SecKeygen(Params) → SK, EK  

A confidential key was generated using the secret key-

generation algorithm. Messages are encrypted and decrypted 

using this secret key. To be safe, the user should not share it 

with anyone. It also provides an evaluation key required for 

homomorphic operations on the ciphertexts, which are also 

generated by this approach. The evaluation key is provided to 

an entity that optimally does the homomorphic encryption on 

the ciphertext. Ciphertexts can only be deciphered if the 

evaluation key is known to the recipient. 

 

• PubEncrypt(PK, M) → C 

Public encryption uses the public key and the sensitive user 

data or message M as inputs to the algorithm. C is considered 

the ciphertext that is generated, and to meet the security 

requirements, this algorithm must typically be randomised.  

 

• SecEncrypt(SK, M) → C  

Some message M in the message space, as well as the secret 

key, is fed into the algorithm for secret encryption. C is the 

ciphertext generated by the algorithm. This approach's 

security features require using random or pseudo-random 

coins.  

 

• Decrypt(SK, C) → M  

The ciphertext C and secret key SK are inputs to the 

decoding procedure. Sends a message to the recipient M. A 

unique FAIL symbol may also be generated if decoding the 

message encrypted M fails.  

 

• EvalAdd(EK, Params, C1, C2) → C3.  

The key required for evaluation EK and two C1 and C2 

ciphertexts are used as input to EvalAdd, which generates a 

ciphertext C3. 

This feature of EvalAdd states that if C1 and C2 encrypt the 

encrypted elements of plaintext M1 and M2, then the 

encrypted elements of plaintext M1+M2 should be encrypted 

by C3. 

 

• EvalAddConst(Params, EK, C1, M2) → C3. 

The evaluation key (EK), the system parameters (Parms), a 

ciphertext C1, and plaintext M2 are inputs to EvalAddConst, 

which generates ciphertext C3. 

Since the plaintext element M1 is encrypted in C1, then C3 

should be encrypted in C1, and then EvalAddConst says this 

is accurate. 

 

• EvalMult(Params, EK, C1, C2) → C3.  

Inputs mainly include C1 and C2, EK, and system 

parameters. On the other hand, the outputs include C3, which 

generates the estimation key EK. 

Assuming that C1 and C2 are both encryptions of plaintext 

element M1 and that C3 is encrypted of multiplication factor 

M1*M2, EvalMult is valid. 

 

• EvalMultConst(EK, Params, C1, M2) → C3. 

EvalMultConstant was considered a random method that 

accepts as input Params, the EK, an encrypted cipher text C1, 

and an unencrypted plain text M2 and generates an encrypted 

cipher text C3. 

 

• Refresh(flag, Params, EK, C1) → C2. 

Bootstraps are all flags that can be used as inputs to Refresh. 

The EK, C1, and C2 are all outputs of Refresh. C1 is 

plaintext encryption of M1 when C2 is accurate as per the 

correctness property. 

 

Using the Refresh technique, a "complicated" ciphertext 

of messages can be transformed into a "simple" ciphertext of 

a similar message. It is possible to implement the Refresh 

method using (a) either the bootstrapping, which accepts a 

C1 and C2 under a key and produces another ciphertext 

under another key with the same message. 

 

• ValidityCheck(Params, EK, [C], COMP) → flag.  

ValidityCheck is a deterministic algorithm. If ValidityCheck 

returns a flag of 1, next, the homomorphic computation 

COMP will yield a ciphertext that decrypts to the right 

answer when applied to the vector [C]. 

3.3. HE Functionality  

The new algorithms will now be described in detail in 

the study. 

 

Starting with the DKG algorithm, an interactive protocol 

between parties 𝒑𝟏, … , 𝒑𝒕. t will be used to implement the 

algorithm. A randomised algorithm, the DKG algorithm is 

just that. The number of parties t, as well as threshold d and 

security parameter, are inputs to DKG. 

As a result of the DKG algorithm, there is a secret key vector 

𝒔 = (𝒔𝟏, . . . . , 𝒔𝒕) of dimensions t and a public EK, whereas t 

gets (Ek,𝒔𝒊) from each of the other parties 𝒑𝒊. 

According to the study, pi does not get sj for 𝒊 ≠ 𝒋 and 𝒑𝒊 

must keep its secret key 𝒔𝒊 Confidential. It is followed by an 
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explanation of the distributed encryption (DE) algorithm. An 

algorithm called DE, which any party can use, pi is a random 

algorithm. The plaintext M and the secret key  𝒔𝒊 are fed into 

DE by party pi. C is the ciphertext generated by DE. 

 

A distributed-decryption (DD) procedure for an 

interactive protocol amongst t parties’ subset, namely 

𝒑𝟏, … , 𝒑𝒕 is described. It is a random algorithm that uses the 

DD algorithm. 

 

Subsets of secret keys 𝒔 = (𝒔𝟏, . . . . , 𝒔𝒕),  a ciphertext C 

and threshold parameter (d) are the inputs to DD. 

Furthermore, each participant's pi gives the inputs i. Any 

party can supply the ciphertext C. Plaintext M is the result of 

the DD command. 
 

The algorithms described above must meet the following 

set of requirements in terms of correctness: The DD 

decryption algorithm result will be correct if all parties 

involved in the interaction follow the stipulated interactive 

protocol exactly. 

 

3.3.1. Evaluation Privacy 

In addition to semantic security, the ciphertext C should 

be able to obscure which homomorphic computations were 

used to generate C. Evaluation Privacy is the term used in the 

study. 
 

Cloud computing services can offer services like this, in 

which an ML algorithm is trained on the client's private data. 

Encrypted data from the client is sent to the cloud along with 

an evaluation key (EK); C’ an encrypted version of F(M), is 

now being generated by the cloud and sent to a client. 

Evaluation privacy ensures that nothing about algorithm F 

can be derived from the pair (M, F(M)) that C does not 

reveal. Adversaries who intercept encrypted network 

communication may be interested in this. 

3.3.2 Key Evolution 

Suppose a server holds a collection of ciphertexts 

encrypted using a secret SK key, and the users with SK 

suspect if the SK is compromised. Encryption schemes 

should have the following key evolution feature: privacy.  
 

The key evolution property is satisfied by any 

sufficiently homomorphic encryption method. Assume TK is 

SK encryption. Decoding TK using the secret key SK 

provides the plaintext SK. A server can turn ciphertext C in 

corpus into ciphertext C' given TK and EK by 

homomorphically evaluating the decryption procedure. The 

security of the original homomorphic encryption system 

arises from its semantic security. Proxy re-encryption. 

 

 

3.4. Support Vector Machine 

It is a supervised linear classifier known as support 

vector machines (SVMs). SVM could be developed to 

conduct nonlinear classification and classification on an 

unlimited number of classes with additional techniques. 

Using a support vector machine, you can create an arbitrary 

hyperplane between two sets of vectors that can be separated 

linearly.  

 

 
Fig. 2 Support Vector Machine 

 

Only the hyperplane that maximizes the lowest distance 

from the hyperplane to any point in each cluster is considered 

for this task. The side of the computed hyperplane on which 

a testing point lies is used to classify it. Support vector 

machines can be extended to function in a wider range of 

situations, but this simple solution only works for two 

linearly distinct classes. 

3.4.1. Non-Linearly Separable Classes 

The preceding basic method does not work if the two 

classes cannot be separated linearly. Building a soft margin 

in this scenario is necessary, effectively dividing the data into 

two classes. A cost function is used to do this. The hinge loss 

function is a critical part of this cost function. If a point is on 

the correct side of the hyperplane, this function has no value; 

otherwise, it has a value proportionate to the distance the 

point is from the correct side of the hyperplane. The cost 

function combines all the data points' hinge loss functions 

and a parameter that defines which points are most likely to 

fall on either side of the hyperplane. Classification 

hyperplanes are generated by reducing this cost function. 

When the input is linearly separable, this approach is quite 

similar to the fundamental support vector machine algorithm, 

but it also works well when the input is not linearly 

separable. 
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3.4.2. Non-Linearly Separable Classes 

The study looks at SVM as an example and sees how the 

algorithm's parameters are trained, and the data points are 

classified on ciphertexts. SVM is a widely used classification 

algorithm that allows users to create regression formulas 

using training data. A specific regression coefficient z = 

x1w1+ x2w2+ xnwn+…+xnwn is multiplied by each feature of 

the data points in the training procedure, and z is then 

substituted into the sigmoid function for the sigmoid 

function. There is no label when Sigmoid(z) is less than or 

equal to 0.5. Hopefully, this approach can be done in a 

ciphertext environment to protect critical training data. An 

analogous approach to training parameters on the ciphertexts 

based on the HE. 
 

For this exercise, assume that w is a weight vector, that x 

is an input feature vector, and that the intercept is b. The 

encryption scheme allows the user to send ciphertexts (cw, 

cx, cb) to the cloud server. The server returns possible labels 

in ciphertext space by classifying them in the SVM. In 

homomorphic multiplication and addition operations, the 

study see that in a ciphertext, cz is a matrix of size 6x6. Then, 

the sign function (cz) is replaced with the determinant 

function in the case of classification (cz). If det(cz) is greater 

than zero, the label is 1; otherwise, det(cz) equals zero.  

4. Results and Discussions 
In this section, we validate the model by enabling the 

system to detect active and side-channel attacks. The 

proposed model is tested on a python IDE simulator on a 

high-end computing system with 16GB of RAM under an 

intel 15-core processor. The model is validated against 

various metrics, including computational cost, 

communication cost, encryption time, decryption, and 

latency. 
 

4.1. Active Attacks 

Beyond the concept of semantic security, more stringent 

security standards can be considered. As an illustration, 

consider the case when a customer has data M and wants to 

calculate the factor F(M) for a specific algorithm F. 

Following this procedure, a cloud computing service 

performs the factor F(M) computation on behalf of the client. 

Cloud servers get encrypted ciphertext from clients.  
 

As an alternative, imagine that the cloud instead 

computes a C that was encryption of G(M) for a function G. 

Because of the possibility of major inaccuracies, this could 

be a concern for the client. In this case, semantic security 

cannot rule out the active attack possibility on the system. 

According to the findings, these attacks on homomorphic 

encryption systems cannot be stopped without extra steps. 

Alternatively, the adversary may be able to decrypt the select 

C of its choice to gain access to the client's private 

information. In this case, the guarantee of security does not 

protect against this attack. 

4.2. Side-Channel Attacks 

An adversary may be able to access a portion of an 

encryption scheme secret key using side-channel attacks, 

such as timing assaults during the decryption process. 

Leakage resiliency is a term used to describe the ability of an 

encryption method to withstand such attacks. Regarding 

side-channel assaults, it should be difficult to breach 

semantic security. Leakage resistance can only withstand a 

limited amount of secret key leakage. 

4.3. Evaluation 

Fig. 3 portrays the results of computational cost between 

the presented HE-ML model and the existing SVM and CRF. 

The simulation outcomes display that the presented 

technique acquires a reduced rate of computation cost when 

compared with other existing approaches. The utilisation of 

ML computation enables the proposed method to achieve a 

reduced rate of computations. 

 
Fig. 3 Computational Cost  

 

 
Fig. 4 Communication Cost  

 

Fig. 4 exhibits the outcomes of communication cost 

between the presented HE-ML model and the existing SVM 

and CRF. The simulation outcomes reveal that the presented 

HE-ML attains a reduced rate of communication cost than 

other existing techniques. The utilisation of ML computation 

enables the proposed method to achieve a reduced 

communication rate. 
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Fig. 6 Decryption time 

 

Fig. 6 shows the results of decryption time between the 

proposed HE-ML model and existing SVM and CRF. The 

outcomes of the simulation portray the presented approach 

achieves a reduced rate of decryption time compared to other 

existing approaches. The utilisation of ML computation 

enables the proposed method to achieve a reduced rate of 

decryption time. 

5. Conclusion 
In this paper, ML is amended by training it with the 

feature vectors from various types of attacks. The model 

developed after training is deployed for predicting the type of 

incoming attack when the covid-19 data is offloaded to the 

cloud. Each packet is encrypted and sent to the cloud, and the 

possibility of an attack on these encrypted data is predicted 

well by the ML model. The simulations are conducted on 

two different datasets, including text-based and image-based, 

to validate the efficacy of the privacy preservation ML model 

in providing data privacy while the data has been classified. 

The simulation results show that the proposed ML 

encryption model enables optimal privacy of user data than 

other existing methods. 
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