
International Journal of Engineering Trends and Technology                                                    Volume 70 Issue 6, 165-184, June 2022 

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I6P220                                        © 2022 Seventh Sense Research Group®  

          

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 Original Article  

Evolutionary Computing Driven ROI-Specific Spatio-

Temporal Statistical Feature Learning Model for 

Medicinal Plant Disease Detection and Classification 

Margesh Keskar1, Dhananjay D Maktedar 2  

1,2CSE Department Guru Nanak Dev Engineering College Bidar Karnataka, India  

Visvesvaraya Technological University Belagavi, Karnataka, India  
 

1 mskeskar38@gmail.com 

Received: 21 March 2022          Revised: 17 May 2022            Accepted: 29  May 2022          Published: 27 June 2022 

 

Abstract - Plants can be hypothesized to be the inevitable need of living beings on earth. Amongst the gigantically large plant 

species and varieties, the medicinal plants have a distinct and significant role in herbal remedies, ayurvedic medicine, the 

pharmaceutical industry, and the major modern medicine world. Various medicinal plants like roots, stems, and leaves are 

used for the abovementioned purposes; however, their efficacy depends on their intrinsic health condition. In other words, a 

medicinal plant with healthy and non-contentious characteristics can positively impact medicinal uses. On the contrary, plants 

with the disease can have a negative or insignificant impact on medicinal purposes. In sync with this fact, detecting plant 

disease over the different medicinal plants can be vital for healthy plant selection and identifying diseases for preventive 

measures or decisions. Despite the robustness of the vision-based automatic plant disease detection and classification systems, 

the non-uniform disease patterns, non-ROI feature learning, and inferior feature space confine the efficacy of the major at-

hand solutions. To alleviate such limitations, in this paper, a highly robust evolutionary computing-driven ROI-specific Spatio-

temporal statistical feature learning model is developed for medicinal plant disease detection and classification. To ensure 

solution optimality, the proposed model first performed pre-processing employing image histogram equalization, intensity 

equalization, and Z-score normalization, followed by annotations. Subsequently, a first-of-its-kind Firefly algorithm-driven 

Fuzzy C-Means clustering (FFCM) was developed for ROI segmentation. Subsequently, the proposed model performed an 

ROI-specific color space overlay to reconstruct ROI in RGB color space to extract significant Spatio-temporal statistical or 

textural features. In the proposed model, eight Gray-level co-occurrence metrics named correlation, heterogeneity, entropy, 

energy, contrast, mean, standard deviation, and variance were extracted as STTF features, which were subsequently applied to 

perform two-class classification for healthy and diseased medicinal plant classification. The simulated results revealed that the 

proposed model yields superior medicinal plant disease detection and classification performance in terms of accuracy 

(98.62%), precision (98.81%), recall (98.79%), and F-Measure (0.988). 
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1. Introduction 
 The life of a living being can be hypothesized to be 

centered on plants and their product called oxygen. In other 

words, living beings rely primarily on oxygen from different 

plants and herbs. The gigantic types of plants on earth have 

different significance toward living beings. However, based 

on reachability and scientific understanding, plants are 

categorized into certain categories, including cereals, 

medicinal plants, wood plants, etc. The different plants play 

significant roles in maintaining the earth’s biodiversity while 

providing air and water to living beings, including humans. In 

addition to the air mentioned above and water support, a 

significantly large number of plants provide grains for food, 

medicine, wood, etc., thus helping human beings for 

sustainable living on earth. Amongst the known bio-diversity 

centered on the term plant, medicinal plants have distinct and 

undeniably a specific role where it provides ingredients for 

medicine, ayurvedic treatment resources, herbal remedies, etc. 

Several medicinal plants are employed for disease treatment 

and prevention. 

 Interestingly, these medicinal plants have been employed 

for generations, and still, the scientifically enriched and 

advanced pharmaceutical industry depends on these medicinal 

plants to produce high-efficacy medicines. Medicinal plants 

possess unique and highly significant properties ranging from 

its root to leaves and are serving a savior role for humanity on 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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earth. There are many herbs, including Karpooravalli (Coleus 

ambonicus), Podina (Mentha arvensis), Neem (Adidirachta 

indica), Thudhuvalai (Solanum trilobatum), Basil (Ocimum 

sanctum), etc. [1], whose leaves are used for either making 

enriched medicines or are employed in natural form to 

perform ayurvedic or herbal remedies. Several (medicinal) 

plant leaves are effective in treatments like skin disease, 

blood purification, ingestion, etc. In addition, several 

medicinal plants like Turmeric and Giloy, whose roots are 

employed as medicinal components to improve anti-bacterial 

efficiency and increase natural immunity [2][3]. In this 

manner, the different medicinal plants are used differently to 

provide expected remedials for both human beings and animal 

health and hygiene. Contemporarily, medicinal plants have 

emerged as the inevitable ingredient for traditional and 

modern medicines to safeguard human and animal life. Few 

medicinal plants are employed as a whole; only one of its 

parts, like leaf, stem, or root, is applied for remedies. The 

different parts of the medicinal plants can be of different 

significance and are applied for different remedial purposes or 

medicine manufacturing [1-4]. In addition to the medicinal 

significance, such plant extracts can also be employed for 

food or condiment purposes. Numerous sanitary drinks use 

medicinal plant extract [1]. Different pieces of literature 

reveal that across the world, almost 14-28% of plants fall 

under the medicinal category [1]. Research conducted at the 

start of the 21st century reveals that 3-5% of the patients in 

western countries, whereas in developing countries, 80% of 

the rural population, medicinal plants are used for health 

hygiene   [6][7].  

 The above discussions reveal the significance of 

medicinal plants for human beings; however, the success of 

medicinal plant-driven remedies primarily depends on the 

originality of the plants, ingredients, and plant health. 

Unfortunately, in the current-day scenario, the herbal 

medicine market is flooded with low-standard products, 

despite claiming to be herbal or organically produced. Despite 

being prepared with medicinal extracts, the failure or low 

significance of large medicines or medicinal plant-driven 

herbal remedies can’t be ruled out. A key reason behind such 

inferior cases can be the ineffective, manipulated, or 

corrupted plant or its part. In other words, the presence of a 

disease in a plant can erode the sanity of its natural ingredient 

and hence can make a medicinal plant insignificant. 

 On the other hand, applying such a plant or its parts for 

medicine manufacturing or any allied herbal remedies can be 

of no significance [1-10]. To alleviate such problems 

guaranteeing optimality of the plant health is a must. There 

are several plant diseases whose impact is often reflected over 

the leaves. In other words, analyzing a plant’s leaf can help 

identify a normal or healthy plant or a diseased plant. 

Different kinds of plant diseases like rust, bacterial or fungus-

driven diseases, etc., impacts plant leaves. 

 Consequently, the attacked or diseased plant leaves often 

become pale, dried, white surfaced, or sometimes black 

corroded. Discoloration and changes in leaf shape and sizes 

often characterize plant disease. Despite above stated vision-

based assessment, guaranteeing optimality of plant disease 

detection often remains a challenge for industries due to 

differences in shape, size, huge volume, and different kinds of 

(similar) leave in the same place. 

 Moreover, manual plant disease detection and 

classification is a highly tedious task and therefore requires a 

certain automated approach to detect and classify the normal 

and diseased plants. To achieve such goals, automatic vision-

based computer recognition systems have gained widespread 

attention [9][10]. Vision-based plant disease detection and 

classification systems apply different Spatio-temporal and 

textural features of the plant leaf to learn and classify images 

as normal or diseased. In other words, computer-based plant 

disease detection methods use many plant images as input to 

learning the features that enable them to classify images as 

the normal plant or the diseased plant.  

  A few years ago, I struggled greatly in sync with the vital 

signs of plant disease detection demands. Most at-hand 

systems use plant leaves’ textural information, Spatio-

temporal feature distribution, and shape and size to train 

machine learning algorithms for further classification. Most 

of the existing systems have applied (GLCM) features [1][7], 

shape information [2], and deep features [4][10]to perform 

plant disease detection and classification. However, those 

approaches applying shape, size, and textural information 

often employ segmentation to detect the region of interest. 

This approach has always been criticized due to its high 

reliance on the efficacy of segmentation and allied 

computations. Considering such limitations, many efforts 

have been made to apply deep learning methods. Unlike 

segmentation-based approaches, deep learning methods 

directly inputs complete image as input and extracts 

cumulative feature from the sample to perform further 

learning. Undeniably, deep learning methods avoid the need 

for typical pre-processing and segmentation; however, the 

impact on non-ROI feature learning can impact overall 

classification results. To alleviate non-ROI-specific feature 

extraction and learning segmentation as a pre-feature 

extraction method seems more justifiable. However, in sync 

with medicinal plants, which have the non-linear ROI patterns 

(i.e., the shape, size, non-uniform disease (fungal attack, 

bacterial attacks, etc.) gradient, the classical standard 

thresholding-based segmentation can be ineffective. In other 

words, to cope with non-linear disease pattern detection (say, 

segmentation) over medicinal plants of different sizes, colors, 

etc., an improved segmentation method is required. To meet 

this demand, clustering-based segmentation or region 

growing concepts can be the viable solution; however, being a 

complex approach, later (i.e., region growing) can’t be 

appropriate for the medicinal plant disease detection task. 

Though clustering methods like Fuzzy C-Means (FCM) can 
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yield fast ROI-segmentation over non-linear surfaces or 

feature gradient (or distribution); however, guaranteeing 

cluster optimality remains a challenge. To improve FCM-

based clustering for ROI segmentation, using heuristic 

methods can be of great significance, where heuristic models 

like genetic algorithms, swarm techniques, ant colony, etc., 

can help optimize the centroid and enable fast and accurate 

ROI segmentation. 

  Moreover, most existing methods have applied 

segmented ROI regions as input to directly extract binary 

features and entropy to perform feature extraction and further 

classification. However, there can be severe textural and 

gradient differences in real-world problems over the plant’s 

surface; therefore, existing methods can’t be justifiable. To 

alleviate this problem, the segmented ROI regions can be 

converted into equivalent RGB textural ROI, which can 

subsequently be processed for feature extraction. This 

approach of improved segmentation and corresponding RGB 

space reconstruction can help perform ROI-specific feature 

extraction, guaranteeing more improved features for 

medicinal plant disease detection and classification. Notably, 

unlike typical plant disease detection systems, very few pieces 

of literature are available on medicinal plant disease detection 

and classification. Most of the existing plant disease detection 

methods are found to be low in accuracy; hence, improving 

features and classification methods can yield superior 

performance. 

  Considering above stated problems and allied scopes, the 

proposed model emphasizes the multiple innovative 

dimensions, including heuristic-driven disease region (say, 

ROI) segmentation, ROI-specific RGB color feature space 

construction, and multiple Spatio-temporal feature extraction, 

and improved classification. In this research, many medicinal 

plants, including Amaranthus Viridis, Basella Alba, Brassica 

Juncea, Citrus Limon, etc., were considered for plant disease 

detection and classification. The different medicinal plants 

obtained the plant leaf samples containing both normal and 

diseased leaves. Once performing the basic pre-processing 

tasks like histogram equalization, intensity equalization, Z-

normalization, and resizing, unlike classical segmentation 

methods, the proposed model applied FFCM to perform ROI-

specific segmentation over input images. Once the disease-

specific ROI regions were segmented in each plant leaf, the 

GLCM feature extraction method was applied to extract 

different Spatio-temporal statistical features. In this work, a 

total of eight GLCM features, including contrast, 

homogeneity, energy, entropy, correlation, standard deviation, 

variance, mean, Kurtosis, and Skewness, were extracted from 

each input sample (i.e., ROI-specific color image). Once 

extracting these STTF features, horizontal concatenation was 

applied to retrieve a cumulative feature vector for further 

classification. The obtained feature vector was processed for 

classification using LM-ANN, which possesses superior 

learning ability to the other neuro-computing models. It 

classified each input sample image as the normal plant and 

the diseased plant. The statistical performance 

characterization in accuracy, precision, recall, and F-measure 

reveals that the proposed model achieves superior 

performance to the other existing medicinal plant disease 

detection and classification systems.  

  The other sections of this manuscript are divided as 

follows.  Section 2 presents related work on detecting plant 

disease, whereas  Section 3. Section 4  presents  Problem 

formulation, how research methodology is used, and its 

implementation. Section 5 presents the results .in section 6 

presents the conclusion and future work.  

2. Related Work 
  In the past, researchers have made an effort by exploiting 

different factors, including local soil conditions [11][25], leaf 

image analysis, etc., to perform plant disease detection. 

Interestingly, most of these methods have applied machine 

learning methods to learn the local patterns of Spatio-

temporal features to detect diseased plants and their type(s). 

Kumar et al. [11] applied soil-sensor data to perform fungal 

diseases like powdery mildew, anthracnose, rust, and root 

rot/leaf blight prediction in the plant. They employed a multi-

layer perceptron classifier over the micro-meteorological data 

to perform plant disease prediction, where the highest 

accuracy could be achieved at 98%. Patle et al. [12] exploited 

the leaf wetness duration (LWD) information obtained by the 

polyimide flexible substrate-driven leaf wetness sensors to 

perform fungal disease prediction. However, it was costly, 

weather dependent, and even complex in execution. 

Hyperspectral images were applied by Ashourloo et al. [13], 

where the regression method was applied to perform leaf rust 

disease detection. The authors assessed the efficacy of the 

three different regression models, including partial least 

square regression (PLSR), v-support vector regression (v-

SVR), and Gaussian process regression (GPR), to perform 

rust-disease detection, where GPR was found superior over 

the other state-of-art methods. These proposed learning 

models were employed over the non-imaging spectrometer in 

the electromagnetic region of 350-2500 nm. A similar effort 

was made by Hussein et al. [14]. They employed dielectric 

spectroscopy to exploit the variations of the dielectric contrast 

behaviour over the images to perform pathogenic fungal 

disease detection in plants. Undeniably, these approaches 

[13][14] were highly complex and hence less scalable toward 

real-time problems. Schor et al. [15] applied the PCA  method 

to perform powdery mildew (PM), and tomato spotted wilt 

virus (TSWV) disease detection. Here, the PCA-based 

method yielded superior performance with the pixel-level 

classification (accuracy 95.2%) than the leaf-condition-based 

classification result (accuracy 64.3%). Exploring in-depth, it 

can easily be found that exploiting pixel-level Spatio-

temporal textural features (STTF) can yield superior 

performance over the image as whole input-based models.  

  Considering the ease of implementation, many efforts 

have been made by applying deep learning methods to 
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perform plant disease detection. For instance, Nie et al. [16] 

developed a strawberry verticillium wilt detection network 

(SVWDN) by applying an attention-based method for feature 

extraction and learning. Noticeably, the authors applied the 

Faster R-CNN model to perform feature extraction, followed 

by SVWDN for classification. Despite the claim for 99% 

accuracy, the researcher could not address non-ROI feature 

learning and its impact on overall accuracy. Moreover, the 

authors [16] designed their model as an annotated supervised 

learning concept; hence, its efficacy over the unknown non-

linear disease pattern remains suspicious. Recalling a very 

significant problem of class imbalance in machine learning-

based plant disease prediction models, Ahmad et al. [17] 

developed CNN with a stepwise transfer learning method. 

Similarly, Jiang et al. [18] applied CNN for apple leaf disease 

detection. To improve efficacy over a large input image, the 

authors developed INAR-SSD (SSD with Inception module 

and Rainbow concatenation) model to perform apple leaf 

disease detection. Interestingly, despite training over a large 

input dataset, authors could achieve the mAP of 78.80%. In 

sync with the real-time operating environment, Huang et al. 

[19] developed an asymptotic non-local means (ANLM) 

image algorithm along with a hybrid concept encompassing 

parallel CNN (PCNN) and heuristically tuned extreme 

learning machine (ELM) to perform peach disease detection. 

The highest accuracy of this model could be achieved at 

90.5%. Recalling the at-hand challenges in non-linear disease 

region segmentation for vision-based methods, Yuan et al. 

[20] stated that despite the theoretical superiority, most of the 

existing deep learning methods undergo limited performance 

and false-positive due to higher class imbalance and non-ROI 

feature learning. In this reference, the authors [20] developed 

Spatial Pyramid-Oriented Encoder-Decoder Cascade CNN 

(SPEDCCNN) model for plant disease detection. Noticeably, 

to improve efficacy, authors [20] applied two distinct neuro-

computing models encompassing a region disease detection 

network and a region disease segmentation network. Here, the 

first model combined cascade-CNN with a spatial pyramid to 

detect the ROI region. To further improve feature efficiency, 

a three-level CNN was designed to perform feature extraction 

and classification. Despite high accuracy (90%), this approach 

underwent exceedingly high computational complexity. Patil 

et al. [21] focused on applying UNet-based segmentation 

followed by EfficientNetV2-based feature extraction and 

learning to perform Cardamom plant disease detection and 

classification. The highest accuracy reported by them was 

98.26%. Singh et al. [22] developed a multi-layer CNN 

(MCNN) model for Anthracnose, well-known fungal disease 

detection in Mango tree (leaf). Similar to [21], realizing the 

need for an ROI-specific segmentation model, Khan et al. 

[23] focused on disease spots. Correlation-driven expectation-

maximization was applied to improve segmentation accuracy 

over the plant leaf surface. Subsequently, the local binary 

patterns (LBP) feature was extracted from the segmented ROI 

regions and later processed for SVM-based classification. Sun 

et al. [24] developed CNN driven multi-scale feature fusion 

instance detection concept for Maize leaf blight detection. 

Functionally this approach was highly complex due to multi-

level complexities, including retinex-based image 

enhancement, RPN-driven anchor box adjustment (acts as 

segmentation), transmission-module-based network learning, 

etc. Moreover, the authors found convincing results at the cost 

of 60000 iterations that can be too exhaustive for a real-time 

solution. Dwivedi et al. [26] designed the L1-Norm 

minimization extreme learning model (ELM) to improve 

plant disease detection's accuracy, reliability, and run-time 

efficiency. Additionally, the authors applied the different pre-

processing and feature learning methods to perform one-class 

classification. They found that neuro-computing can be a 

suitable alternative for time-efficient plant disease detection 

and classification. Khattak et al. [27] applied CNN-based 

automatic citrus fruit and lave disease detection system. More 

specifically, the authors detected and classified plant diseases. 

The highest accuracy reported was 94.55%. Huang et al. [28] 

developed a RELIEF-F model for winter Wheat disease 

detection. The highest accuracy for powdery mildew, yellow 

rust, and aphids were 86.5%, 85.2%, 91.6%, and 93.5%, 

respectively. Barburiceanu et al. [29] applied the different 

deep-learning methods, AlexNet, VGGNet, and ResNet, for 

texture feature extraction and plant leaf disease detection and 

classification. Zhou et al. [30] developed fine-grained-GAN 

for grape leaf spot identification. The authors improved R-

CNN faster with the fine-grained-GAN as a local spot area 

detector, which acted as a segmentation model. Subsequently, 

it applied ResNet50 to perform feature extraction and 

classification, which achieved the highest accuracy of 

96.27%. Militante et al. [31] applied the deep learning method 

for plant leaf detection and allied disease recognition. The 

highest accuracy reported was 96.5% towards the leaf 

classification of the apple, corn, grapes, potato, sugarcane, 

and tomato plants. Marzougui et al. [32] and Kumar et al. [33] 

applied CNN for plant disease detection. Guan et al. [34] 

assessed the efficacy of the different CNN models like 

Inception, ResNet, Inception Resnet, and DenseNet towards 

plant leaf disease detection and classification. Interestingly, 

the authors found that stacking these deep learning models 

can yield the maximum accuracy of 87%, which was higher 

than the CNN as a standalone deep model. Recent research by 

Rahman et al. [35] stated that despite using a deep neural 

network, a vision-based model requires superior ROI 

segmentation for accurate disease detection. Executing their 

improved segmentation model followed by deep learning-

based feature extraction over the Plant-Village database, the 

author could achieve the highest accuracy of 99.25%. CNN 

with learning vector quantization (LVQ) was applied by 

Sardogan et al. [36] for Septoria leaf disease spot detection. 

Devi et al. [37] revealed that using GLCM features, specially 

trained over random forest classifier, can yield (plant disease 

detection) accuracy of 99%. Kirti et al. [28] also discussed the 

significance of improved segmentation, who performed black 

rot disease detection in Grape Plant (Vitis vinifera) leaves. 

SVM-based classification in [38] yields the highest accuracy 
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of 94.1%. Despite the claim to have higher accuracy with 

EfficientNet (99.8%) and DenseNet (99.75%), Srinidhi et al. 

[39] could not address non-ROI feature learning for Apple 

plant leaf disease detection. Though, to improve 

segmentation, the authors suggested using Canny edge 

detection and blurring and flipping; yet, it could not resolve 

major at-hand problems in the real world. A similar limitation 

was observed in the MobileNet-v2-based plant disease 

detection system [41]. Pardede et al. [40] developed an 

unsupervised convolutional auto-encoder to perform feature 

learning and classification for plant disease detection. 

However, the authors found it challenging to retain ROI-

specific features and suitability. Wahab et al. [42] developed 

K-Means segmented SVM for Chilli plant disease detection 

and classification. Bose et al. [43] developed a deep learning 

ensemble model for Hemp disease detection and 

classification. They claimed their model to have an accuracy 

of 98%, yet, their approach to using the whole image as input 

for feature extraction questions its generalizability.   

3. Problem Formulation 
  Vision-based medicinal plant disease detection systems 

can be vital for non-invasive prohibitory solutions. Yet, the 

complex and non-linear Spatio-temporal features make 

accurate disease spot (say, ROI) detection challenging. The 

presence of disease spots and diversity of leaf-related diseases 

on the different non-linear surfaces makes disease type 

assessment difficult. Moreover, the diversity of disease types 

and corresponding Spatio-temporal textural diversity over 

non-linear (say, varying color, shape, size and gradient, etc.) 

surfaces make plant disease detection a mammoth task. 

Unlike other plant disease detection such as apple plant 

disease detection, cardamom plant disease detection, grapes 

plant, paddy, etc., where the leaf sizes and shapes are broad, 

flat, and linear, almost the majority of the medicinal plants 

possess small and densely distributed leaves with aforesaid 

Spatio-temporal textural and local feature differences. It 

makes ROI segmentation and corresponding feature 

extraction difficult. 

  

  On the other hand, observing samples of the medicinal 

plants and their allied disease diversity, it can be found that 

the location, severity, and Spatio-temporal presence of disease 

elements are relatively small compared to the background 

image components neighboring non-ROI spaces, etc. In this 

case, extracting ROI and non-ROI features for training a 

complete input space can impact learning efficacy and 

classification results. It can severely give rise to the false-

positive performance problem and hence inappropriate for 

real-time purposes. Such issues can severely impact the 

performance of the deep -learning-based methods until the 

images are processed for pre-processing and ROI-specific 

resizing. Doing so even violates the expectation or motive of 

deep learning methods that advocate removing pre-processing 

tasks and learning over the overall image to make the 

classification. These inferences reveal that a vision-based 

medicinal plant disease detection and classification system 

can be effective when it possesses ROI-specific Spatio-

temporal features for learning and classification. Learning 

ROI-specific Spatio-temporal features can yield more 

accurate classification results; however, the success of this 

approach’s roots in the fact that how effective medicinal plant 

disease (here onwards called MPD) specific ROI-region(s) 

segmentation has been done and how significant Spatio-

temporal features have been extracted to perform machine 

learning-driven accurate MPD classification. Most existing 

plants that detect the disease and classification methods have 

applied wavelet analysis, local binary patterns, and varied 

types of deep learning models like CNN, GAN, ImageNet, 

DenseNet, ResNet, etc. However, these methods use a 

complete plant leaf’s image to perform feature extraction and 

hence can impose irrelevant feature space or attributes, which 

can hinder the classification efficacy. Despite deep feature 

presence learning over the non-ROI feature space can force 

the model to undergo skewed learning and hence can result in 

false-positive performance. Training to extract feature(s) over 

ROI-specific textures is necessary to alleviate such issues. As 

a result, it can improve the feature’s intrinsic information to 

achieve higher prediction accuracy and reliability. 

  In sync with above stated key issues and allied scopes, in 

this work, the emphasis is made on improving almost all 

steps, including pre-processing, ROI-specific MPD detection 

and segmentation, ROI-specific Spatio-temporal (textural) 

statistical feature (STTF) extraction, followed by Levenberg 

Marquardt ANN (LM-ANN) learning for plant disease 

detection and classification. In this work, different medicinal 

plant leaf samples representing the normal as well as diseased 

(leaf) samples were obtained from the different plants, 

including Amaranthus Viridis (Arive-Dantu), Basella Alba 

(Basale), Brassica Juncea (Indian Mustard), Citrus Limon 

(Lemon), Hibiscus Rosa-Sinensis, Mentha (Mint), Moringa 

Oleifera (Drumstick), Murraya Koenigii (Curry), Ocimum 

Tenuiflorum (Tulsi), Piper Betle (Betel), Santalum Album 

(Sandalwood), Syzygium Cumini (Jamun), and 

Tabernaemontana Divaricata (Crape Jasmine). Recalling that 

the feature diversity (say, morphological as well as Spatio-

temporal diversity) of disease regions limits most of the 

classical systems, a large set of medicinal plant images can be 

considered. Moreover, to include Spatio-temporal diversity, 

many leaves’ images with different colors, shapes, sizes, and 

ROI-gradient or distribution (say, disease or affected textural 

region on leaves) can be employed. To further improve input 

images and Spatio-temporal (say, local quality), pre-

processing techniques like histogram equalization, contrast 

equalization, medium filtering, Z-score normalization, etc., 

can be employed. It can help retrieve the uniform local 

conditions for each image for ROI segmentation. Towards 

ROI-specific feature extraction, heuristic methods like the 

Firefly algorithm can be applied with FCM clustering, which 

can perform accurate ROI-specific segmentation even over 

the non-linear surface. Noticeably, in the FFCM model, the 



Margesh Keskar & Dhananjay D Maktedar / IJETT, 70(6), 165-184, 2022 

 

170 

Firefly algorithm can be applied to improve iterative FCM 

centroid estimation that eventually can improve clustering 

performance to get accurate ROI even by reducing the cost of 

connected component analysis tasks. Unlike classical 

segmented binary image learning-based methods, ROI-

specific textural images can yield superior performance. 

Considering this, the segmented ROI regions can be 

transformed into RGB space images by performing image 

overlapping or RGB-channel multiplication with the 

segmented ROI image and the original RGB image. Once the 

ROI-specific textural image is obtained in color space, 

different STTF features can be extracted, including GLCM 

features. This research focuses on assessing the efficacy of 

the hybrid GLCM feature encompassing contrast, 

homogeneity, energy, entropy, correlation, standard deviation, 

variance, mean, Kurtosis, and Skewness to perform medicinal 

plant disease detection and classification. About the combined 

features (from GLCM), using a non-linear pattern learning 

model such as adaptive neuro-computing methods can be 

superior for image classification. In this reference, this work 

proposes to use LM-ANN, a non-linear neuro-computing 

model with the ability to act as the steepest gradient, as well 

as gradient descent learning can be applied to perform 

medicinal image classification. In this manner, the proposed 

model can classify each input sample as a normal or diseased 

image, which can be vital for real-time plant health 

monitoring tasks. The proposed model can also be effective 

for industrial purposes where it can help identify or separate 

healthy and diseased plants to make optimal manufacturing 

decisions. Thus, a few research questions have been defined 

in sync with the above-stated research problem and allied 

scopes. These questions are: 

 

RQ1: Can the use of the Heuristically driven clustering model 

be effective in segmenting non-linear disease 

components segmentation in medicinal plants? 

RQ2: Can using ROI-Specific textural information with 

GLCM features be effective toward an accurate and 

reliable medicinal plant disease detection system? 

RQ3: Can the amalgamation of ROI-specific GLCM features 

encompassing contrast, homogeneity, energy, entropy, 

correlation, standard deviation, variance, and the mean 

be effective towards accurate medicinal plant disease 

detection and classification? 

RQ4: Can multiple GLCM features with LM-ANN yield an 

accurate and reliable vision-based solution for 

medicinal plant disease detection and classification? 

4. System Model  
 The key steps employed in the proposed work are given 

as follows:  

Step-1 Data Acquisition, 

Step-2 Pre-processing, 

Step-3 Heuristic-driven ROI specific Segmentation, 

Step-4 ROI-specific color space GLCM Feature Extraction, 

and  Step-5 Classification and Performance assessment. 

 The overall proposed method and allied algorithmic 

innovations are depicted in Fig. 1 
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Contrast/Histogram 
Equalization
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Spatio-Temporal 
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Fig. 1 Evolutionary computing driven ROI-Specific STTFF feature learning model for medicinal plant disease detection and classification 
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A detailed discussion of the overall proposed model is given 

in the subsequent sections. 

 

4.1. Data Acquisition 

  Unlike classical plant disease detection problems, this 

research mainly considered the medicinal plant’s disease 

detection and classification. Undeniably, the leaf’s color 

remains almost the same in major medicinal or non-medicinal 

plants; however, local textural and allied Spatio-temporal 

features often vary. For instance, the Spatio-temporal features 

of paddy leaves, tomato leaves, etc., are quite different than 

Syzygium Cumini (Jamun). It is because the leaves of paddy 

or rice plants often used to be linear with long structure and 

unidirectional textural flow. Medicinal plants like Hemp, 

Amaranthus Viridis, Moringa Oleifera, Hibiscus Rosa-

Sinensis, Santalum Album, etc. are non-linearly distributed in 

different directions. Numerous medicinal plants have 

filamentous and non-linear bone lines spread across the plant. 

It differentiates medicinal plants from non-medicinal plants. 

Though medicinal plants are merely 18-24% of the plant 

species on earth, the inter-textural similarity can’t be avoided. 

However, exploring more significant and frequently used 

medicinal plants, a total of 13- medicinal plants data were 

obtained for the study; in this work,  considered normal leaves 

as well as disease leaves (say, diseased plants samples) for the 

key medicinal plant named Amaranthus Viridis (Arive-

Dantu), Basella Alba (Basale), Brassica Juncea (Indian 

Mustard), Citrus Limon (Lemon), Hibiscus Rosa-Sinensis, 

Mentha (Mint), Moringa Oleifera (Drumstick), Murraya 

Koenigii (Curry), Ocimum Tenuiflorum (Tulsi), Piper Betle 

(Betel), Santalum Album (Sandalwood), Syzygium Cumini 

(Jamun), and Tabernaemontana Divaricata (Crape Jasmine). 

862 leaf images from 13-different plant types were collected 

from [44][https://data.mendeley.com/datasets/nntj2v3n5]. A 

snippet of the data considered is given in Table I. 

 

Table 1. Examples of the different medicinal normal and diseased plant leaves 

Medicinal Plant Types Normal Plant leaves Diseased plant leaves 

Amaranthus Viridis (Arive-Dantu) 
    

Basella Alba (Basale) 

    

Brassica Juncea (Indian Mustard) 
    

Citrus Limon (Lemon) 

    

Hibiscus Rosa-Sinensis 

    

Mentha (Mint) 
    

Moringa Oleifera (Drumstick) 

 
 

 
 

Murraya Koenigii (Curry) 

    

Ocimum Tenuiflorum (Tulsi) 

    

Piper Betle (Betel) 

    

Santalum Album (Sandalwood) 
    

Syzygium Cumini (Jamun) 
    

Tabernaemontana Divaricata (Crape Jasmine) 
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  The images above clearly show the variation in Spatio-

temporal textural features between the normal medicinal plant 

leaves and the diseased leaves. Though in this work, the plant 

leaves are already processed in such a manner that the non-

ROI spaces are less; however, there are several samples, 

including the one in Amaranthus Viridis (Arive-Dantu), 

where the difference between the ROI and non-ROI feature 

space can easily be visualized, segmentation seems to be 

significant. Thus, once obtaining the set of 862 images 

representing the normal and diseased plant leaves from the 

different medicinal plants, pre-processing was performed. A 

snippet of the pre-processing methods employed in this work 

is given in the subsequent section.  

4.2. Preprocessing 

  Observing the sample images (Table I), it can easily be 

found that there exists severe change in resolution, shape, and 

sizes, and other Spatio-temporal differences between the 

normal and the diseased plant leaves. In sync with this fact, to 

improve feature learning efficiency, the input images were 

first processed for image resizing, where each input image 

was resized to 296 × 400  pixel dimensions. Subsequently, 

each image was converted into gray-level feature space using 

the RGB2Gray function, followed by image histogram 

equalization that intends to reduce the impact of change in 

illumination over the region of observation (ROO). Moreover, 

it equalizes overall pixel level and allied resolution to 

improve further feature extraction. To further alleviate any 

possible overfitting, local minima, and convergence-related 

issues, by applying  Z-Score normalization over each input 

image. This work achieved normalization by applying mean 

and standard deviation values. Noticeably, Z-score signifies 

the variation of scaling that represents the number of standard 

deviations away from the mean value. In this manner, the Z-

score method helps in guaranteeing that the feature 

distributions possess mean=0 and a standard deviation of 1. 

Mathematically, Z-score for a point 𝑥 is obtained as per (1).  

𝑥𝑖 =
(𝑥 − 𝜇)

𝜎
 

(1) 

  In (1), 𝑥  represents the mean, while the standard 

deviation value is given by 𝜎 .  Now, once performing 

preprocessing tasks over each input image, it was processed 

for heuristic-driven ROI-specific segmentation. A detailed 

discussion of the proposed segmentation model is given in the 

subsequent section.  

4.3. Heuristic FFCM driven ROI segmentation 

 Though the images depicted in Table I represent uniform 

color and textural differences between the healthy plant leaf 

and the diseased leaves; however, there are numerous samples 

where the disease regions are specifically different than the 

normal images, and even a single image possesses both 

normal textural cues as well as diseased Spatio-temporal 

spaces. On the other hand, to ensure a cost-efficient vision-

based automated solution, to cope with the real-world 

condition where the vision-based method requires segmenting 

plant region and dropping the non-ROI spaces (say, 

background). This work develops a highly robust heuristic-

driven ROI segmentation model to cope with such demands. 

Observing key pieces of literature in Section II, it can easily 

be found that improving segmentation to retain ROI-specific 

textural regions can enable a more (intrinsically improved) 

efficient feature vector for learning. Unlike classical static 

threshold-based or morphology-based segmentation methods 

to cope with ROI non-linearity and change in patterns, the 

proposed model has applied a clustering-based method. The 

Fuzzy C-Means method has been applied to perform ROI 

segmentation. However, recalling the key limitation of 

clustering methods, i.e., centroid optimality, the proposed 

model applies a heuristic method that primarily functions for 

cluster optimization and segmentation. In sync with a 

lightweight and computationally efficient heuristic-based 

FCM, this research applied the Firefly algorithm that tunes 

centroid value for FCM and even assists in optimizing 

clusters. The Firefly algorithm not only intends to enable 

swift and accurate ROI segmentation; but also alleviates the 

need for a manual seed-point definition that eventually makes 

the overall process automated and efficient. A detailed 

discussion of the overall proposed FFCM-driven 

segmentation toward medicinal plant disease detection is 

given in the subsequent sections. 

4.3.1. Plant Disease Spot Localization 

 As discussed in previous sections, the proposed method 

applied cluster-based segmentation to cope with ROI-specific 

segmentation over non-linear plant leaf morphology and 

disease spot non-linearity. This work applied the FCM 

clustering algorithm over input image(s) that clusters 

distributed pixels over ROO to retain ROI-specific regions 

while dropping background or insignificant image 

components. The proposed FCM method intends to cluster 

spot regions possessing similar Spatio-temporal 

characteristics or similarities to achieve it. Moreover, it 

performs ROI segmentation by reducing the intra-cluster 

distance, achieving superior and more accurate ROI detection. 

Additionally, the clustering approach alleviates the need for 

seed-point definition, which is further improved by applying a 

heuristic model named Firefly algorithm. In the proposed 

method, the Firefly algorithm helped optimize or tun the 

centroid information, making clustering over non-linear 

feature space faster, more accurate, and even automatic. 

Before discussing the proposed FFCM-driven ROI (i.e., 

disease spot) segmentation, a brief of the FCM algorithm is 

given as follows.  

4.3.2. Fuzzy C-Means Clustering Method 

 Consider 𝑥𝑖  Be the pixels of the input medicinal plant 

leave’s image. Now, the key motive of FCM is to group 𝑛 the 

number of pixels distributed across the input leaf image, 

representing (2). 

 

𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} (2) 
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  In (2), 𝑥𝑖∈𝑑 refers to the feature vector encompassing 𝑑 

real-valued estimations signifying 𝑥𝑖  The feature element of 

the input image’s pattern. Functionally, the Fuzzy concept 

enables FCM to apply certain membership functions that 

eventually enhances clustering decision over unannotated 

non-linear feature space𝑥𝑖∈𝑑. In addition, the ability of FCM 

to enable feature elements or instances participating in 

multiple clusters and label them accordingly makes FCM 

more efficient in achieving higher accuracy, even over non-

linear feature space or varying Spatio-temporal feature 

conditions. It makes the proposed model more efficient in 

coping with ROI segmentation over medicinal plant disease 

data, where the edges and ROI-specific textural gradients are 

varying and highly complex. Typically, FCM methods are 

broadly classified into two types; soft-FCM and hard-FCM, 

where the latter variant divides input image 𝑥 into multiple 

groups(𝑠𝑎𝑦, 𝐺1, 𝐺2, 𝐺3…, 𝐺𝑐). Here, one pattern can belong 

to only one cluster; thus, each pattern is labelled as a specific 

non-overlapping cluster. Unlike hard-FCM, in the soft-FCM 

method, a feature element or pixel-instance 𝑥 can belong to 

multiple clusters; however, for an ROI-specific learning case, 

there is a highly complex feature non-linearity and textural 

gradient. In medicinal plant disease cases, a single plant leaf 

can have multiple ROI patches or spots even with gradient 

variation, color, shape and size differences, etc. About the at-

hand problem, soft-FCM can be more appropriate. In this 

case, the clustering results are obtained as the membership 

matrix, also known as the Fuzzy Partition Matrix, given as 

(3). 

𝑈 = [𝑢𝑖𝑗](𝑐,𝑛)
 (3) 

 In this work, the function mentioned above (3) for (2) is 

estimated using equation (4).  

 

𝑀𝐹𝐶𝑁 = {𝑢 ∈ 𝑅𝑐,𝑛 |∑𝑈𝑖𝑗 , 0 < ∑𝑈𝑡𝑗<𝑛

𝑛

𝑗=1

𝑐

𝑗=1

} 

(4) 

  In (1), 𝑢𝑖𝑗 ∈ [0,1]  refers to the Fuzzy membership 

function for 𝑖 − 𝑡ℎpattern in 𝑗 −th cluster, where it follows 

the pre-condition 𝑈𝑖𝑗 ∈ [0,1]in sync with conditions like 1 ≤

𝑗 ≤ 𝑐  and 1 ≤ 𝑖 ≤ 𝑛 . Here, FCM has been applied over 

complete pixel instances across an image that minimizes an 

objective function to form an accurate cluster(s) iteratively. 

Mathematically, it is derived as (5).  

 

𝐽𝑚 = ∑∑𝑢𝑖𝑗
𝑚

𝑛

𝑖=1

𝑐

𝑗=1

‖𝑥𝑖 − 𝑣𝑗‖ 
(5) 

  In (5), {𝑣𝑗}𝑗=1

𝑐
‖. ‖ Refers to the centroid of the cluster. 

Typically, in the FCM algorithm, the centroid is obtained as 

the inner-product norm from 𝑥𝑖 To the 𝑗 − 𝑡ℎ cluster centers. 

In this work, the fuzzy membership function represents the 

level of the pattern’s fuzziness –the classification results by 

employing a weight parameter 𝑚 ∈ [1,∞] . Moreover, it 

applies the following sequential steps to perform clustering.  

− Initiate input pixel’s clustering by introducing an initial 

(say, random) cluster centroid c. 

− Estimate the membership metrics for each pixel instance 

available in each cluster. 

− Update the centroid by performing objective function 

minimization iteratively.  

− Estimate membership function repeatedly (6) and update 

the centroid until there are stable or repeating centroid 

values over iterations. In the proposed work, the fuzzy 

membership value for each pixel is estimated as per (6).  

 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑣𝑗‖

‖𝑥𝑖−𝑣𝑘‖
)

2

𝑚−1𝑐
𝑘=1

 
(6) 

 The classical FCM models applied (7) to perform centroid 

estimation and update.  

𝑣𝑗 =
∑ 𝑢𝑖𝑗

𝑚. 𝑥𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

 
(7) 

 Despite numerous acknowledged uses of FCM methods, 

its efficacy over the non-linear feature specie remains 

suspicious [15]. In this paper, it is found that the proposed 

heuristic model optimizes clustering efficacy to achieve ROI-

segmentation even over non-linear or complex feature space 

to alleviate this problem. Considering computationally 

lightweight and efficient heuristic towards FCM optimization, 

the Firefly algorithm was applied in this work. A detailed 

discussion of the proposed Firefly model and its 

implementation with FCM is given in the subsequent section.  

4.3.3. Firefly Algorithm-Based FCM 

 The ability to perform adaptive multi-group clustering 

makes FCM a potential candidate for at hand ROI-

segmentation task, especially when the input is images with 

unclear ROI boundaries and varying morphology. Despite 

such robustness, the high reliance on membership function, 

and centroid value, it often remains suspicious. Applying the 

Firefly algorithm improves centroid assignment while 

minimizing the cost function iteratively to address such 

limitations. The efficacy of the Firefly algorithm to yield 

expected clustering result even with lower iterations make it 

efficient towards hand ROI-segmentation. In this proposed 

model, the Firefly algorithm reduces the inter-cluster distance 

to help clustering optimization. Here, the proposed clustering 

optimization measure was developed in sync with the 

Firefly’s behavior, especially light flashing and brightness-

based mobility behavior. Thus, it employs light-generation 

behavior as a stimulating signal that helps attract other 

Fireflies existing in nearby locations. In this reference, 

assuming each input image pixel as an individual Firefly 

member, it intends to attract other pixels or the Fireflies based 
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on corresponding brightness behavior and allied sensitivity. In 

this manner, the proposed Firefly-based FCM model, here 

onwards, called FFCM, helps cluster the input feature 

instances as ROI and non-ROI space without involving 

human seed-point definition like in other region growing 

based segmentation methods. It makes the proposed model 

automated. Here, cluster optimization using FFCM enables 

multiple cluster generation and can provide a broader feature 

space about the different plant disease spots on a single leave. 

It can help in improving the feature extraction and hence 

learning. In sync with the proposed FFCM-driven ROI 

segmentation task, a  proposed heuristic model follows the 

following three conditions to perform clustering and its 

optimization.   

Rule-1: Fireflies are the unisexual living being and, therefore, 

can be attracted to the other Firefly, irrespective of gender. 

 

Rule-2: Fireflies influence other Firefly based on their 

illumination intensity. In this process, the Fireflies influence 

other Fireflies in reverse order. In other words, a Firefly with 

higher brightness attracts other Fireflies with lower 

brightness. On the contrary, Fireflies possessing higher inter-

entity distance influence lesser than the other nearby Firefly. 

Mathematically, the attraction model functions in sync with 

the following condition.  

𝐼 ∝
1

𝑟2
 

(8) 

  In (8), 𝑟2refers to the square of the inter-Firefly (or inter-

instance) distance. In this manner, a higher value of 𝑟2 

signifies inferior attractiveness  β . In case a Firefly 

(representing a single entity or pixel) with no nearby Firefly 

possessing higher brightness moves towards the one 

possessing higher intensity.  

 

Rule-3: A Firefly with the highest brightness would not be 

attracted and remains moving randomly.  

  In the FFCM model, the Firefly algorithm calculates the 

suitable counts of centroids in each input medicinal plant 

image to segment Roi-specific region(s). The proposed model 

intends to calculate and update the centroid in 

𝑁 − dimensional search space. Here, it is performed by 

applying a correlation between the inter-instance distance and 

a defined objective function. To implement the Firefly 

algorithm, the proposed model initially distributes the 

population of Fireflies arbitrarily throughout the search space. 

Noticeably, each instance or pixel value is hypothesized to be 

the random population in this method. The proposed model 

employs two steps: estimating the intensity differences, also 

called the objective function. Here, Fireflies possessing either 

lower or higher illumination influence or attracts other Firefly 

possessing lower or higher illumination or brightness. This 

functional paradigm enables gathering the pixel elements 

possessing the same pattern to a centroid, which eventually 

helps cluster formation. Consider that the at-hand search 

space possesses 𝑛 Fireflies while 𝑥𝑖 Be the solution for an 𝑖 −
𝑡ℎ  Firefly. Thus, the fitness function 𝑓(𝑥𝑖)  Signifying the 

fitness value for 𝑥 and allied brightness be 𝐼, defines the real 

location of 𝑖 − th Firefly. The proposed model estimates 

Firefly’s intensity as per (9).  

𝐼𝑖 = 𝑓(𝑥𝑖)1 ≤ 𝑖 ≤ 𝑛 (9) 

 Now, estimating the value of each Firefly’s intensity (9), 

the proposed model starts swarm movement in which the 

Fireflies get attracted to the other Firefly based on the 

brightness. In other words, Fireflies attract other Fireflies, 

where the attractiveness of one member or element is directly 

proportional to the neighboring Firefly’s intensity. 

Noticeably, each Firefly has a certain fixed attractiveness 

𝛽that primarily relies on the inter-element distance 𝑟𝑖𝑗 Exists 

in between the 𝑖 and 𝑗 − 𝑡ℎ Firefly.  

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ (10) 

𝛽(𝑟) = 𝛽0𝑒𝑥𝑝{−𝛾𝑑(𝑖,𝑗)2} (11) 

 In (11), 𝛽0refers to the attractiveness, hypothesizing that 

the Fireflies are present at the same position signifying zero 

inter-instance distance (i.e., 𝑟 = 0). The other parameter 𝛾 

signifies the light absorption coefficient, hypothesizing that 

the 𝑗 − 𝑡ℎ  Firefly has higher brightness than the 𝑖 − 𝑡ℎ 

Firefly. In sync with this condition, the 𝑖 − 𝑡ℎ Firefly moves 

toward 𝑗 − 𝑡ℎ Firefly. Here, the distance moved by Firefly is 

obtained as per (12). Here, 𝑟𝑎𝑛𝑑 states a random number 

existing between 0 and 1. 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5) (12) 

 Thus, the Firefly algorithm first calculates the suitable 

position of the Firefly, proving the optimal centroid value 

about the ROI region. The following equation (13) signifies 

the set of possible position vectors 𝐴 , and 𝑎𝑖 refers to the 

centroid where 𝑎𝑖 ∈ 𝐴. In (13), the parameter 𝑠𝑖 signifies the 

centroid over feature space 𝑑{𝑎1, 𝑎2, … , 𝑎𝑑}. Here, the value 

of the centroid is updated iteratively to improve FCM for 

better clustering. The process of centroid update continues till 

all solutions have unchanging values.  

 

𝐴
= (𝑠1 {𝑎1, 𝑎2, … , 𝑎𝑑}, 𝑠2{𝑎1, 𝑎2, … , 𝑎𝑑}, 𝑠3 {𝑎1, 𝑎2, … , 𝑎𝑑}) 

(13) 

  

 The proposed model applied 60 Fireflies (say, the initial 

population) for simulation. Moreover, the total number of 

generations was fixed at 100. In the proposed work, to 

achieve optimal clustering Firefly algorithm applies the 

Rosenbrock function. Here, the Rosenbrock function helps 

estimate the fitness value signifying the likelihood of a pixel 

becoming the centroid. Regarding the Firefly algorithm, an 

element with higher brightness is assumed to have a low 

fitness value, enabling other Fireflies to get attracted and thus 

control the movement. At the same time, assessing two 

distinct Fireflies 𝑎  and 𝑏 , with 𝑏  having higher brightness 
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compared to the 𝑎′𝑡ℎ Firefly. Subsequently, 𝑎 moves in the 

direction of 𝑏 . Firefly model being an iterative method, 

continues over a fixed iteration and therefore updates the 

solution with an updated population𝑎, = 𝑎1
, , 𝑎2

, , 𝑎31
, , … , 𝑎𝑁

,
, 

by applying the objective function 𝑓(𝑎,)(here, Rosenbrock 

function). As stated, the proposed model applied the 

Rosenbrock function, a well-known non-convex function that 

is employed to solve convexity problem optimization. The 

proposed model applies the Rosenbrock valley function 

where the global minima exist within a narrow, long, and 

parabolic-shaped flat valley. Practically, estimating the valley, 

as the mentioned earlier region is a difficult task, and this is 

because not all solutions possess the unit value (i.e., 1). (14).  

𝑓(𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏(𝑦 − 𝑥2)2 (14) 

 To achieve global minima values at (𝑥, 𝑦) = (𝑎, 𝑎2)The 

proposed objective function model needs to satisfy the 

condition defined as 𝑓(𝑥, 𝑦) = 0. In function, the Rosenbrock 

function is defined in such a manner that it fulfills the 

condition given as 𝑎 = 1 and 𝑏 = 100.  On the other hand, 

with 𝑎 = 0  the proposed Rosenbrock function results in a 

symmetric function and minimum at the origin. It found that 

applying a multidimensional generalization approach with the 

Rosenbrock function achieves global minima. 

Mathematically, it is defined as (15).  

𝑓(𝑥) = ∑ 100(𝑥𝑖+1 − 𝑥𝑖
2)2

𝑁−1

𝑖=1

(1 − 𝑥𝑖)
2 

(15) 

 In the above-derived function (15), the array 𝑋 =
[𝑥1, 𝑥2, … , 𝑥𝑁] ∈ ℝ𝑁  possesses unit minima at 𝑁 =
3 (𝑎𝑡(1,1,1)). Moreover, it retains two minima following the 

condition as 4 ≤ 𝑁 ≤ 7. This approach accomplishes targeted 

global minima possessing all ones, particularly when the local 

minima exist near (𝑥1, 𝑥2, … , 𝑥𝑁) = (−1,1, … ,1) . In the 

proposed model, the condition mentioned above was achieved 

by assigning the function's gradient as zero. It becomes 

possible only when the function derived (15) remains a 

rational function of 𝑥. The proposed model applied FFCM to 

segment the ROI-specific regions over each input medicinal 

plant leaf image. Now, once performing segmentation of the 

ROI-specific region, it was processed for feature extraction. 

In this work, different GLCM features characterizing the 

different Spatio-temporal textural features were obtained from 

each input image and allied segmented ROI regions.  

4.4. ROI-specific color space GLCM Feature Extraction 

 In most of the existing segmentation-based feature 

extraction models,  segmented binary images are processed 

for feature extraction. However, recalling that the textural 

features of each medicinal input image (Table I) used to be 

non-linear and complex, unlike existing approaches in the 

proposed model, converted the binary image into equivalent 

ROI-specific color feature space. This method converts the 

segmented ROI-specific region into R*G*B color space 

image. In this manner, the ROI-specific segmented region is 

converted into an equivalent color-space region, which is 

subsequently processed for the textural feature extraction 

using GLCM methods. GLCM is a statistical feature model 

that measures the likelihood of the pixel’s grayscale values 

over an input medicinal plant image. In sync with the 

statistical characteristics, the grayscale values exist between 

the disease spot regions or the ROI pixels and corresponding 

neighboring pixels. The GLCM method extracts the high-

dimensional statistical features, including entropy, energy, 

contrast, variance, mean, etc. This work shows that the 

different STTF features can be distributed over the ROI-

specific regions (in images). Therefore different STTF 

features were obtained over the ROI regions, which were later 

amalgamated to generate a composite feature vector for 

learning and classification. Here, the extracted STTF features 

were represented as a matrix signifying the matrix of pixel 

intensities 𝐼(𝑥, 𝑦) . Thus, the estimation of the probability 

matrix 𝑃𝑖,𝑗For each input, a medicinal image was obtained. 

Noticeably, the probability matrix, as stated above, 

represented the intensity disparity between the image pixel 𝑖 
and 𝑗, which was later employed to detect motion pattern(s). 

Here, gray-scale signifies the pair relation in one direction, 

and thus estimating the gray-scale information, a matrix 

signifying the relationship matrix was obtained. In this work, 

a symmetric matrix 𝑆 was obtained by adding the gray-scale 

information with the corresponding transpose value. It, as a 

result, estimated the combined association in one direction. In 

the proposed work, at first, the relationship matrix, often 

called association matrix 𝑆 was normalized as per (16) and 

finally estimated the probability matrix 𝑃. 

𝑃𝑖,𝑗 =
𝑆𝑖,𝑗

∑ 𝑆𝑖,𝑗
𝑁−1
𝑖,𝑗=0

 
(16) 

  Once obtaining the probability matrix values Pi,j Its 

examined different Spatio-temporal textural features, 

representing the low-level textural signature. In the proposed 

model, a total of 10 different GLCM features were extracted. 

These features are from (a) to (g)   

  Here, the key motive behind applying GLCM mentioned 

above features was to ensure maximum possible STTF feature 

retention in different dimensions to enable superior learning 

towards plant disease detection and classification. A brief of 

the features extracted is given in the subsequent sections. 

4.4.1. Contrast 

 About the STTF feature definition, contrast is defined as 

the change in the value of the grayscale parameter over an 

input medicinal plant image (here, ROI-specific RGB image 

component). About the above-derived probability matrix (16), 

the pixel pairs exist as diagonal elements in 𝑃𝑖,𝑗(16) signifies 

significant disparity in contrast or its allied grayscale values. 

For at hand medicinal plant disease detection problem, the 

texture contrast signifies the overall changes in the local pixel 

intensities throughout the ROI-segmented areas (in RGB 

feature space). Typically, the irregularity present over the 
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ROI-specific regions in the Spatio-temporal texture can be 

assessed by exhibiting statistical measurement and allied 

(textural) continuity analysis. This work found that estimated 

contrast value over the ROI-specific color space region by 

applying equation (21).  

4.4.2. Energy 

  To assess energy distribution throughout the ROI-

specific RGB space regions, calculated estimated angular 

second moment (ASM) value that estimates the rotational 

acceleration over the Spatio-temporal input space. 

Mathematically, estimated ASM is observed using (17). 

Typically, the value of angular second moment increases 

uniformly across the gray-scale values throughout the ROI-

specific RGB color space.  

 

𝐴𝑆𝑀 = ∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 

(17) 

 Once the ASM values (17) were estimated, the energy 

value was measured as per (18).  

𝐸𝑁𝑅 = √𝐴𝑆𝑀𝑖,𝑗 
(18) 

4.4.3. Entropy  

  Entropy, also called pixel-disturbances, shows how non-

linearly the gray-scale values are distributed across the ROI-

specific RGB color space. In general, the value of STTF 

entropy increases with an increase in non-linear pixel 

distribution. This work obtained estimated entropy for ROI-

specific regions using (19).  

 

𝐸𝑁𝑇 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(−𝑙𝑛𝑃𝑖,𝑗) 

(19) 

4.4.4. Homogeneity  

  Homogeneity, also defined as the Inverse Different 

Moment (IDM), entails that higher homogeneity is in sync 

with lower contrast. In other words, the higher the contrast, 

the lower the homogeneity. Mathematically, applying 

equation (20) to estimate the homogeneity distribution across 

the ROI-specific RGB textural space.  

 

𝐻𝑂𝑀 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

(20) 

  Low contrast results in higher homogeneity in sync with 

the linear magnitude distribution across ROI-specific regions. 

Therefore, mathematically using  (21) to estimate the contrast 

over the input ROI-specific region pr image.  

 

𝐶𝑂𝑁𝑇 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − 𝑗)2 

(21) 

4.4.5. Correlation 

 Correlation represents a feature signifying descriptive 

statistics across an image region or grid. In addition to the 

correlation information, we estimated three other descriptive 

statistics parameters: mean, standard deviation, and variance. 

To estimate the mean value, it examined the symmetric 

features of the probability matrix (16) and thus obtained two 

distinct mean values which are the same. Mathematically,  

 

𝜇𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗

 

(22) 

𝜇𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗

 

(23) 

 The above-derived statistical mean values (22) and (23) 

were later used to estimate variance and standard deviation as 

per (24) and (25), respectively.  

𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)

2

𝑁−1

𝑖,𝑗

 

(24) 

𝜎𝑖 = √𝜎𝑖
2 

𝜎𝑗 = √𝜎𝑗
2 

(25) 

 Once estimating mean and variance values, derives 

correlation information using (26).  

𝐶𝑂𝑅𝑅 = ∑ 𝑃𝑖,𝑗

[
 
 
 (𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 𝑁−1

𝑖,𝑗

 

(26) 

4.4.6. Skewness  

 The above-stated STTF features discussed the disruptive 

statistical statistics along with the gray-level values 

probability statistics. In addition to the above-stated feature 

sets, directional or orientational features were extracted in this 

research to train the model. In this reference, skewness and 

Kurtosis values which are the symmetrical features, were 

obtained. The skewness of the probability matrix (16) 

signifies the lack of symmetry. Skewness is characterized by 

shade feature, in which a high cluster shade indicates 

asymmetrical nature. Mathematically, skewness is estimated 

as per (27).   

𝑆𝐾𝐸𝑊 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖 + 𝑗 − 𝜇𝑗)
4

𝑁−1

𝑖,𝑗

 

(27) 

4.4.7. Kurtosis  

  In addition to the Skewness feature, Kurtosis (KURT) 

was obtained in this work, signifying ‘peakedness’ of the 

Gray-scale value distribution across the ROI-specific color 

space. The higher value of Kurtosis signifies that the 

magnitude of the feature distribution is primarily strenuous 

towards the tail(s) in comparison to (towards) the mean value. 
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On the other hand, the lower kurtosis signifies that the 

magnitude of feature distribution remains strenuous towards 

the spike, which is nearer to the mean value. In this manner, 

its found  Kurtosis distribution across the ROI-specific color 

textural region. Once estimating the overall features as 

discussed above, it was found that the performed horizontal 

concatenation yields a cumulative STTF feature vector, which 

is obtained as per (28).  

𝑆𝑇𝑇𝐹_𝐺𝐿𝐶𝑀𝐹𝑒𝑎𝑡

= 𝐶𝑜𝑛𝑐(𝐶𝑂𝑁𝑇, 𝐸𝑁𝐸, 𝐸𝑁𝑇, 𝐻𝑂𝑀, 𝐶𝑂𝑅𝑅,𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑇𝐷, 𝐾𝑢𝑟, 𝑆𝑘𝑤) 

(28

) 

 Now, once estimating the composite feature vector (i.e., 

𝑆𝑇𝑇𝐹_𝐺𝐿𝐶𝑀𝐹𝑒𝑎𝑡 ), we projected it for feature learning and 

classification.  

4.5. LM-ANN Based Classification  

 Several machine learning models have been developed for 

classification in the last few years. However, learning over 

non-linear feature space, especially in frequency domain 

analysis and image processing problems, remains challenging. 

However, neuro-computing or neural network methods have 

distinct efficacy among the major machine learning methods. 

Undenibaly, ANN is one of the most used neuro-computing 

models in different classification problems, including image 

processing and allied classification tasks. However, learning 

over non-linear unsupervised feature instances often remained 

challenging for ANNs. In sync with enhancement motives, 

different innovations were made in the past that gave rise to 

the different ANN variants, including ANN-Steepest Descent 

(ANN-SD), ANN-Gradient Descent (AN-GD), ANN-with 

adaptive learning (ANN-GDX), ANN-RBF and ANN-

Levenberg Marquardt (ANN-LM). However, the adaptive 

learning capability of ANN-LM makes it superior to other 

variants. Functionally, LM-ANN can adapt to both ANN-SD 

and ANN-GD, making weight tuning fast, more accurate, and 

hence more efficient for non-linear feature learning. 

Considering this fact, in this paper, ANN-LM was applied as 

a classifier to perform learning over the composite STTF 

feature vector (28) for medicinal plant disease detection and 

classification. This work examined two-class classification to 

classify each input image as a normal or a diseased medicinal 

plant. To perform two-class classification by designing  

ANN-LM with one input layer, one hidden layer, and one 

output layer. The extracted feature vectors were given as 

input to each neuron (at the input layer). To be noted, each of 

the feature elements (i.e., 10 features as discussed above; 

(

𝐶𝑂𝑁𝑇, 𝐸𝑁𝐸, 𝐸𝑁𝑇,𝐻𝑂𝑀, 𝐶𝑂𝑅𝑅,𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑇𝐷, 𝐾𝑢𝑟, 𝑆𝑘𝑤
)) were given as distinct input to perform two-class 

classification. The ANN-LM model considered in this study 

is given in Fig. 2. 

 As depicted in Fig. 2, the proposed ANN-LM model 

applies multiple neurons encompassing each STTF GLCM 

feature. Here, the linear activation function is applied at the 

input layer. To retain lower computational overheads and 

weight estimation costs, consider ANN-LM with merely 𝑁 +
1 hidden nodes, where 𝑁 is the number of input nodes. To 

learn STTF GLCM features, the proposed ANN-LM method 

performs the error-minimization concept, which estimates 

error as the difference between the expected value and the 

observed output. The process of error-minimization continues 

iteratively until it yields a minimum or near zero error 

condition (Fig. 2). Once reaching the zero-error condition, it 

classifies each input image as the normal image or the 

medicinal diseased image sample. In function, with linear 

activation function, the proposed ANN-LM model generates 

output same as the input, signifying,Oo = Ii  (Fig. 2). The 

hidden layer’s output is inputted to the output layer that 

applies the Sigmoid function (29) to get the expected result 

Oh . In (26), the variable 𝐼ℎ  states the hidden layer’s input. 

Functionally, it is defined as 𝑌′ = 𝑓(𝑊,𝑋) where Y′ states the 

output vector, while 𝑋  and W  indicate the input and the 

weight values, correspondingly. by applying mean square 

error as the error model (27). In (30), y  represents the 

observed value, while yi
′ States the expected value.  

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ
 

(29) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

 
(30) 

 Though the above-stated method is often used in all ANN 

variants; however, unlike ANN-SD or ANN-GD, ANN-LM 

exhibits localization of the minimum value of the multivariate 

function, called Sum of Squares (SoS) of the non-linear real-

valued functions. It, as a result, makes the computation faster 

and apt for adaptive weight updates to learn over non-linear 

patterns. Unlike classical neuro-computing models, it also 

helps avoid convergence problem, which is quite often in 

major machine learning algorithms. It makes it suitable for 

large and non-linear features. Moreover, its ability to perform 

ANN-SD and ANN-GD enables swift error minimization. 

ANN-LM applies (31) to perform weight updates.  

 

𝑊𝑗+1 = 𝑊𝑗 − (𝐽𝑗
𝑇𝐽𝑗 + 𝜇𝐼)

−1
𝐽𝑗𝑒𝑗 (31) 
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Fig. 2 ANN-LM architecture for STTF composite feature learning 

  In weight update (29), 𝑊𝑗  represents the current weight 

while 𝑊𝑗+1 signifies the updated weight. The variable 𝐼 states 

the identity matrix. The Jacobian matrix 𝐽 involved in (31) is 

given in (32). In (31), the parameter µ  represents the 

combination coefficient, while the lower value of µ  makes 

ANN-LM behave like ANN-GD. Similarly, the higher value 

of µ makes it function as ANN-SD. In (32), the parameter 𝑁 

refers to the total weight counts, while the total input feature 

is given by P. The output is given by M.  
 

𝐽 =

[
 
 
 
 
 
 
 

𝑑

𝑑𝑊1
(𝐸1,1)

𝑑

𝑑𝑊2
(𝐸1,1) ⋯

𝑑

𝑑𝑊𝑁
(𝐸1,1)

𝑑

𝑑𝑊1
(𝐸1,2)

𝑑

𝑑𝑊2
(𝐸1,2) ⋯

𝑑

𝑑𝑊𝑁
(𝐸1,2)

⋮ ⋮ ⋮ ⋮
𝑑

𝑑𝑊1
(𝐸𝑃,𝑀)

𝑑

𝑑𝑊2
(𝐸𝑃,𝑀) ⋯

𝑑

𝑑𝑊𝑁
(𝐸𝑃,𝑀)

]
 
 
 
 
 
 
 

 

(32) 

 

 Thus, applying the above-stated ANN-LM model, it 

classifies each SQL query as the normal and diseased 

medicinal images and labels them as 0 and 1, respectively. 

Finally, the confusion metrics are obtained based on the 

classification results, which helps assess statistical 

performance efficacy in terms of accuracy, precision, recall, 

and F-Measure. A detailed discussion of the results obtained 

is given in the subsequent section.  

5. Results and Discussion 
  Plant disease often results in reduced yield or 

productivity and loss of resources and time that can 

eventually impact the socio-economic endeavors of farmers 

and allied industries. Unlike typical non-medicinal plants, the 

scarcity of medicinal plants and their emerging significance 

in the pharmaceutical sector, herbal remedies, and numerous 

hygiene-oriented remedials have alarmed academia-

industries to detect medicinal plant disease in the early stage 

to reduce detrimental impact. Though, in the past, many 

efforts have been made toward plant disease detection; 

however, most of the data available and even used in the 

research are broad in size with clearly edge-defined disease 

spots. In such a case, detecting ROI and learning ROI-

specific features is easier than the one with unclear 

boundaries, non-linear textural distribution, and varying 

morphological traits. Moreover, very fewer research is 

conducted on medicinal plant disease detection where the 

plant’s leaves can have diverse patterns with exceedingly 

high non-linear STTF characteristics. In addition, most 

existing approaches have applied complete plant images as 

input to perform feature extraction and learning, where 

learning over non-ROI regions or allied Spatio-temporal 

features can impact the system's overall efficacy. To alleviate 

this problem and train a machine learning model over ROI-

specific textural STTF feature cues, this research work 

developed a robust Evolutionary Computing Driven ROI-

Specific Spatio-Temporal Statistical Feature Learning Model 

for Medicinal Plant Disease Detection and Classification. 

More specifically, in this work, a total of 13-different kinds 

of medicinal plant leave samples encompassing both normal 

and diseased were considered. These medicinal plants were 

Amaranthus Viridis (Arive-Dantu), Basella Alba (Basale), 

Brassica Juncea (Indian Mustard), Citrus Limon (Lemon), 

Hibiscus Rosa-Sinensis, Mentha (Mint), Moringa Oleifera 

(Drumstick), Murraya Koenigii (Curry), Ocimum 

Tenuiflorum (Tulsi), Piper Betle (Betel), Santalum Album 

(Sandalwood), Syzygium Cumini (Jamun), and 

Tabernaemontana Divaricata (Crape Jasmine). Here, a total 

of 862 medicinal leaf samples obtained from [44] were 

considered as pre-processing is performed adaptive intensity 

equalization, histogram equalization, and Z-score 

normalization, which enabled more efficient segmentation 

and further feature extraction. It designed the proposed 
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model as a segmentation and ROI-specific feature learning 

concept, and therefore a novel Firefly algorithm-based FCM 

(FFCM) was designed to perform disease spot segmentation. 

To implement Firefly-based FCM, the Rosenbrock function 

was applied as an objective function, where the initial 

number of populations was 60, while the initial 𝛽 -value was 

assigned as 1. Now, once segmenting the ROI-specific 

regions, to regain the original textural distribution, 

segmented ROI was multiplied with R*G*B channels that 

eventually resulted from ROI-Specific textural input in 

R*G*B domain data. The RGB-specific textural input was 

processed for GLCM-based feature extraction, where 10 

different GL-occurrence features were obtained from each 

input image. Its extracted features are Contrast, Energy, 

Entropy, Homogeneity, Correlation, Mean, Standard 

deviation, Variance, Kurtosis, and Skewness. Once 

extracting these 10-different features, it performed horizontal 

concatenation to generate a composite STTF feature vector, 

𝑆𝑇𝑇𝐹_𝐺𝐿𝐶𝑀𝐹𝑒𝑎𝑡. This feature vector was further processed 

for classification using ANN-LM, an adaptive neuro-

computing model that classifies each input image as the 

normal or diseased medicinal image leaf. The proposed 

ANN-LM model found one input layer with 10 neurons, one 

hidden layer with 11 neurons (to retain low computational 

overheads and avoid local minima and convergence issues), 

and one output layer with binary output. The number of 

epochs was maintained at 500, where the learning rate was 

fixed at 0.01. Additionally, it was executed with a 

momentum value of 0.5 while the validation threshold was 

fixed at 10. The overall proposed model was developed using 

MATLAB 2019b development and simulation platform. The 

simulation was performed over a central processing unit 

armored with Microsoft Window operating system with i5 

Intel processing unit, 8 GB RAM operating at 3.6 GHz 

processor.   

  

 To assess performance by applying statistical 

performance analysis in terms of accuracy, precision, recall, 

and F-measure. Noticeably, to achieve it, confusion metrics 

were obtained in terms of true positive (TP), true negative 

(TN), false positive (FP), and false-negative (FN). A snippet 

of the mathematical formulation employed towards the 

performance parameter derivation is given in Table 2.  

Table 2. Performance Parameters 

Parameter Mathematical Expression 

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F-measure 
2.

𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

 The overall assessment of the proposed medicinal plant 

disease detection system was done in the form of two broad 

approaches: intra-model assessment and inter-model 

assessment. Here, an intra-model assessment was performed 

to examine the performance of the proposed medicinal plant 

disease detection model with three different machine 

learning approaches. In contrast, the inter-model assessment 

was performed to examine relative performance analysis 

with other existing state-of-the-art methods, such as [1-10]. 

The detailed discussion of the results obtained and allied 

inferences are given as follows: 

5.1. Intra-Model assessment  

 This research mainly focused on improving ROI-specific 

feature learning to avoid any likelihood of non-ROI features 

in the training feature vector. In other words, it is intended to 

train the model only with the ROI-specific STTF features 

and hence applied FFCM to segment the ROI regions or the 

diseased spot region, which was later processed with R*G*B 

color space generation. In this reference, a question arises 

whether using FFCM (i.e., ROI-specific STTF feature 

learning) gives better results than the complete (or the whole) 

image learning. To achieve a justifiable answer for it, the 

simulated proposed model with and without FFCM. 

However, applying three different ANN variants, including 

ANN-GD, ANN-SD, ANN-RBF, and ANN-LM, performs 

feature training and classification. Here, the key motive was 

to assess whether the proposed ROI-specific STTF features 

can yield superior performance or not. In addition,  it is 

wanted to identify the best performing neuro-computing 

model for at hand medicinal plant disease detection task. The 

simulation environment for intra-model assessment can be 

understood in Table 3. 

Table 3. Simulation Test Case 

Dataset Features 
Classification 

Model 

 

 

 

 

[44] 

Without FFCM (i.e., 

complete Image as 

input for STTF feature 

extraction) 

ANN-GD 

ANN-SD 

ANN-RBF 

ANN-LM 

FFCM driven ROI-

specific features (i.e., 

𝑆𝑇𝑇𝐹_𝐺𝐿𝐶𝑀𝐹𝑒𝑎𝑡. (28) 

ANN-GD 

ANN-SD 

ANN-RBF 

ANN-LM 

   

 To examine the performance efficacy of the proposed 

model, it is found to be executed the algorithms with the 

different input samples (say, test samples), and the average 

performance over six random input test cases was obtained. 
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The average statistical performance outputs are given in 

Table 4.  

 
Table 4. Intra-Model Performance characterization 

Features 
Classificati

on  

A
cc

u
ra

cy
 

(%
) 

P
re

ci
si

o
n

 

(%
) 

R
ec

a
ll

 

(%
) 

F
-

M
ea

su
re

 

Without FFCM 

(i.e., complete 

Image as input 

for STTF 

feature 

extraction) 

ANN-GD 
92.7

6 

92.2

8 

93.3

1 

93.3

1 

ANN-SD 
91.1

0 

92.8

6 

93.3

9 

93.3

9 

ANN-RBF 
92.1

7 

94.4

7 

95.2

5 

94.8

5 

ANN-LM 
94.7

1 

94.8

3 

96.6

8 

95.7

4 

FFCM driven 

ROI-specific 

features (i.e., 

𝑆𝑇𝑇𝐹_𝐺𝐿𝐶𝑀𝐹𝑒𝑎𝑡

. (28) 

ANN-GD 
94.6

5 

94.4

8 

95.5

1 

94.9

9 

ANN-SD 
93.1

2 

93.7

1 

94.4

9 

94.0

9 

ANN-RBF 
95.4

0 

96.6

6 

95.5

7 

96.1

1 

ANN-LM 
98.6

2 

98.8

1 

98.7

9 

98.8

0 

 

  Observing the simulation results, it can easily be found 

that in comparison to the original image-driven feature 

model, the proposed FFCM-driven ROI-specific STTF 

features have yielded higher accuracy (98.62%) and 

precision (98.81%), recall (98.79%) and F-Measure (0.988).  

Compared to the proposed ROI-specific STTF feature-based 

model, the existing approach (i.e., without ROI 

segmentation) could achieve the highest accuracy of 94.71%, 

precision, recall, and F-measure of 94.83%, 96.68%, and 

0.9574, respectively. A similar performance pattern can be 

found in the different neuro-computing models (i.e., ANN-

GD, ANN-SD, ANN-RBF, and ANN-LM). About the 

classifier-based performance analysis, these performance 

outcomes reveal that the proposed ANN-LM algorithm 

outperforms other neuro-computing variants. The graphical 

depiction of the relative performance between the proposed 

FFCM-driven ROI-segmentation-based plant disease 

detection model and without a segmentation-based model 

(i.e., the original input data [44] were processed for GLCM 

feature extraction). Noticeably, in sync with the relative 

neuro-computing model’s performance for further analysis, 

the results obtained from ANN-LM were considered. In other 

words, the performance outputs mentioned in Fig. 3 have 

been obtained with ANN-LM-based classification. Now, 

observing the results (Fig. 3), it can be found that the 

proposed FFCM-driven ROI-specific STTF features yield 

almost 4% higher accuracy, precision, recall, and F-Measure. 

It confirms the superiority of the proposed FFCM-driven 

ROI-specific feature learning model for medicinal plant 

disease detection systems. 

  

 The result (Fig. 3) confirms that the proposed FFCM-

driven ROI-specific texture feature with the ANN-LM 

learning model can achieve superior performance in 

medicinal plant disease detection and classification. 

Moreover, it confirms that using FFCM segmentation-driven 

ROI-specific features can yield superior performance in 

medicinal plant disease detection and classification.  

 

 
Fig. 3 Relative performance assessment (Intra-model characterization) 

 Thus, the research questionnaire defined as RQ1, RQ2, 

and RQ4 is found in affirmation. Considering it as the final 

results, it investigated to be performed inter-model 

performance assessment.  

5.2. Inter-Model Assessment  
 In this section, the performance comparison of the 

proposed model is done with the other state-of-art methods. 

Considering that few efforts were made toward medicinal 

plant disease detection systems, a depth literature analysis 

was done. Exploring in-depth, it is identified three recent 

efforts where authors have considered medicinal plant leaves 

dataset to perform either plant classification or plant disease 

detection. Naeem et al. [1] focused on exploiting textural 

features to perform medicinal plant classification. The 

authors first performed seed intensity-based edge/line 

detection utilizing the Sobel filter. Subsequently, the authors 

extracted textural features, including textural features (they 

applied entropy, inertia, and inverse difference and 

correlation features), run-length matrix, and multi-spectral 

features to perform medicinal image classification. 

Noticeably, the authors merely applied their proposed 

texture-driven learning model (they applied multi-layer 

perceptron (MLP)) for plant leaf (say, medicinal plant type) 
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classification that classifies input images into multiple types 

of medicinal plant (species). Authors [1] claimed that the 

highest accuracy obtained with MLP was 99.01%; however, 

plant-specific classification accuracy was near 98.40%. 

Though, the average accuracy of their proposed model was 

95.87%. The depth performance analysis for [1] revealed that 

their proposed feature model (i.e., fused feature set 

encompassing textural features (they applied entropy, inertia, 

and inverse difference and correlation features), run-length 

matrix, and multi-spectral features) could achieve the highest 

accuracy of 95.87%, 95.04%, 94.21%, 93.38%, and 92.56% 

using MLP, LogitBoost (LB), Bagging ensemble, Random 

Forest algorithm and Simple logistic algorithms, 

correspondingly. Their research revealed that the neuro-

computing model MLP performs superior over the other 

machine learning methods. However, comparing the 

performance of the proposed model, it can be found that the 

proposed FFCM-driven STTF textural features (including 

Contrast, Energy, Entropy, Homogeneity, Correlation, Mean, 

Standard deviation, Variance, Kurtosis, and Skewness) 

perform superior accuracy (98.62%), precision (98.81%), 

recall (98.79%) and F-Measure (0.988) than the existing 

MLP based method [35], which could achieve the highest 

average accuracy of 95.87, precision of 96.1%, recall of 

95.9% and F-measure of 0.958. This result confirms the 

robustness of the proposed model over the existing approach.  

Though, authors [1] found that, unlike standalone classifier-

based learning models, its ensemble (combining the different 

base classifiers) can yield superior performance. Despite 

their innovation with ensemble learning, they could achieve 

the highest accuracy of 99%, almost the same as found in the 

proposed model. Noticeably, this proposed ANN-LM-based 

model's computational cost is significantly lower than their 

proposed [1] ensemble learning environment. To further 

examine the relative performance of the plant disease 

detection and classification systems and calculate compared 

efficacy of the existing methods like [2-10].  

Table 5. Inter-Model performance assessment 

Reference Features Classifiers Accuracy (%) 

[1] 

Texture 

Features + 

multi-spectral 

features  

MLP 99.01 

[2] 
Shape and 

Color Features 
SVM 96.66 

[3] 
Texture 

Features 
CNN 97.80 

[4] 
Morphological 

Features  

CNN, 

LeNet 
98.32 

[5] 
Texture 

Features 
PCA, LDA 92.90 

[6] Fused Features RF 98.40 

[7] 
Texture 

Features 
LBP 93.50 

[8] Multi-Features MLP 98.14 

[9] HOG and LBP SVM 
98.14 (LBP) 

99.00 (HOG) 

[10] 
Color + Shape 

+ Texture 

SVM, 

AlexNet 

feature 

with 

random 

forest,  

VGG16 

Inception 

 

75.00 (SVM), 

90.67 

(AlexNet+RF), 

98.50 (VGG 

with transfer 

learning) 

95.2 

(Inception 

with SVM)  

Proposed 

Model  

Texture 

Feature  
ANN-LM 98.62% 

 

  Observing the results in Table III, where the different 

approaches employing different feature models and allied 

learning algorithms or machine learning algorithms have 

been applied, it can be found that the proposed FFCM-driven 

ROI-specific STTF feature yields superior performance to 

the existing methods. For instance, authors in [3] applied a 

textural feature learned over the CNN Softmax classifier, 

resulting in an accuracy of 97.80%. Compared to this 

method, the proposed model yields 98.62%, which is higher 

than the existing method [3]. Similarly, authors in [5][7] too 

applied textural features as input to train over PCA and LDA 

driven systems and LBP (local binary patterns), respectively. 

Authors could get the highest accuracy of 92.90% [5] and 

93.50% [7], which is significantly lower than this proposed 

FFCM-driven ROI-specific STTF feature learning model for 

medicinal plant disease detection and classification system. 

A few approaches employing shape [2] and morphological 

cues [4] could achieve the highest accuracy of 98.32% and 

96.66%, which still falls below this proposed model. These 

results confirm that using FFCM-driven segmentation and 

ROI-specific feature learning model strengthened the 

proposed model to yield superior over the existing 

approaches. Though, the work in [1] applied textural as well 

as multi-spectral features (authors used a total of 60 different 

features) which were later trained over a heterogeneous 

ensemble learning model encompassing five different base 

classifiers named MLP, LogitBoost (LB), Bagging ensemble, 

Random Forest algorithm and Simple logistic algorithms for 

plant type classification. Undeniably, this approach (i.e., 4]) 

can be highly computational complex and exhaustive and 

makes no sense to be applied for real-time applications. In 

this reference, the proposed model that merely applies a 

certain basis pre-processing concept followed by FFCM-

driven ROI-segmentation and ROI-specific GLCM feature 

extraction (which are learned over ANN-LM) yields superior 

performance to meet real-time purposes. Bose et al. [9] 

focused on applying different feature extraction and selection 

methods like Histogram Oriented Gradient (HOG) and Local 

Binary Pattern (LBP) to perform medicinal plant disease 
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detection and classification. In this work, the authors applied 

a support vector machine (SVM) as a classifier to perform a 

two-class classification. The highest accuracy claimed by the 

authors was 99%. Noticeably, the authors applied the 

morphological segmentation concept with a static threshold, 

which can’t be generalized to be effective over non-linear 

input images with unclear edges and varying light intensity, 

which is common in a real-time application environment. An 

interesting inference with the work in [9] is that the accuracy 

with the LBP feature was 98.14%, while HOG features 

yielded 99% accuracy. Unlike this model, the reliability of 

the proposed model can be more generalizable. Authors in 

[10] developed a HEMP leaf disease detection and 

classification system, where color histogram information, 

shape, and texture features were obtained for learning. 

Authors [10] applied SVM to perform multi-class 

classification for different plant disease detection and 

prediction. However, the SVM classifier could achieve the 

highest accuracy of 75%, while the modified AlexNet with 

Random Forest algorithm could achieve the average 

accuracy of 90.67%. 

On the contrary, VGG16 with transfer learning could achieve 

the average classification accuracy of 98.50%, while 

Inception with SVM classifier could achieve the average 

accuracy of 95.2%. Thus, observing all these results, it can 

be confirmed that the proposed FFCM-driven STTF textural 

features with ANN-LM show superior efficacy over the other 

existing methods. The overall research conclusion and allied 

inferences are given in the subsequent section.  

6. Conclusion 
  In this paper, a highly robust Evolutionary Computing 

Driven ROI-Specific Spatio-Temporal Statistical Feature 

Learning Model for Medicinal Plant Disease Detection and 

Classification. As the name indicates, this research 

emphasized improving the feature model to enable more 

efficient learning and hence classification for medicinal plant 

disease detection and classification. In sync with the unclear 

leave’s boundaries, unclear disease spot morphological, and 

varying textural distribution across input image, this research 

at first performed pre-processing using adaptive histogram 

equalization, intensity equalization, and Z-normalization. 

This feature-sensitive pre-processing enabled uniform 

textural or Spatio-temporal features across the image to 

further segment and feature extraction. Unlike classical 

approaches where the whole image is processed for feature 

extraction, this research applied a heuristic-driven clustering-

based ROI segmentation concept. It employed the Firefly 

Algorithm-based Fuzzy C-Means clustering method, 

enabling automated and accurate ROI segmentation across 

the image. Once segmenting the ROI-specific regions, unlike 

classical shape and morphology-driven methods, the ROI 

regions were converted into R*G*B space color images that 

guaranteed that only ROI-specific color images were 

retained. At the same time, the background components were 

dropped from further computation or feature extraction (and 

learning). This approach helped reduce computational costs 

and retained significant features to perform more efficient 

learning. In this work, 10 STTF textural features, especially 

the GLCM features encompassing Contrast, Energy, 

Entropy, Homogeneity, Correlation, Mean, Standard 

deviation, Variance, Kurtosis, and Skewness, were extracted 

to perform further feature learning and classification. Unlike 

standalone feature learning methods, this research work 

amalgamated all STTF features by applying horizontal 

concatenation. The fused feature vector was applied for 

further classification using different ANN learning models. 

The depth assessment revealed that using the proposed 

FFCM-driven ROI-specific STTF feature with the ANN-LM 

algorithm exhibits superior performance to other state-of-art 

methods. The proposed FFCM-driven ROI-specific STTF 

feature with the ANN-LM model exhibited an average 

accuracy of 98.62%, a precision of 98.81%, recall of 98.79%, 

and F-Measure of 0.988, which was superior to other existing 

methods like texture driven SVM based approaches (75%), 

shape and color feature-driven SVM based methods (96.6%), 

AlexNet (90.67%), VGG (98.50%), PCA/LDA (92.90%), 

LBP methods (93.50%), etc. The depth assessment also 

revealed that the proposed FFCM-driven ROI-specific STTF 

feature with the ANN-LM model achieves superior 

performance over the classical textural feature-driven 

methods, even applying common pre-processing and ANN-

LM as a classifier. It confirms that using FFCM-driven ROI-

specific STTF features can yield superior performance in 

medicinal plant disease detection and classification. The 

future focus can be on applying cost-efficient and lightweight 

ROI segmentation concepts with hybrid deep-STTF feature 

learning. As a result, this can improve intrinsic feature 

information and reduce the computational cost. This 

approach can reduce the computational cost of FFCM 

heuristic-driven ROI segmentation.  
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