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Abstract - Approximate communication methods can be applied in different domains, including pattern recognition and data 

mining, to enhance transmission efficiency in power and delay while guaranteeing tolerable output quality. This paper 

proposes a new Approximate Base delta (AB∆Zip) packet compression framework. This approach initially truncates the 

integer or floating-point data based on the error threshold for the reduction of power consumption and network latency. This 

model uses an approximate level configuration framework to compute the optimal error threshold based on error tolerance. 

After forming the approximate pattern, a B∆ compression method is used to compress the approximate pattern. Here, the B∆ 

compression method is modified by identifying the data patterns within a flit and is used to minimize the size of the subtractor 

components. Also, the proposed method uses frequent pattern compression (FPC) scheme to replace the frequent pattern with 

the codeword for uncompressible chunks of the delta compression method. It avoids the transmission of a small valued 

floating-point and integer with a larger number of Most significant bits (MSBs). The simulation results illustrate that the 

proposed AB∆Zip increases the compression ratio to 3.7% at a 10% error threshold and minimizes the network latency, area, 

and power consumption to 42.1%, 4.8%, and 11.76%, respectively to the most recent existing approximate communication 

method.  
 

Keywords - Approximate communication, network on chip (NoC), Base-delta (B∆) compression, error tolerance, and latency. 

1. Introduction 
Multicore systems integrate thousands of cores on a 

single chip for accomplishing evolving solicitations via 

lower power and parallel computations. Network-on-Chip 

(NoC) has been identified as a feasible candidate for 

efficiently managing the complex interconnection and energy 

in a multiple-core system [1-3]. The NoC structure is usually 

defined using two units: a group of ‘tiles’ and a network 

interface. The hardware component that transmits data over 

the NoC is named the ‘tiles.’ The power consumption of the 

NoC is increased gradually while increasing the number of 

cores on the integrated chip. [4, 5]. Nowadays, approximate 

computing applications (e.g., pattern recognition, image 

processing, and scientific computing) tolerate moderate 

errors by providing tolerable outputs [6-8]. But, the 

traditional NoC structures transfer all information with 

absolute accuracy, and this transmission is not required for 

approximated applications. Transmitting packets with high 

accuracy requires more power and intensifies the network 

latency.  

 

This research work focuses on approximation 

communication to reduce communication overhead. The 

approximation communication framework is used to lower 

power and increase the throughput of NoC. If the endpoint 

node is not requiring an exact packet for calculation, the 

approximation communication framework gives a chance to 

decrease the data movement via NoC. This framework uses 

the approximated computations' error tolerance to enhance 

communication efficiency in multicore systems [9]. 

However, there is a requirement for a quality control method 

that provides approximation data for controlling the accuracy 

of transmitted data [10, 11]. The approximation data includes 

an approximation pointer and approximate level. The error-

resilient data of the communication traffic can be identified 

by the approximation pointer, whereas the error margin to 

approximate the data can be specified by the approximate 

level [12].   

 

The compression methods in approximate 

communication are usually categorized as memory and 

compression at interconnects. The methods utilized in 

approximate memory compression compress the data at 

various levels of the memory hierarchy (e.g., processor 

queues, on-chip cache) [13-15]. These methods reduced the 

memory traffic alone, and other data transmissions, such as 

data transmission between accelerators, sensors, and other 

peripheral units, are not approximated. Furthermore, the 
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memory compression approaches need considerable 

modification in standing IPs, including processing elements 

and caches, and thereby, they are not suitable for hard IP 

cores. The compression methods are used at the 

interconnects to minimize the data traffic in NoCs through 

the compression of analogous values in the data input or 

leaving all the congested data [16].  

 

The packet compression method exploits data 

redundancy in the NoC packets to shrink the size of the 

packets and minimize the network power [17]. Hence, the 

approximated communication model uses the error tolerance 

of the application for compressing the packet. These 

approximate packet compression methods can reduce the 

power and delay performance of NoC. The NoC data can be 

compressed using either the Cache compression method or 

the network interface (NI). The Cache compression method 

inserts a compressor circuit between the core and NI. NI 

compression method adds a compressor circuit to the 

network interface [18-19]. The cache compression methods 

expand the space utility, whereas the packet compressors in 

NI decrease bandwidth usage, network blocking, and power 

consumption. The packet compression placed at the NI 

mostly uses a delta compression because of its easiness, less 

hardware complexity, low power consumption, and network 

latency [20-21]. The delta compression approach did not 

compress a packet with a smaller base. Also, they required 

bulkier de/compressor components to consume more power 

and area. This work modified the base-delta compression 

scheme and combined it with error tolerance-based 

compression to reduce the consumed power and delay of 

NoCs. The main contributions of this research work are 

listed as given below: 

 

 To introduce an effective data compression approach for 

on-chip communication networks using approximate 

communication to enhance the delta compression 

method. 

 To modify the base-delta compression scheme by 

identifying the data patterns within a flit and combining 

it with a truncation method to improve the compression 

ratio. 

 To introduce a truncation method for identifying the 

optimal error threshold based on error tolerance. This 

truncation method is used to reduce power consumption 

and delay.  

 To reduce the number of bits required for representing 

the difference between the base and approximated data 

using an intra-flit data pattern and a fixed base of size 4-

bit. It improves the effect of data error tolerance on 

minimizing the delta size. 

 

The rest of the paper is structured as follows: Section 2 

summarizes the recent research on approximate and absolute 

data compression techniques for on-chip communication 

networks. Section 3 gives a detailed explanation of the 

proposed data compression method. Section 4 provides the 

simulation results and comparative analysis. Finally, the 

paper is concluded in Section 5. 

 

2. Related Work 
Some of the recent related works on the approximate 

communication model on NoC are summarized as follows: 
 

Stevens et al. [22] explored an approximate compression 

for the communication traffic to improve the transmission 

bandwidth and reduce the interconnects' energy 

consumption. Especially an approximate bus architecture 

(AxBA) has been proposed for compressing/decompressing 

the respective communications on the bus without 

demanding modification for pre-planned masters and 

enslaved people. Here, the buses integrate devices such as 

processors, accelerators, peripherals, and on-chip memory. 

The communications on the bus are initiated by the bus 

masters, whereas enslaved people respond to transmission on 

the bus. AxBA utilized a lightweight compression approach 

(i.e., base-delta compression scheme) based on approximate 

deduplication. Base-delta compression scheme is a lossless 

method, and it represents the lower dynamic range of values 

in the data segment with a general base and sequences of 

deltas. Delta denotes the deviation of the data inside the 

block from the base. Deduplication is utilized for the 

elimination of duplicate copies in replicating data. Also, a 

software interface has been introduced in AxBA for 

identifying the position of the system address space, which is 

suitable for approximations. Furthermore, an online quality 

monitoring model has been proposed for detecting the error 

constraints automatically. 

 

Chen et al. [23] proposed a quality control framework 

(QCF) for minimizing the time required to compute the 

approximation level in the approximate communication. This 

model also employed a configuration algorithm for adjusting 

the quality of each segment of data according to the deviation 

between the quality of output and application necessities. 

This model transferred each request packet with the 

modernized approximation level while implementing it in a 

network. In this paper, the size of the data is reduced through 

the truncation of the least significant bits (LSBs) of floating-

point input based on approximated levels. This model 

reduced the number of flits in every packet and minimized 

congestion in NoCs without degrading the quality. When the 

packets need exact communication, the packets will be 

transmitted to the packet encoder directly. This compression 

unit differentiated the accurate packets from the 

approximable packets by referring to the data saved in the 

quality control table. This table contains the address field, 

data type, approximation level, and validity. The presence of 

approximate communication has been indicated by the 

validity bit.  
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Chen et al. [24] proposed an approximate transmission 

approach named DEC-NoC for reducing the power 

requirement of NoC. This approach controlled the error 

tolerance of the requests and reduced the quantity of error 

testing and adjustment in packet transmission. As a result, it 

reduced the number of retransmitted packets considerably. In 

this scheme, the amount of protected bits has been reduced 

by converting the integer into a floating-point format. This 

DEC-NoC architecture contained an approximate coding 

logic (ACL), demultiplexers, data type converter, encoder/ 

decoder, and buffers. Initially, ACL computed the 

approximation code using protection code and conversion 

code. Then, the encoder generates the check bits based on the 

packet's approximation code and data bits. On the decoder 

side, errors have been checked to utilize approximation code. 

Then, CIF (Converted Integer to Float) has been selected 

using demultiplexer for sending the data into the data type 

converter.  
 

Xiao et al. [25] proposed a lossy compression method 

using the frequent pattern compression (FPC) that replaced 

the frequent data patterns with codewords. This method 

transferred the input data pattern into an approximate pattern 

using certain don’t care bits before executing FPC. Also, an 

optimization problem has been constructed based on the 

quality requirement of the application. Then, a congestion-

aware quality control approach was introduced, which 

dropped the network data insistently based on flow 

prediction and a lightweight heuristic for improving the 

system performance.  

  

Chen et al. [26] proposed an approximated 

communication framework (ACF) to reduce power and 

delay. It used a quality control approach that identified the 

error-resistant variables and calculated the error thresholds 

according to the application’s quality need by analyzing the 

source code. This framework also included a lightweight 

lossy compression method that considerably reduced packet 

size while transmitting the error-resilient variables. This 

compression logic differentiates the exact packets from the 

approximable packets based on the information saved in the 

quality control table. Here, the data approximation module 

transmitted a read packet that included the address of the 

quality control table for obtaining the information regarding 

approximation. When the quality control table replied with 

approximation details, then the type of data would be 

checked. Then, the compression logic used different 

truncation methods for the integer and floating points, 

respectively. Thus, the data packet contained fewer flits and 

guaranteed the quality necessities of applications. 

 

 

 

The above analysis shows that a quality control method 

used in AxBA needs the programmer to label the values to be 

approximated and their error tolerances. Also, the base-delta 

compression scheme used by AxBA needs several bits for 

representing the deviation among the base and the data to be 

approximated. If the delta value is high, then the effect of 

improving data error tolerance to reduce the size of the delta 

is reduced. Thus, AxBA is not suitable for the more error 

tolerable data. Also, the QCF model did not hold an efficient 

compression scheme when approximating integer numbers, 

yielding a low data compression rate. Also, ACF considered 

FPC to compress the integer numbers after approximation. 

However, the FPC uses an encoding table that contains only 

eight frequently occurring patterns. Hence its performance is 

limited to infrequent patterns and produces more 

uncompressible flits.  

 

In addition, the existing base-delta compression methods 

consider the base size in bytes. Hence, they didn’t compress 

a packet whose base value is small. Furthermore, the 

complexity of the de/compressor units is high. A new 

approximate communication model is introduced using 

AB∆Zip to tackle these issues. This method uses an efficient 

Quality control model to choose the level of approximation 

based on the software interface. Also,  the B∆ compression 

scheme is modified using an intra-flit data pattern and a fixed 

base of 4-bit size to reduce the deviation between the base 

and approximated data. Also, the FPC scheme is combined 

with the B∆ compression scheme, and the metadata of the 

compressor is stored in the unused regions of the header flit 

to improve the compression ratio.  

 

3. Proposed Approximate Communication 

Model For Noc 
A new Approximate Base delta (AB∆Zip) packet 

compression framework is proposed in this work. The 

proposed AB∆Zip compression technique is employed at the 

Network Interface (NI) unit of a 4X4 mesh topology, as 

illustrated in Figure 1. Here, the tiles represent the cores with 

the L1 shared cache. A Network Interface (NI) is used to 

connect every tile and arrange them as mesh topology. In this 

NoC structure, the memory unit or cache accepts a read 

request packet if a cache miss occurs while loading a 

memory. The memory/cache uses this read reply packet for 

sending the necessary data to the core. If a cache miss is 

generated during the memory store process, the data is 

merged with the write request packet and transmitted towards 

the memory/cache via NoC. After receiving the data, the 

memory/cache sends a written reply to the core to confirm 

the successful memory write. 
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Fig. 1 Proposed NoC Architecture for approximate communication 

 

In Figure1, the NI is reconfigured by adding the AB∆Zip 

compression logic, the AB∆Zip decompression logic, 

approximate level configuration framework, output quality 

screening unit, and a quality control table. Here, the AB∆Zip 

de/compression logic is used by the memory/shared cache 

and core/L1 cache to reduce the data size according to the 

approximation data saved in the quality control table. This 

AB∆Zip framework truncated and compressed data 

according to the approximate level, error tolerances, and data 

type. Here, a quality control model modulates each packet's 

approximate level based on the output data’s error rates and 

application needs. The quality control table is formulated 

using the approximate level configuration framework and the 

software interface. 

 

Here, the error-resilient variables are automatically 

identified by the software interface that uses the code 

analyzer to configure the quality control model. These error-

resilient variables determine the tolerance and quality of data 

in the system's address space. The quality control table 

includes approximate data in four columns: addresses, data 

types, approximate level, and validity. The size of the data 

type column is 1 bit, and this bit is used to indicate the 

integer (1) or floating point (0) data. The validity bit is used 

to signify the enabling condition of the approximate 

communication. If accurate communication is needed, the 

validity bit is fixed to 0, which is changed to 1 for 

approximate communication. 

 

After forming the approximate pattern, a base delta 

compression method is used to compress the approximate 

pattern. Here, the B∆ compression approach is modified by 

dividing the content of each flit into 4-bit chunks to reduce 

the variations among the chunks. This B∆ compression 

approach determines the minimum and maximum values of 

chunks to determine the base. Then, the compressible packets 

are transmitted by finding their difference from the base. 

AB∆Zip uses the unused regions of the head flit to store the 

compressed packet's metadata. The data decompression logic 

recovers the original packet after loading the truncated bits 

with zeros. The packets are generated and injected into the 

network using the packet encoder. 

 

Similarly, the packets are ejected from the network using 

a packet decoder to extract the packets' data. In addition, an 

output quality screening framework is used to extract the 

quality data that every application has produced. 

Subsequently, it embeds the extracted quality data into its 

write request traffic.  
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3.1. Quality control model 

The quality management framework uses an 

approximate level configuration framework for the 

computation and adjusting of the approximate level of the 

input data. The concept of the proposed quality control 

model is illustrated in Figure 2. This model uses an 

approximate level configuration framework to adjust the 

input data's approximate level in the feedback path. Here, the 

function to be approximated is to read and process the input 

data while running the approximate computing application 

and generating the output of that function. The output quality 

screening framework captures the computed error rate for 

sending it to the approximate level configuration framework. 

This approximate level configuration framework utilizes an 

error prediction approach for adjusting the quality of the 

input data. The error prediction approach uses a simple 

moving average process for predicting the output data’s error 

rate with the help of the seized data quality.  

 

 

 
Fig. 2 Quality control model 

The error rate’s moving average can be calculated using 

the following expression: 

      𝑀𝐴 = 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑀𝐴 +
𝑅𝑒(𝑥)

𝜔
−

𝑅𝑒(𝑥−𝜔)

𝜔
                      (1) 

where 𝑅𝑒(𝑥) denotes the present output’s error rate, 𝜔 

represents the size of the window and 𝑀𝐴denotes the 

predicted output error rate. The number of output errors 

required to predict the error is described as the window size. 

If 𝑥 < 𝜔, all the request packets will use the initial 

approximate level. This method determines the mean error 

rate using the moving window-based sampling approach. At 

the same time, the error rate of each output is estimated using 

the application itself. The approximate level configuration 

framework relates the value of 𝑀𝐴With the quality need of an 

application, after predicting the error and correcting the 

approximate level appropriately. The quality needs to hold 

both input and output error thresholds. The maximum 

tolerable error rate in the input data is defined as the input 

error threshold. The necessity of the application based on the 

output quality is described as the output error threshold. 

Initially, the approximate level configuration framework 

matches the predicted error with the threshold of the output 

error. If the value of 𝑀𝐴is high compared to the output error 

threshold, then the input error is very high. Hence, the 

approximate level configuration framework decreases the 

input value’s approximate level. The input error is very low 

when the output error threshold is high compared to the 

predicted error rate. Hence, the quality control model 

increases the approximate level of the packet without 

increasing the input error threshold.  

 
 

3.2. Compression method: AB∆Zip compressor 

The data approximation logic presented in the memory 

differentiates the accurate packets from the packets to be 

approximated based on the approximation data saved in the 

quality control table (QCT). The data approximating block 

transmits a read packet with the address to the QCT for 

getting the approximate data. When the reply message 

comprises approximate data, the data approximation unit 

identifies the input's data type (integer or floating-point). 

According to the error tolerance, the proposed AB∆Zip 

initially truncates the integer or floating-point input. The 

error threshold is defined as the maximum tolerable error for 

a packet. The error tolerance can be determined as: 

 

    𝑅𝑒 =
|𝑝−𝑝|

𝑝
≤ 𝑇𝑒                                                             (2) 

Where 𝑝 denotes the approximate value of 𝑝. 𝑅𝑒and 𝑇𝑒 

Represent the relative error and error tolerance, respectively. 

The proposed AB∆Zip compares the error tolerance and 

thresholds to truncate the Least significant Bits (LSBs) while 

receiving the floating-point inputs. The error thresholds for 

the floating-point inputs are detected utilizing the IEEE 754 

standard [27].  

 

If the input is defined in the format of IEEE 754 

standard, the AB∆Zip omits the first bit of the mantissa. The 

extreme relative error for the floating-point input can be 

computed while protecting 𝑞 bits (of the 23-bit mantissa) as 

∑ 2−𝑞23
𝑖=𝑞+1 . The summation of the geometric sequence 

∑ 𝑓𝛾𝑖−1 = 𝑓(1 − 𝛾𝑘) 1 − 𝛾⁄𝑘
𝑖=1  shows that the maximum 

relative error is lesser than 2−𝑞 . Here, 𝑓and 𝑘denote the 

initial term and the number of terms, respectively. Also, the 



Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022 

 

200 

general ratio in the sequence is denoted as 𝛾. Hence, the data 

error tolerance for the floating-point data can be deduced 

using the following expression: 

 

                              𝑇𝑒 = 2−𝑘(1 ≤ 𝑘 ≤ 23)                       (3) 

Where the value of 𝑇𝑒 is in the range of 0 and 1. Also, 𝑘 

is the approximate level determined by the quality control 

model. This 𝑘 is utilized for truncating the number of MSBs 

from the mantissa part of the floating-point data. Hence, the 

relative error is smaller than 2−𝑘 When 23 − 𝑘 bits are 

truncated, table 1 provides the correlation of the error 

tolerance and approximate level with the number of LSBs to 

be truncated.  

 
Table 1. Connection of Error tolerance and Approximate level of the 

number of LSBs to be truncated 

Approximate 

level (𝑘) 

Error tolerance for 

float input (𝑇𝑒) 

Quantity of 

LSBs to be 

truncated 

0 0 0 

19 1.90735 × 10−6 4 

16 1.52588 × 10−5 7 

13 0.00012207 10 

12 0.000244141 11 

11 0.000488281 12 

10 0.000976563 13 

9 0.001953125 14 

8 0.00390625 15 

7 0.0078125 16 

6 0.015625 17 

5 0.03125 18 

4 0.0625 19 

3 0.125 20 

2 0.25 21 

 

 

 

The proposed AB∆Zip uses the depiction of a signed 

integer to compute the error tolerance for integer data. The 

MSB of the signed integer denotes the sign, and the rest of 

the 31 bits denote the value. The maximum error produced 

after truncating 𝑘 bits (of the 31 LSBs) is detected as 

∑ 𝑆𝑖2
𝑖𝑘

𝑖=0 (𝑆𝑖 = 0 𝑜𝑟 1). Hence, the error tolerance for an 

integer input can be computed using the following formula.  

                                                                                                         

 𝑇𝑒 =
∑ 𝑆𝑖2𝑖𝑘

𝑖=0

∑ 𝑆𝑖2𝑖31
𝑖=0

                                                                     (4) 

This truncation approach sends several MSBs for an 

integer with a smaller absolute value than the integer with a 

larger absolute value for maintaining the same error 

threshold as input. This issue can be tackled by the use of the 

B∆ compression approach. The detailed description of the 

proposed AB∆Zip compressor is illustrated in Figure 3. 

 

After determining the approximate pattern, every 

truncated data is segmented into 4-bit chunks (𝒞1, 𝒞2, … , 𝒞𝑖   ). 
Here, the chunks are bounded by the largest and smallest 

value. Hence, the smallest 𝒞𝑠and largest 𝒞𝑙 Chunks are 

averaged to determine the base 𝛽. Here, a priority encoder is 

used to determine the collection of data within a flit by 

considering the 𝒞𝑠and 𝒞𝑙  as input, this 2-bit encoding is 

utilized to indicate whether truncated data is compressible or 

incompressible. When 𝒞𝑠 is equal to 𝒞𝑙The data can be 

compressed completely (100%) by producing the encoding 

bit as 𝜖 = 00. The base value should be subtracted from the 

chunks to compute the differences (∆𝑖) of all other 

conditions. If ∆𝑖 is signified using a maximum of 2 bits, then 

the respective truncated flit is identified as compressible flit; 

if not, the truncated data is incompressible. Hence, when 𝜖 =
00, the truncated data is compressible, and when = 11, the 

truncated data is incompressible. At last, the B∆ compression 

approach produces Base 𝛽, Encoding bits 𝜖, and a set of ∆𝑖  ’s 

for the compressible flit and the truncated data for the 

uncompressible flit.  
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Fig. 3 Flow diagram of AB∆Zip compressor 

If the flit is uncompressible, the frequent data pattern 

compression (FPC) approach is adopted for compressing the 

truncated data. The FPC approach eliminates 0’s and 1’s 

from the MSBs and LSBs from integer and floating values 

without degrading the accuracy. The code used for replacing 

the frequent pattern in the uncompressible flit is provided in 

Table 2. The notation X denotes any “Zero” or” one.” Also, 

0xFF denotes all 1-bits, and 0x00 denotes all 0-bits. The FPC 

compression matches the patterns with each data segment. 

When it identifies the matched pattern, the pattern is replaced 

with the respective code. This compression process does not 

change the 0 or 1 signified in terms of X. 
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Table 2. Code for frequent pattern  

Code Frequent pattern 

000 0x00 0x00 0x00 0x00 

001 0x00 0x00 0x00 00000XXX 

0xFF 0xFF 0xFF 11111XXX 

010 0x00 0x00 0x00 0XXXXXXX 

0xFF 0xFF 0xFF 1XXXXXXX 

011 0x00 0x00 0XXXXXXX XXXXXXXX 

100 XXXXXXXX XXXXXXXX 0x00 0x00 

101 0x00 0XXXXXXX 0x00 0XXXXXXX 

0xFF 1XXXXXXX 0xFF 1XXXXXXX 

 

The header flit for 128-bits link bandwidth contains the 

packet number (2-bits), source tile (6-bits), which creates the 

cache miss, destination tile (6-bits), Flit type (2-bits): 

head/body/tail, VC number where the input flit is saved (2-

bits), Message Type (3-bit): REQ/REP/coherence packets 

and missed memory address (32-bits). In this header flit, 

seventy-five Least Significant Bits are unused. Hence, the 

proposed B∆-NIS compressor uses these unused locations for 

storing the metadata. Thereby it increased the compression 

ratio. 

 

3.3. AB∆Zip decompressor 

The destination node initially receives the head flit and 

extracts the metadata from the header. If the encoding bits 

𝜖 = 00, then the proposed AB∆Zip decompressor unit copies 

the base by the number of chunks to regenerate the flits. 

Alternatively, the AB∆Zip decompressor unit obtains ∆𝑖The 

compressed flit is given as input to the subtractor unit along 

with the base value to retrieve the truncated data. Finally, NI 

adds zeros to the truncated portion for converting the data 

back into an integer. The error of the resultant integer 

number is within the respective error threshold. The flow 

diagram of the AB∆Zip decompressor is shown in Figure 4.  

 

Extract the meta data 

from Header flit

Base 

Is 
?

Difference computation using 

i-subtraction unit

1 ...2

Compressed body Flit

N

Y
Replace the code 

with respective 

...

Truncated Flit

Add zeros to the truncated 

parts

Original Packet with 

tolerable error  
Fig. 4 Flow diagram of AB∆Zip decompressor 

 

3.4. Sample Illustration for AB∆Zip De/Compressor 

Figure 5 illustrates the process of AB∆Zip by 

considering four random flits (𝑓1, 𝑓2, 𝑓3, 𝑓4). This example 

contains 2 integers ( ℐ1 and ℐ2) and 2 floating-point data 

(ℱ1)and (ℱ2). If the Approximate level of ℱ1and ℱ2are 

identified as 9 and 7, respectively, then the source node 

truncates 14 LSBs of ℱ1 and 16 LSBs of ℱ2. Similarly, the 

source node truncates 10 LSBs of ℐ1and 1 LSB of ℐ2. After 

detecting the approximate pattern, the truncated data is split 

into 4-bit chunks. Here, the truncated ℱ1 contains five 

chunks 𝒞1 = 1, 𝒞2 = 0, 𝒞3 = 8, 𝒞4 = 13 and 𝒞5 = 8. From 

this example, it is observed that 𝒞𝑠 = 0 and 𝒞𝑙 = 13. Hence, 

𝛽1 = 7and 
1 needs 3-bits. Hence, the truncated ℱ1 is it not 

compressible based on the B∆ compressor. Hence, the 

proposed AB∆Zip compressor searched for frequent patterns 

in Table 2. The truncated ℱ1 does not match with any 

pattern. Thereby, it can’t be compressed. However, the 

truncated ℱ2 contains 𝒞1 = 4, 𝒞2 = 2, 𝒞3 = 3, and 𝒞4 = 1. 

For this flit, it is observed that 𝒞𝑠 = 1 and 𝒞𝑙 = 4. Hence, 

𝛽2 = 3and 
1 needs 2-bits. Hence, the truncated ℱ2 is 

compressible based on the B∆ compressor. Hence, the 

differences (𝛥𝑖) are computed through the subtraction of 

every chunk from the base. Then coding bit and the base 

value are stored in header flits. Similarly, the truncated ℐ1is 

compressible by a B∆ compressor. But the truncated ℐ2is not 

compressible, so it searched for the frequent pattern in Table 

2.  ℐ2matches with pattern 010, the proposed AB∆Zip uses 

the respective code for replacing the zeros in the MSBs. 
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Header Flit F3= 5016789f1= 45.56 f2= 44.31 F4= 19Input packet

F3= 0x004C8CD50x42363D71 0x42313D71 0x00000013Hexadecimal representation

0000000001001100100011001101010101000010001101100011110101110001 01000010001100010011110101110001Binary value

K=9 K=7 K=10 K=1

0000000001001100100011010000100011011000 0100001000110001 000000000000000000000000001001Truncated data

Truncate 14 LSB Truncate 16 LSB Truncate 10 LSB Truncate 1 LSB

00000000000000000000000000010011

00 0000 0001 0011 0010 00110001 0000 1000 1101 1000 0100 0010 0011 0001 00 0000 0000 0000 0000 0000 0000 1001
Split into 4-bit 

chunks

1        0        8       13        8 4         2          3        1 0        0        1       3      2        3 0        0      0      0       0     0     0       9
Equivalent integer 

value

Not compressible and search 

for frequent pattern
Compressible

010000100011011000 -1 1 0 2Compressed packet

Compressible

2 2 1 -1 0 -1

Not compressible and search 

for frequent pattern 

010 01001

41 H 1 20 2 REQ 011AB12

PID FTyp VC Src Dst MTyp M-ADR

01 Unused Header Flit 11 111 011 01 010 11 101

01000010001101100000000000000000
Decompressed packet

01000010001100010000000000000000 00000000010011001000110000000000 00 0000 0000 0000 0000 0000 0000 10010

Hexadecimal representation F3= 0x004C8CD50x42360000 0x42310000 0x00000012

Add zeros to the truncated portion

Received packet 
45.50 44.25 5016576 18

Error=0.13% Error=0.13% Error=0.004% Error=5.5%

 

Fig. 5 Illustration for AB∆Zip De/Compression 

The NI placed at the destination node excerpts the 

metadata from the header flit. The metadata of ℱ1contains 

𝜖1 = 11, and it indicated that ℱ1is uncompressible flit. The 

metadata of ℱ2contains 𝜖2 = 01 and 𝛽2 = 011. Hence, 𝛥𝑖are 

subtracted with 𝛽1 = 111for extracting the original flit. 

Then, the truncated bits are filled with zeros to convert the 

data into decimals. The same process is repeated for  ℐ1. It is 

observed that the resultant integer number has error rates of 

0.13%, 0.04%, and 5.5%, which are within the respective 

error thresholds. 
 

4. Simulation Results 
The performance of the proposed AB∆Zip 

De/compression unit is validated using Xilinx ISE tools, and 

the FPGA family chosen for synthesizing the design is Virtex 

7, with the device being XC7VX550T and package 

FFG1927. The proposed model is evaluated in terms of 

compression rate, approximation, network latency, area, and 

power consumption. The effectiveness of the proposed model 

is also compared with state-of-the-art models such as AxBA 

[22], QCF [23], and ACF [26]. The simulated NoC 

Architecture contains AB∆Zip De/Compressor, NI’s, routers, 

and interconnects channels. Here, 16 routers are combined to 

form a 4×4 Mesh topology. Table 3 provides the device 

utilization summary of the proposed 4×4 Mesh NoC 

Architecture.  
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Table 3. Device utilization summary 

Logic utilization Used Available 

Number of Slice Registers 2614 692800 

Number of Slice LUTs 4351 346400 

Number of fully used LUT-FF 

pairs 

2661 4426 

Number of bonded IOBs 658 600 

Number of 

BUFG/BUFGCTRL/BUFHCEs 

2 272 

 
4.1. Compression rate analysis 

Initially, the compression rate is evaluated by varying 

the data error threshold. The higher performance data 

compression scheme's compression rate is usually higher 

than the lower performance scheme for a similar data error 

threshold. The variation of data compression rate against the 

error threshold while considering the blackscholes 

benchmark is illustrated in Figure 6. Here, the data error 

threshold varies from 1% to 10%. It is observed from Figure 

6 that the compression rate of the proposed model is high as 

compared to all the existing models. The data compression 

rate of AxBA[22] is very low because the B∆ compression 

approach used by AxBA [22] needs several bits to represent 

the deviation between the base and truncated data. Also, this 

approach contains incompressible packets for certain data 

patterns. Hence, this approach's compression rate is less than 

the proposed method. The QCF [23] did not use an efficient 

data compression approach while approximating the integer 

numbers. Hence, it reduced the compression rate. 

 

 
Fig. 6 Compression rate for varying error thresholds 

The ACF increased the compression rate radically but 

used the FPC approach to reduce the integers' data size alone. 

Thus, the compression rate is reduced for the floating-point 

values. Instead, the proposed method uses the best quality 

control model for approximating the input packets and 

combines the B∆ compression scheme with the FPC 

approach for reducing the data size of both floating points 

and integers. Hence, it produces a smaller number of 

incompressible packets. Also, it reduced the number of bits 

required to represent the base's difference from the truncated 

data using an intra-flit data pattern and a fixed base of size 4-

bit. The compression rate of the proposed approach has been 

further increased by storing the metadata in the unused 

portion of the header flit. Figure 7 provides the compression 

rate analysis for different benchmarks while considering the 

loss threshold of 2%. Here, the proposed method increased 

the compression rate compared to the existing methods on all 

benchmarks.  

 
Fig. 7 Compression rate analysis for different benchmarks 

 

4.2. Approximation analysis 

The percentage of approximated data packets (𝜌𝑎𝑝𝑥) can 

be computed utilizing the following expression: 

                                                                                                                        

 𝜌𝑎𝑝𝑥 =
𝐾𝑎𝑝𝑥

𝐾𝑇
                                                                       (5) 

where 𝐾𝑎𝑝𝑥  denotes the quantity of approximated input 

and 𝐾𝑇 Represents the total quantity of input. Figure 8 

compares the percentage of approximated data packets of 

various approximation models while considering the 5% 

error tolerance.  

 
Fig. 8 Percentage of approximated data packets 
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The proposed model approximated several data packets 

compared to AxBA [22] and QCF [23]. However, the percent 

of approximating data packets is well-matched with the ACF 

due to a software interface for identifying the error-resistant 

variable. Hence, it does not need any humans to identify the 

error-resistant variable. But most of the earlier works relied 

on a program designer to identify the error-resistant variable. 

Hence, the number of approximate data packets is limited by 

those methods.  

 
4.3. Output Error and quality Analysis 

The application-specific measures are used to measure 

the output errors. Table 4 provides application-specific 

measures for benchmarks such as blackschole, fft, jpeg, and 

k means. 

 
Table 4. Application-specific measures for benchmarks 

Benchmark Performance measure 

Blackschole Average relative error 

fft  Average relative error 

Jpeg Mean pixel difference 

kmeans Mean pixel difference 

 

The average output error of the proposed model is 

compared with other existing models in Figure 9 for different 

benchmarks. Here, the average output error shown on the y-

axis denotes the quality of the output. If the average output 

error for the Blackschole benchmark is 5.2 %, the output 

quality will be 94.8%. Here, the necessary output error for an 

approximate computing application is indicated using the 

green line on the top.  

 

 
Fig. 9 Average output error 

As illustrated in Figure 10, the proposed compression 

model ensures the output quality within the tolerance. The 

proposed model achieved output errors of 5.2% for the 

Black-Scholes benchmark. However, the output error of the 

AxBA model is 1.1%, which shows poor approximation 

performance. The approximate level of the proposed model 

is reduced to avoid re-execution in the presence of a 

substantial output error. Some applications provide fewer 

possibilities to the models for reducing the approximate 

level. The proposed model lowers the input error threshold to 

ensure such applications' output quality. The accumulative 

output error distributions of the different models are shown 

in Figure 9.  

 

 
Fig. 10 Accumulative output error distributions 

The proposed model monitors the output error after the 

completion of every iteration and regulates the approximate 

level of the requested data. The AxBA model depends on the 

quality control table to reduce the quantity of full-accuracy 

results. The proposed model's low accumulative output error 

curve specifies the larger mean output error.   

 

To prove the quality of the proposed method, the 

accurate and approximate outputs of the proposed method on 

jpeg benchmark is shown in Figure 11. However, the 

deviation among these two outputs is insignificant, and the 

humans cant recognize the deviations.  

 

   
(a)                                                      (b) 

Fig. 11 Quality analysis on Jpeg benchmark (a) Accurate output (b) 

approximated output 

 
4.4. Network Latency analysis 

The number of clock cycles required to send the packets 

from the source node to the destination node is described as 

network latency. Hence, the network latency depends on 

three modules: packet initiation, packet transfer, and data 
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extraction. The source NI generates the packet using data 

compression units. Similarly, the destination NI extracts the 

data using packet decompression units. Figure 12 compares 

the network latency of the proposed method with other 

models. In this Figure, normalized network latency is 

provided for the Black-Scholes benchmark.  

 

 
Fig. 12 Network latency  

Figure 12 shows that the average network latency of the 

suggested model is reduced to 34.21% compared to ACF. 

The proposed AB∆Zip model reduced the latency on the 

Black-Scholes benchmark because of the providence of a 

great percent of approximal data packets and the higher 

compression ratio. The proposed method combines B∆ and 

FPC compression to reduce the number of uncompressible 

flits in the approximated data. Hence, it achieved the best 

compression ratio, thereby attaining latency reductions. 

 

4.5. Area and Power analysis 

In this section, the overhead of the proposed method is 

validated in terms of area and power. The proposed model is 

also synthesized with 32 nm technology using Synopsys 

Design Vision software for evaluating the area and power. 

The total dynamic power can be computed by considering 

the dynamic power of both NI and NoC. The dynamic power 

consumption of the proposed model is compared with other 

models in Figure 13 by considering an output quality of 95%. 

The proposed model consumes 22.58% less power than ACF 

due to reducing the number of flits per packet. Table 5 

compares the design overheads of every NI in terms of area 

and static power.  

 

 
Fig. 13 Dynamic power consumption 

Table 5. Comparative analysis of area and power 

Models Area (𝝁𝒎𝟐) Power (mW) 

AxBA 9.28 2.9 

QCF 8.23 2.6 

ACF 4.79 1.7 

Proposed 4.56 1.5 

 

It is observed that the area usage of the proposed model 

is 4.56 𝜇𝑚2 for each NI, almost 1% of the total NoC area. 

The area usage of the proposed model is reduced by 44.59 %, 

4.80 %, and 50.86 % compared with the models QCF [23], 

ACF [26], and AxBA [22], respectively. The total power 

consumption of the proposed model is 1.5 mW. The 

proposed method decreases each packet's flits without 

degrading the packet's quality heavily due to the 

consideration of an efficient quality control framework and 

hybrid B∆ and frequency pattern-based compression 

methods. Delta compression has less hardware overhead and 

consumes less power due to its fastest and simplest design 

consideration. Hence, the proposed model reduced the 

dynamic power consumption. 

 

5. Conclusion 
This paper proposes a new AB∆Zip De/compressor unit 

for De/compressing packets at the NI of the NoC structure 

before packet injection/reception. This unit contains an 

approximate level configuration framework for calculating 

the error threshold of every packet based on the output 

quality and the quality necessities of the respective 

approximated computing application. After truncating the 

data packets using the approximate level, the approximated 

pattern has been compressed using a modified B∆ and FPC 

scheme. This compression framework determines the data 

patterns within a flit to reduce the difference between the 

base and the approximated data. Also, it replaced the 

frequent pattern with shortened code words for 

incompressible packets of the delta compression method. 
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Furthermore, it uses the unused positions of the header 

flits to save the metadata. Thus, the compression rate of the 

AB∆Zip De/compressor unit is increased. It is also effective 

in power consumption because it consumes only 1.5 mW. 

The proposed method's complete validation shows the end-

to-end delay reduction and area reduction by up to 34.21% 

and 4.80 %, correspondingly compared with the earlier best 

approximate communication method. 
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