
International Journal of Engineering Trends and Technology Volume 70 Issue 6, 195-208, June 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I6P222 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

AB∆Zip: An Approximate Base Delta End-to-End Packet

Compression Framework for Network-on-Chips

T. Pullaiah1, K. Manjunatha Chari2, B.L. Malleswari3

1ECE Department, JNTUH, Hyderabad

2Department of ECE, GITAM University, Hyderabad, Telangana.
3Sri Devi Women’s Engineering College, Hyderabad, Telangana.

thanam.tp@gmail.com

Received: 03 April 2022 Revised: 23 May 2022 Accepted: 09 June 2022 Published: 29 June 2022

Abstract - Approximate communication methods can be applied in different domains, including pattern recognition and data

mining, to enhance transmission efficiency in power and delay while guaranteeing tolerable output quality. This paper

proposes a new Approximate Base delta (AB∆Zip) packet compression framework. This approach initially truncates the

integer or floating-point data based on the error threshold for the reduction of power consumption and network latency. This

model uses an approximate level configuration framework to compute the optimal error threshold based on error tolerance.

After forming the approximate pattern, a B∆ compression method is used to compress the approximate pattern. Here, the B∆

compression method is modified by identifying the data patterns within a flit and is used to minimize the size of the subtractor

components. Also, the proposed method uses frequent pattern compression (FPC) scheme to replace the frequent pattern with

the codeword for uncompressible chunks of the delta compression method. It avoids the transmission of a small valued

floating-point and integer with a larger number of Most significant bits (MSBs). The simulation results illustrate that the

proposed AB∆Zip increases the compression ratio to 3.7% at a 10% error threshold and minimizes the network latency, area,

and power consumption to 42.1%, 4.8%, and 11.76%, respectively to the most recent existing approximate communication

method.

Keywords - Approximate communication, network on chip (NoC), Base-delta (B∆) compression, error tolerance, and latency.

1. Introduction
Multicore systems integrate thousands of cores on a

single chip for accomplishing evolving solicitations via

lower power and parallel computations. Network-on-Chip

(NoC) has been identified as a feasible candidate for

efficiently managing the complex interconnection and energy

in a multiple-core system [1-3]. The NoC structure is usually

defined using two units: a group of ‘tiles’ and a network

interface. The hardware component that transmits data over

the NoC is named the ‘tiles.’ The power consumption of the

NoC is increased gradually while increasing the number of

cores on the integrated chip. [4, 5]. Nowadays, approximate

computing applications (e.g., pattern recognition, image

processing, and scientific computing) tolerate moderate

errors by providing tolerable outputs [6-8]. But, the

traditional NoC structures transfer all information with

absolute accuracy, and this transmission is not required for

approximated applications. Transmitting packets with high

accuracy requires more power and intensifies the network

latency.

This research work focuses on approximation

communication to reduce communication overhead. The

approximation communication framework is used to lower

power and increase the throughput of NoC. If the endpoint

node is not requiring an exact packet for calculation, the

approximation communication framework gives a chance to

decrease the data movement via NoC. This framework uses

the approximated computations' error tolerance to enhance

communication efficiency in multicore systems [9].

However, there is a requirement for a quality control method

that provides approximation data for controlling the accuracy

of transmitted data [10, 11]. The approximation data includes

an approximation pointer and approximate level. The error-

resilient data of the communication traffic can be identified

by the approximation pointer, whereas the error margin to

approximate the data can be specified by the approximate

level [12].

The compression methods in approximate

communication are usually categorized as memory and

compression at interconnects. The methods utilized in

approximate memory compression compress the data at

various levels of the memory hierarchy (e.g., processor

queues, on-chip cache) [13-15]. These methods reduced the

memory traffic alone, and other data transmissions, such as

data transmission between accelerators, sensors, and other

peripheral units, are not approximated. Furthermore, the

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thanam.tp@gmail.com

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

196

memory compression approaches need considerable

modification in standing IPs, including processing elements

and caches, and thereby, they are not suitable for hard IP

cores. The compression methods are used at the

interconnects to minimize the data traffic in NoCs through

the compression of analogous values in the data input or

leaving all the congested data [16].

The packet compression method exploits data

redundancy in the NoC packets to shrink the size of the

packets and minimize the network power [17]. Hence, the

approximated communication model uses the error tolerance

of the application for compressing the packet. These

approximate packet compression methods can reduce the

power and delay performance of NoC. The NoC data can be

compressed using either the Cache compression method or

the network interface (NI). The Cache compression method

inserts a compressor circuit between the core and NI. NI

compression method adds a compressor circuit to the

network interface [18-19]. The cache compression methods

expand the space utility, whereas the packet compressors in

NI decrease bandwidth usage, network blocking, and power

consumption. The packet compression placed at the NI

mostly uses a delta compression because of its easiness, less

hardware complexity, low power consumption, and network

latency [20-21]. The delta compression approach did not

compress a packet with a smaller base. Also, they required

bulkier de/compressor components to consume more power

and area. This work modified the base-delta compression

scheme and combined it with error tolerance-based

compression to reduce the consumed power and delay of

NoCs. The main contributions of this research work are

listed as given below:

 To introduce an effective data compression approach for

on-chip communication networks using approximate

communication to enhance the delta compression

method.

 To modify the base-delta compression scheme by

identifying the data patterns within a flit and combining

it with a truncation method to improve the compression

ratio.

 To introduce a truncation method for identifying the

optimal error threshold based on error tolerance. This

truncation method is used to reduce power consumption

and delay.

 To reduce the number of bits required for representing

the difference between the base and approximated data

using an intra-flit data pattern and a fixed base of size 4-

bit. It improves the effect of data error tolerance on

minimizing the delta size.

The rest of the paper is structured as follows: Section 2

summarizes the recent research on approximate and absolute

data compression techniques for on-chip communication

networks. Section 3 gives a detailed explanation of the

proposed data compression method. Section 4 provides the

simulation results and comparative analysis. Finally, the

paper is concluded in Section 5.

2. Related Work
Some of the recent related works on the approximate

communication model on NoC are summarized as follows:

Stevens et al. [22] explored an approximate compression

for the communication traffic to improve the transmission

bandwidth and reduce the interconnects' energy

consumption. Especially an approximate bus architecture

(AxBA) has been proposed for compressing/decompressing

the respective communications on the bus without

demanding modification for pre-planned masters and

enslaved people. Here, the buses integrate devices such as

processors, accelerators, peripherals, and on-chip memory.

The communications on the bus are initiated by the bus

masters, whereas enslaved people respond to transmission on

the bus. AxBA utilized a lightweight compression approach

(i.e., base-delta compression scheme) based on approximate

deduplication. Base-delta compression scheme is a lossless

method, and it represents the lower dynamic range of values

in the data segment with a general base and sequences of

deltas. Delta denotes the deviation of the data inside the

block from the base. Deduplication is utilized for the

elimination of duplicate copies in replicating data. Also, a

software interface has been introduced in AxBA for

identifying the position of the system address space, which is

suitable for approximations. Furthermore, an online quality

monitoring model has been proposed for detecting the error

constraints automatically.

Chen et al. [23] proposed a quality control framework

(QCF) for minimizing the time required to compute the

approximation level in the approximate communication. This

model also employed a configuration algorithm for adjusting

the quality of each segment of data according to the deviation

between the quality of output and application necessities.

This model transferred each request packet with the

modernized approximation level while implementing it in a

network. In this paper, the size of the data is reduced through

the truncation of the least significant bits (LSBs) of floating-

point input based on approximated levels. This model

reduced the number of flits in every packet and minimized

congestion in NoCs without degrading the quality. When the

packets need exact communication, the packets will be

transmitted to the packet encoder directly. This compression

unit differentiated the accurate packets from the

approximable packets by referring to the data saved in the

quality control table. This table contains the address field,

data type, approximation level, and validity. The presence of

approximate communication has been indicated by the

validity bit.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

197

Chen et al. [24] proposed an approximate transmission

approach named DEC-NoC for reducing the power

requirement of NoC. This approach controlled the error

tolerance of the requests and reduced the quantity of error

testing and adjustment in packet transmission. As a result, it

reduced the number of retransmitted packets considerably. In

this scheme, the amount of protected bits has been reduced

by converting the integer into a floating-point format. This

DEC-NoC architecture contained an approximate coding

logic (ACL), demultiplexers, data type converter, encoder/

decoder, and buffers. Initially, ACL computed the

approximation code using protection code and conversion

code. Then, the encoder generates the check bits based on the

packet's approximation code and data bits. On the decoder

side, errors have been checked to utilize approximation code.

Then, CIF (Converted Integer to Float) has been selected

using demultiplexer for sending the data into the data type

converter.

Xiao et al. [25] proposed a lossy compression method

using the frequent pattern compression (FPC) that replaced

the frequent data patterns with codewords. This method

transferred the input data pattern into an approximate pattern

using certain don’t care bits before executing FPC. Also, an

optimization problem has been constructed based on the

quality requirement of the application. Then, a congestion-

aware quality control approach was introduced, which

dropped the network data insistently based on flow

prediction and a lightweight heuristic for improving the

system performance.

Chen et al. [26] proposed an approximated

communication framework (ACF) to reduce power and

delay. It used a quality control approach that identified the

error-resistant variables and calculated the error thresholds

according to the application’s quality need by analyzing the

source code. This framework also included a lightweight

lossy compression method that considerably reduced packet

size while transmitting the error-resilient variables. This

compression logic differentiates the exact packets from the

approximable packets based on the information saved in the

quality control table. Here, the data approximation module

transmitted a read packet that included the address of the

quality control table for obtaining the information regarding

approximation. When the quality control table replied with

approximation details, then the type of data would be

checked. Then, the compression logic used different

truncation methods for the integer and floating points,

respectively. Thus, the data packet contained fewer flits and

guaranteed the quality necessities of applications.

The above analysis shows that a quality control method

used in AxBA needs the programmer to label the values to be

approximated and their error tolerances. Also, the base-delta

compression scheme used by AxBA needs several bits for

representing the deviation among the base and the data to be

approximated. If the delta value is high, then the effect of

improving data error tolerance to reduce the size of the delta

is reduced. Thus, AxBA is not suitable for the more error

tolerable data. Also, the QCF model did not hold an efficient

compression scheme when approximating integer numbers,

yielding a low data compression rate. Also, ACF considered

FPC to compress the integer numbers after approximation.

However, the FPC uses an encoding table that contains only

eight frequently occurring patterns. Hence its performance is

limited to infrequent patterns and produces more

uncompressible flits.

In addition, the existing base-delta compression methods

consider the base size in bytes. Hence, they didn’t compress

a packet whose base value is small. Furthermore, the

complexity of the de/compressor units is high. A new

approximate communication model is introduced using

AB∆Zip to tackle these issues. This method uses an efficient

Quality control model to choose the level of approximation

based on the software interface. Also, the B∆ compression

scheme is modified using an intra-flit data pattern and a fixed

base of 4-bit size to reduce the deviation between the base

and approximated data. Also, the FPC scheme is combined

with the B∆ compression scheme, and the metadata of the

compressor is stored in the unused regions of the header flit

to improve the compression ratio.

3. Proposed Approximate Communication

Model For Noc
A new Approximate Base delta (AB∆Zip) packet

compression framework is proposed in this work. The

proposed AB∆Zip compression technique is employed at the

Network Interface (NI) unit of a 4X4 mesh topology, as

illustrated in Figure 1. Here, the tiles represent the cores with

the L1 shared cache. A Network Interface (NI) is used to

connect every tile and arrange them as mesh topology. In this

NoC structure, the memory unit or cache accepts a read

request packet if a cache miss occurs while loading a

memory. The memory/cache uses this read reply packet for

sending the necessary data to the core. If a cache miss is

generated during the memory store process, the data is

merged with the write request packet and transmitted towards

the memory/cache via NoC. After receiving the data, the

memory/cache sends a written reply to the core to confirm

the successful memory write.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

198

R

L2

R

L2

R

Memory

R

R R R R

R R R R

Memory

R

L2

R

L2

R

Memory

R

Router

Core and L1

N
et

w
or

k
In

te
rf

ac
e

(N
I)

Memory

Approximate level

configuration

AB Zip

decompressor

Packet decoding

W
rit

e
re

pl
y

R
ea

d
re

pl
y

Output quality

screening
Quality control

table

Packet encoding

W
rit

e
re

qu
es

t

R
ea

d
re

qu
es

t

Router

Memory/shared cache

N
et

w
or

k
In

te
rf

ac
e

(N
I)

Packet decoding

W
rit

e
re

qu
es

t

R
ea

d
re

qu
es

t

Packet encoding

AB Zip

compressor

R
ea

d
re

pl
y

W
rit

e
re

pl
y

Quality

control table

Software interface

Fig. 1 Proposed NoC Architecture for approximate communication

In Figure1, the NI is reconfigured by adding the AB∆Zip

compression logic, the AB∆Zip decompression logic,

approximate level configuration framework, output quality

screening unit, and a quality control table. Here, the AB∆Zip

de/compression logic is used by the memory/shared cache

and core/L1 cache to reduce the data size according to the

approximation data saved in the quality control table. This

AB∆Zip framework truncated and compressed data

according to the approximate level, error tolerances, and data

type. Here, a quality control model modulates each packet's

approximate level based on the output data’s error rates and

application needs. The quality control table is formulated

using the approximate level configuration framework and the

software interface.

Here, the error-resilient variables are automatically

identified by the software interface that uses the code

analyzer to configure the quality control model. These error-

resilient variables determine the tolerance and quality of data

in the system's address space. The quality control table

includes approximate data in four columns: addresses, data

types, approximate level, and validity. The size of the data

type column is 1 bit, and this bit is used to indicate the

integer (1) or floating point (0) data. The validity bit is used

to signify the enabling condition of the approximate

communication. If accurate communication is needed, the

validity bit is fixed to 0, which is changed to 1 for

approximate communication.

After forming the approximate pattern, a base delta

compression method is used to compress the approximate

pattern. Here, the B∆ compression approach is modified by

dividing the content of each flit into 4-bit chunks to reduce

the variations among the chunks. This B∆ compression

approach determines the minimum and maximum values of

chunks to determine the base. Then, the compressible packets

are transmitted by finding their difference from the base.

AB∆Zip uses the unused regions of the head flit to store the

compressed packet's metadata. The data decompression logic

recovers the original packet after loading the truncated bits

with zeros. The packets are generated and injected into the

network using the packet encoder.

Similarly, the packets are ejected from the network using

a packet decoder to extract the packets' data. In addition, an

output quality screening framework is used to extract the

quality data that every application has produced.

Subsequently, it embeds the extracted quality data into its

write request traffic.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

199

3.1. Quality control model

The quality management framework uses an

approximate level configuration framework for the

computation and adjusting of the approximate level of the

input data. The concept of the proposed quality control

model is illustrated in Figure 2. This model uses an

approximate level configuration framework to adjust the

input data's approximate level in the feedback path. Here, the

function to be approximated is to read and process the input

data while running the approximate computing application

and generating the output of that function. The output quality

screening framework captures the computed error rate for

sending it to the approximate level configuration framework.

This approximate level configuration framework utilizes an

error prediction approach for adjusting the quality of the

input data. The error prediction approach uses a simple

moving average process for predicting the output data’s error

rate with the help of the seized data quality.

Fig. 2 Quality control model

The error rate’s moving average can be calculated using

the following expression:

 𝑀𝐴 = 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑀𝐴 +
𝑅𝑒(𝑥)

𝜔
−

𝑅𝑒(𝑥−𝜔)

𝜔
 (1)

where 𝑅𝑒(𝑥) denotes the present output’s error rate, 𝜔

represents the size of the window and 𝑀𝐴denotes the

predicted output error rate. The number of output errors

required to predict the error is described as the window size.

If 𝑥 < 𝜔, all the request packets will use the initial

approximate level. This method determines the mean error

rate using the moving window-based sampling approach. At

the same time, the error rate of each output is estimated using

the application itself. The approximate level configuration

framework relates the value of 𝑀𝐴With the quality need of an

application, after predicting the error and correcting the

approximate level appropriately. The quality needs to hold

both input and output error thresholds. The maximum

tolerable error rate in the input data is defined as the input

error threshold. The necessity of the application based on the

output quality is described as the output error threshold.

Initially, the approximate level configuration framework

matches the predicted error with the threshold of the output

error. If the value of 𝑀𝐴is high compared to the output error

threshold, then the input error is very high. Hence, the

approximate level configuration framework decreases the

input value’s approximate level. The input error is very low

when the output error threshold is high compared to the

predicted error rate. Hence, the quality control model

increases the approximate level of the packet without

increasing the input error threshold.

3.2. Compression method: AB∆Zip compressor

The data approximation logic presented in the memory

differentiates the accurate packets from the packets to be

approximated based on the approximation data saved in the

quality control table (QCT). The data approximating block

transmits a read packet with the address to the QCT for

getting the approximate data. When the reply message

comprises approximate data, the data approximation unit

identifies the input's data type (integer or floating-point).

According to the error tolerance, the proposed AB∆Zip

initially truncates the integer or floating-point input. The

error threshold is defined as the maximum tolerable error for

a packet. The error tolerance can be determined as:

 𝑅𝑒 =
|𝑝−𝑝|

𝑝
≤ 𝑇𝑒 (2)

Where 𝑝 denotes the approximate value of 𝑝. 𝑅𝑒and 𝑇𝑒

Represent the relative error and error tolerance, respectively.

The proposed AB∆Zip compares the error tolerance and

thresholds to truncate the Least significant Bits (LSBs) while

receiving the floating-point inputs. The error thresholds for

the floating-point inputs are detected utilizing the IEEE 754

standard [27].

If the input is defined in the format of IEEE 754

standard, the AB∆Zip omits the first bit of the mantissa. The

extreme relative error for the floating-point input can be

computed while protecting 𝑞 bits (of the 23-bit mantissa) as

∑ 2−𝑞23
𝑖=𝑞+1 . The summation of the geometric sequence

∑ 𝑓𝛾𝑖−1 = 𝑓(1 − 𝛾𝑘) 1 − 𝛾⁄𝑘
𝑖=1 shows that the maximum

relative error is lesser than 2−𝑞 . Here, 𝑓and 𝑘denote the

initial term and the number of terms, respectively. Also, the

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

200

general ratio in the sequence is denoted as 𝛾. Hence, the data

error tolerance for the floating-point data can be deduced

using the following expression:

 𝑇𝑒 = 2−𝑘(1 ≤ 𝑘 ≤ 23) (3)

Where the value of 𝑇𝑒 is in the range of 0 and 1. Also, 𝑘

is the approximate level determined by the quality control

model. This 𝑘 is utilized for truncating the number of MSBs

from the mantissa part of the floating-point data. Hence, the

relative error is smaller than 2−𝑘 When 23 − 𝑘 bits are

truncated, table 1 provides the correlation of the error

tolerance and approximate level with the number of LSBs to

be truncated.

Table 1. Connection of Error tolerance and Approximate level of the

number of LSBs to be truncated

Approximate

level (𝑘)

Error tolerance for

float input (𝑇𝑒)

Quantity of

LSBs to be

truncated

0 0 0

19 1.90735 × 10−6 4

16 1.52588 × 10−5 7

13 0.00012207 10

12 0.000244141 11

11 0.000488281 12

10 0.000976563 13

9 0.001953125 14

8 0.00390625 15

7 0.0078125 16

6 0.015625 17

5 0.03125 18

4 0.0625 19

3 0.125 20

2 0.25 21

The proposed AB∆Zip uses the depiction of a signed

integer to compute the error tolerance for integer data. The

MSB of the signed integer denotes the sign, and the rest of

the 31 bits denote the value. The maximum error produced

after truncating 𝑘 bits (of the 31 LSBs) is detected as

∑ 𝑆𝑖2
𝑖𝑘

𝑖=0 (𝑆𝑖 = 0 𝑜𝑟 1). Hence, the error tolerance for an

integer input can be computed using the following formula.

 𝑇𝑒 =
∑ 𝑆𝑖2𝑖𝑘

𝑖=0

∑ 𝑆𝑖2𝑖31
𝑖=0

 (4)

This truncation approach sends several MSBs for an

integer with a smaller absolute value than the integer with a

larger absolute value for maintaining the same error

threshold as input. This issue can be tackled by the use of the

B∆ compression approach. The detailed description of the

proposed AB∆Zip compressor is illustrated in Figure 3.

After determining the approximate pattern, every

truncated data is segmented into 4-bit chunks (𝒞1, 𝒞2, … , 𝒞𝑖).
Here, the chunks are bounded by the largest and smallest

value. Hence, the smallest 𝒞𝑠and largest 𝒞𝑙 Chunks are

averaged to determine the base 𝛽. Here, a priority encoder is

used to determine the collection of data within a flit by

considering the 𝒞𝑠and 𝒞𝑙 as input, this 2-bit encoding is

utilized to indicate whether truncated data is compressible or

incompressible. When 𝒞𝑠 is equal to 𝒞𝑙The data can be

compressed completely (100%) by producing the encoding

bit as 𝜖 = 00. The base value should be subtracted from the

chunks to compute the differences (∆𝑖) of all other

conditions. If ∆𝑖 is signified using a maximum of 2 bits, then

the respective truncated flit is identified as compressible flit;

if not, the truncated data is incompressible. Hence, when 𝜖 =
00, the truncated data is compressible, and when = 11, the

truncated data is incompressible. At last, the B∆ compression

approach produces Base 𝛽, Encoding bits 𝜖, and a set of ∆𝑖 ’s

for the compressible flit and the truncated data for the

uncompressible flit.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

201

Approximation

possible?

integer or

floating point ?

Perform truncation

according to error

tolerance in (4)

Perform truncation

according to error

tolerance in (3)

Flit 1Flit 2...Flit n

integer

floating point

Divide into 4-bit

chunks

Input flits

Flit 1Flit 2...Flit n

Truncated flits

...

Determine

Subtractor

Is all

zero s?

Compression not required

and insert first chunk as

base into Header flit

YN

Y

N
4:2 Encoder

Insert into

unused positions

of Header flit

Is
?

Determine

Base B

N

Difference

computation using i-

subtraction unit
1 ...2

Compressed Flit

Y

Search for

frequent pattern

Replace the pattern

with the respective

code

code X ... X

Compressed Flit

Concatenation with

Header flit

Compressed

Packets

Fig. 3 Flow diagram of AB∆Zip compressor

If the flit is uncompressible, the frequent data pattern

compression (FPC) approach is adopted for compressing the

truncated data. The FPC approach eliminates 0’s and 1’s

from the MSBs and LSBs from integer and floating values

without degrading the accuracy. The code used for replacing

the frequent pattern in the uncompressible flit is provided in

Table 2. The notation X denotes any “Zero” or” one.” Also,

0xFF denotes all 1-bits, and 0x00 denotes all 0-bits. The FPC

compression matches the patterns with each data segment.

When it identifies the matched pattern, the pattern is replaced

with the respective code. This compression process does not

change the 0 or 1 signified in terms of X.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

202

Table 2. Code for frequent pattern

Code Frequent pattern

000 0x00 0x00 0x00 0x00

001 0x00 0x00 0x00 00000XXX

0xFF 0xFF 0xFF 11111XXX

010 0x00 0x00 0x00 0XXXXXXX

0xFF 0xFF 0xFF 1XXXXXXX

011 0x00 0x00 0XXXXXXX XXXXXXXX

100 XXXXXXXX XXXXXXXX 0x00 0x00

101 0x00 0XXXXXXX 0x00 0XXXXXXX

0xFF 1XXXXXXX 0xFF 1XXXXXXX

The header flit for 128-bits link bandwidth contains the

packet number (2-bits), source tile (6-bits), which creates the

cache miss, destination tile (6-bits), Flit type (2-bits):

head/body/tail, VC number where the input flit is saved (2-

bits), Message Type (3-bit): REQ/REP/coherence packets

and missed memory address (32-bits). In this header flit,

seventy-five Least Significant Bits are unused. Hence, the

proposed B∆-NIS compressor uses these unused locations for

storing the metadata. Thereby it increased the compression

ratio.

3.3. AB∆Zip decompressor

The destination node initially receives the head flit and

extracts the metadata from the header. If the encoding bits

𝜖 = 00, then the proposed AB∆Zip decompressor unit copies

the base by the number of chunks to regenerate the flits.

Alternatively, the AB∆Zip decompressor unit obtains ∆𝑖The

compressed flit is given as input to the subtractor unit along

with the base value to retrieve the truncated data. Finally, NI

adds zeros to the truncated portion for converting the data

back into an integer. The error of the resultant integer

number is within the respective error threshold. The flow

diagram of the AB∆Zip decompressor is shown in Figure 4.

Extract the meta data

from Header flit

Base

Is
?

Difference computation using

i-subtraction unit

1 ...2

Compressed body Flit

N

Y
Replace the code

with respective

...

Truncated Flit

Add zeros to the truncated

parts

Original Packet with

tolerable error
Fig. 4 Flow diagram of AB∆Zip decompressor

3.4. Sample Illustration for AB∆Zip De/Compressor

Figure 5 illustrates the process of AB∆Zip by

considering four random flits (𝑓1, 𝑓2, 𝑓3, 𝑓4). This example

contains 2 integers (ℐ1 and ℐ2) and 2 floating-point data

(ℱ1)and (ℱ2). If the Approximate level of ℱ1and ℱ2are

identified as 9 and 7, respectively, then the source node

truncates 14 LSBs of ℱ1 and 16 LSBs of ℱ2. Similarly, the

source node truncates 10 LSBs of ℐ1and 1 LSB of ℐ2. After

detecting the approximate pattern, the truncated data is split

into 4-bit chunks. Here, the truncated ℱ1 contains five

chunks 𝒞1 = 1, 𝒞2 = 0, 𝒞3 = 8, 𝒞4 = 13 and 𝒞5 = 8. From

this example, it is observed that 𝒞𝑠 = 0 and 𝒞𝑙 = 13. Hence,

𝛽1 = 7and
1 needs 3-bits. Hence, the truncated ℱ1 is it not

compressible based on the B∆ compressor. Hence, the

proposed AB∆Zip compressor searched for frequent patterns

in Table 2. The truncated ℱ1 does not match with any

pattern. Thereby, it can’t be compressed. However, the

truncated ℱ2 contains 𝒞1 = 4, 𝒞2 = 2, 𝒞3 = 3, and 𝒞4 = 1.

For this flit, it is observed that 𝒞𝑠 = 1 and 𝒞𝑙 = 4. Hence,

𝛽2 = 3and
1 needs 2-bits. Hence, the truncated ℱ2 is

compressible based on the B∆ compressor. Hence, the

differences (𝛥𝑖) are computed through the subtraction of

every chunk from the base. Then coding bit and the base

value are stored in header flits. Similarly, the truncated ℐ1is

compressible by a B∆ compressor. But the truncated ℐ2is not

compressible, so it searched for the frequent pattern in Table

2. ℐ2matches with pattern 010, the proposed AB∆Zip uses

the respective code for replacing the zeros in the MSBs.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

203

Header Flit F3= 5016789f1= 45.56 f2= 44.31 F4= 19Input packet

F3= 0x004C8CD50x42363D71 0x42313D71 0x00000013Hexadecimal representation

0000000001001100100011001101010101000010001101100011110101110001 01000010001100010011110101110001Binary value

K=9 K=7 K=10 K=1

0000000001001100100011010000100011011000 0100001000110001 000000000000000000000000001001Truncated data

Truncate 14 LSB Truncate 16 LSB Truncate 10 LSB Truncate 1 LSB

00000000000000000000000000010011

00 0000 0001 0011 0010 00110001 0000 1000 1101 1000 0100 0010 0011 0001 00 0000 0000 0000 0000 0000 0000 1001
Split into 4-bit

chunks

1 0 8 13 8 4 2 3 1 0 0 1 3 2 3 0 0 0 0 0 0 0 9
Equivalent integer

value

Not compressible and search

for frequent pattern
Compressible

010000100011011000 -1 1 0 2Compressed packet

Compressible

2 2 1 -1 0 -1

Not compressible and search

for frequent pattern

010 01001

41 H 1 20 2 REQ 011AB12

PID FTyp VC Src Dst MTyp M-ADR

01 Unused Header Flit 11 111 011 01 010 11 101

01000010001101100000000000000000
Decompressed packet

01000010001100010000000000000000 00000000010011001000110000000000 00 0000 0000 0000 0000 0000 0000 10010

Hexadecimal representation F3= 0x004C8CD50x42360000 0x42310000 0x00000012

Add zeros to the truncated portion

Received packet
45.50 44.25 5016576 18

Error=0.13% Error=0.13% Error=0.004% Error=5.5%

Fig. 5 Illustration for AB∆Zip De/Compression

The NI placed at the destination node excerpts the

metadata from the header flit. The metadata of ℱ1contains

𝜖1 = 11, and it indicated that ℱ1is uncompressible flit. The

metadata of ℱ2contains 𝜖2 = 01 and 𝛽2 = 011. Hence, 𝛥𝑖are

subtracted with 𝛽1 = 111for extracting the original flit.

Then, the truncated bits are filled with zeros to convert the

data into decimals. The same process is repeated for ℐ1. It is

observed that the resultant integer number has error rates of

0.13%, 0.04%, and 5.5%, which are within the respective

error thresholds.

4. Simulation Results
The performance of the proposed AB∆Zip

De/compression unit is validated using Xilinx ISE tools, and

the FPGA family chosen for synthesizing the design is Virtex

7, with the device being XC7VX550T and package

FFG1927. The proposed model is evaluated in terms of

compression rate, approximation, network latency, area, and

power consumption. The effectiveness of the proposed model

is also compared with state-of-the-art models such as AxBA

[22], QCF [23], and ACF [26]. The simulated NoC

Architecture contains AB∆Zip De/Compressor, NI’s, routers,

and interconnects channels. Here, 16 routers are combined to

form a 4×4 Mesh topology. Table 3 provides the device

utilization summary of the proposed 4×4 Mesh NoC

Architecture.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

204

Table 3. Device utilization summary

Logic utilization Used Available

Number of Slice Registers 2614 692800

Number of Slice LUTs 4351 346400

Number of fully used LUT-FF

pairs

2661 4426

Number of bonded IOBs 658 600

Number of

BUFG/BUFGCTRL/BUFHCEs

2 272

4.1. Compression rate analysis

Initially, the compression rate is evaluated by varying

the data error threshold. The higher performance data

compression scheme's compression rate is usually higher

than the lower performance scheme for a similar data error

threshold. The variation of data compression rate against the

error threshold while considering the blackscholes

benchmark is illustrated in Figure 6. Here, the data error

threshold varies from 1% to 10%. It is observed from Figure

6 that the compression rate of the proposed model is high as

compared to all the existing models. The data compression

rate of AxBA[22] is very low because the B∆ compression

approach used by AxBA [22] needs several bits to represent

the deviation between the base and truncated data. Also, this

approach contains incompressible packets for certain data

patterns. Hence, this approach's compression rate is less than

the proposed method. The QCF [23] did not use an efficient

data compression approach while approximating the integer

numbers. Hence, it reduced the compression rate.

Fig. 6 Compression rate for varying error thresholds

The ACF increased the compression rate radically but

used the FPC approach to reduce the integers' data size alone.

Thus, the compression rate is reduced for the floating-point

values. Instead, the proposed method uses the best quality

control model for approximating the input packets and

combines the B∆ compression scheme with the FPC

approach for reducing the data size of both floating points

and integers. Hence, it produces a smaller number of

incompressible packets. Also, it reduced the number of bits

required to represent the base's difference from the truncated

data using an intra-flit data pattern and a fixed base of size 4-

bit. The compression rate of the proposed approach has been

further increased by storing the metadata in the unused

portion of the header flit. Figure 7 provides the compression

rate analysis for different benchmarks while considering the

loss threshold of 2%. Here, the proposed method increased

the compression rate compared to the existing methods on all

benchmarks.

Fig. 7 Compression rate analysis for different benchmarks

4.2. Approximation analysis

The percentage of approximated data packets (𝜌𝑎𝑝𝑥) can

be computed utilizing the following expression:

 𝜌𝑎𝑝𝑥 =
𝐾𝑎𝑝𝑥

𝐾𝑇
 (5)

where 𝐾𝑎𝑝𝑥 denotes the quantity of approximated input

and 𝐾𝑇 Represents the total quantity of input. Figure 8

compares the percentage of approximated data packets of

various approximation models while considering the 5%

error tolerance.

Fig. 8 Percentage of approximated data packets

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

205

The proposed model approximated several data packets

compared to AxBA [22] and QCF [23]. However, the percent

of approximating data packets is well-matched with the ACF

due to a software interface for identifying the error-resistant

variable. Hence, it does not need any humans to identify the

error-resistant variable. But most of the earlier works relied

on a program designer to identify the error-resistant variable.

Hence, the number of approximate data packets is limited by

those methods.

4.3. Output Error and quality Analysis

The application-specific measures are used to measure

the output errors. Table 4 provides application-specific

measures for benchmarks such as blackschole, fft, jpeg, and

k means.

Table 4. Application-specific measures for benchmarks

Benchmark Performance measure

Blackschole Average relative error

fft Average relative error

Jpeg Mean pixel difference

kmeans Mean pixel difference

The average output error of the proposed model is

compared with other existing models in Figure 9 for different

benchmarks. Here, the average output error shown on the y-

axis denotes the quality of the output. If the average output

error for the Blackschole benchmark is 5.2 %, the output

quality will be 94.8%. Here, the necessary output error for an

approximate computing application is indicated using the

green line on the top.

Fig. 9 Average output error

As illustrated in Figure 10, the proposed compression

model ensures the output quality within the tolerance. The

proposed model achieved output errors of 5.2% for the

Black-Scholes benchmark. However, the output error of the

AxBA model is 1.1%, which shows poor approximation

performance. The approximate level of the proposed model

is reduced to avoid re-execution in the presence of a

substantial output error. Some applications provide fewer

possibilities to the models for reducing the approximate

level. The proposed model lowers the input error threshold to

ensure such applications' output quality. The accumulative

output error distributions of the different models are shown

in Figure 9.

Fig. 10 Accumulative output error distributions

The proposed model monitors the output error after the

completion of every iteration and regulates the approximate

level of the requested data. The AxBA model depends on the

quality control table to reduce the quantity of full-accuracy

results. The proposed model's low accumulative output error

curve specifies the larger mean output error.

To prove the quality of the proposed method, the

accurate and approximate outputs of the proposed method on

jpeg benchmark is shown in Figure 11. However, the

deviation among these two outputs is insignificant, and the

humans cant recognize the deviations.

(a) (b)

Fig. 11 Quality analysis on Jpeg benchmark (a) Accurate output (b)

approximated output

4.4. Network Latency analysis

The number of clock cycles required to send the packets

from the source node to the destination node is described as

network latency. Hence, the network latency depends on

three modules: packet initiation, packet transfer, and data

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

206

extraction. The source NI generates the packet using data

compression units. Similarly, the destination NI extracts the

data using packet decompression units. Figure 12 compares

the network latency of the proposed method with other

models. In this Figure, normalized network latency is

provided for the Black-Scholes benchmark.

Fig. 12 Network latency

Figure 12 shows that the average network latency of the

suggested model is reduced to 34.21% compared to ACF.

The proposed AB∆Zip model reduced the latency on the

Black-Scholes benchmark because of the providence of a

great percent of approximal data packets and the higher

compression ratio. The proposed method combines B∆ and

FPC compression to reduce the number of uncompressible

flits in the approximated data. Hence, it achieved the best

compression ratio, thereby attaining latency reductions.

4.5. Area and Power analysis

In this section, the overhead of the proposed method is

validated in terms of area and power. The proposed model is

also synthesized with 32 nm technology using Synopsys

Design Vision software for evaluating the area and power.

The total dynamic power can be computed by considering

the dynamic power of both NI and NoC. The dynamic power

consumption of the proposed model is compared with other

models in Figure 13 by considering an output quality of 95%.

The proposed model consumes 22.58% less power than ACF

due to reducing the number of flits per packet. Table 5

compares the design overheads of every NI in terms of area

and static power.

Fig. 13 Dynamic power consumption

Table 5. Comparative analysis of area and power

Models Area (𝝁𝒎𝟐) Power (mW)

AxBA 9.28 2.9

QCF 8.23 2.6

ACF 4.79 1.7

Proposed 4.56 1.5

It is observed that the area usage of the proposed model

is 4.56 𝜇𝑚2 for each NI, almost 1% of the total NoC area.

The area usage of the proposed model is reduced by 44.59 %,

4.80 %, and 50.86 % compared with the models QCF [23],

ACF [26], and AxBA [22], respectively. The total power

consumption of the proposed model is 1.5 mW. The

proposed method decreases each packet's flits without

degrading the packet's quality heavily due to the

consideration of an efficient quality control framework and

hybrid B∆ and frequency pattern-based compression

methods. Delta compression has less hardware overhead and

consumes less power due to its fastest and simplest design

consideration. Hence, the proposed model reduced the

dynamic power consumption.

5. Conclusion
This paper proposes a new AB∆Zip De/compressor unit

for De/compressing packets at the NI of the NoC structure

before packet injection/reception. This unit contains an

approximate level configuration framework for calculating

the error threshold of every packet based on the output

quality and the quality necessities of the respective

approximated computing application. After truncating the

data packets using the approximate level, the approximated

pattern has been compressed using a modified B∆ and FPC

scheme. This compression framework determines the data

patterns within a flit to reduce the difference between the

base and the approximated data. Also, it replaced the

frequent pattern with shortened code words for

incompressible packets of the delta compression method.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

207

Furthermore, it uses the unused positions of the header

flits to save the metadata. Thus, the compression rate of the

AB∆Zip De/compressor unit is increased. It is also effective

in power consumption because it consumes only 1.5 mW.

The proposed method's complete validation shows the end-

to-end delay reduction and area reduction by up to 34.21%

and 4.80 %, correspondingly compared with the earlier best

approximate communication method.

Conflict of Interest Statement
Authors T. Pullaiah, K. Manjunathachari, and B.L.

Malleswari declare that they have no conflict of interest.

Patients’ rights and animal protection statements: This

research article does not contain any studies with human or

animal subjects.

Acknowledgment
 I sincerely thank K. Manjunathachari and B.L.

Malleswari for their guidance and encouragement in carrying

out this research work.

References
[1] Jedidi, Detection and Monitoring Intra/Inter Crosstalk in Optical Network on Chip, International Journal of Electrical & Computer

Engineering. 8(6) (2018) 2088-8708.

[2] S. Kashi and A. Patooghy, Row/Column-First: A Path-Based Multicast Algorithm for 2D Mesh-based Network on Chips, Iranian

Journal of Electrical and Electronic Engineering. 14(2) (2018) 124-136.

[3] S.S. Kendaganna, A. Jatti and B.V. Uma, Design and Implementation of Secured Agent Based Noc Using Shortest Path Routing

Algorithm, International Journal of Electrical and Computer Engineering. 9(2) (2019) 950.

[4] M.F. Reza & P. Ampadu, Approximate Communication Strategies for Energy-Efficient and High Performance Noc: Opportunities and

Challenges, In Proceedings of the on Great Lakes Symposium on VLSI. (2019) 399-404.

[5] K. Zhou, Y. He, R. Xiao, J. Liu & K. Huang, A Customized NoC Architecture to Enable Highly Localized Computing-On-the-Move

DNN Dataflow, IEEE Transactions on Circuits and Systems II: Express Briefs. (2021).

[6] Y. Wang, H. Li, Y. Han & X. Li, A Low Overhead In-Network Data Compressor for the Memory Hierarchy of Chip Multiprocessors,

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(6) (2018) 1265–1277.

[7] S. Kim & Y. Kim, Novel XNOR-based Approximate Computing for Energy-Efficient Image Processors, Journal of Semiconductor

Technology and Science. 18(5) (2018) 602-608.

[8] Y. He, X. Yi, Z. Zhang, B. Ma & Q. Li, A Probabilistic Prediction-Based Fixed-Width Booth Multiplier for Approximate

Computing, IEEE Transactions on Circuits and Systems I: Regular Papers. 67(12) (2020) 4794-4803.

[9] F. Betzel, K. Khatamifard, H. Suresh, D.J. Lilja, J. Sartori & U. Karpuzcu, Approximate Communication: Techniques for Reducing

Communication Bottlenecks in Large-Scale Parallel Systems, ACM Comput, Surveys. 51(1) (2018) 1–32.

[10] S. Xiao, X. Wang, M. Palesi, A.K. Singh & T. Mak, ACDC: An Accuracy- And Congestion-Aware Dynamic Traffic Control Method

for Networks-on-Chip, In Proc. IEEE Design Autom. Test Eur. Conf. Exhibit, (DATE), Florence, Italy. (2019) 630–633.

[11] R. Fenster & S. Le Beux, RELAX: A Reconfigurable Approximate Network-on-Chip, In IEEE 14th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip (MCSoC), IEEE. (2021) 381-387.

[12] Y. Chen & A. Louri, Learning-Based Quality Management for Approximate Communication in Network-on-Chips, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems. 39(11) (2020) 3724-3735.

[13] A. Jain, P. Hill, S.C. Lin, M. Khan, M.E. Haque, M.A. Laurenzano & J. Mars, Concise Loads and Stores: The Case for an Asymmetric

Compute-Memory Architecture for Approximation, In Proc. of MICRO. (2016).

[14] A. Ranjan, A. Raha, V. Raghunathan & A. Raghunathan, Approximate Memory Compression for Energy-Efficiency, In Proc. of

ISLPED. (2017).

[15] J.S. Miguel, J. Albericio, A. Moshovos & N.E. Jerger, Doppelgänger: A Cache for Approximate Computing, In Proc. of MICRO.

(2015).

[16] R. Boyapati, J. Huang, P. Majumder, K.H. Yum & E.J. Kim, APPROXNoC: A Data Approximation Framework for Network-On-Chip

Architectures, In Proc. of ISCA. (2017).

[17] Q. Wang, Y. Li & P. Li, Liquid State Machine Based Pattern Recognition on FPGA with Firing-Activity Dependent Power Gating and

Approximate Computing, In 2016 IEEE International Symposium on Circuits and Systems ISCAS, IEEE. (2016) 361-364.

[18] J.S. Kim, J.B. Hong, J.Y. Kang & T.H. Han, Lifetime Improvement Method Using Threshold-Based Partial Data Compression in Noc,

In 2018 International SoC Design Conference ISOCC, IEEE. (2018) 269-270.

[19] N. Niwa, Y. Shikama, H. Amano & M. Koibuchi, A Case for Low-Latency Network-on-Chip Using Compression Routers, In 2021 29th

Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE. (2021) 134-142.

[20] J. Zhan, M. Poremba, Y. Xu & Y. Xie, NoD: Leveraging Delta Compression for End-to-End Memory Access in Noc Based Multicores,

in Proc. 19th Asia South Pacific Des. Automat. Conf. (2014) 586–591

[21] Y. Zhang, Y. Yuan, D. Feng, C. Wang, X. Wu, L. Yan & S. Wang, Improving Restore Performance for In-Line Backup System

Combining Deduplication and Delta Compression, IEEE Trans. Parallel Distrib. Syst. 31(10) (2020) 2302–2314.

[22] J.R. Stevens, A. Ranjan, & A. Raghunathan, AxBA: An Approximate Bus Architecture Framework, In Proceedings of the International

Conference on Computer-Aided Design. (2018) 1-8.

[23] Y. Chen & A. Louri, An Online Quality Management Framework for Approximate Communication in Network-On-Chips,

In Proceedings of the ACM International Conference on Supercomputing. (2019) 217-226.

Dharmendra Patel et al. / IJETT, 70(6), 195-208, 2022

208

[24] Y. Chen, M.F. Reza & A. Louri, DEC-NoC: An Approximate Framework Based on Dynamic Error Control with Applications to

Energy-Efficient NoCs, In 2018 IEEE 36th International Conference on Computer Design ICCD, IEEE. (2018) 480-487.

[25] S. Xiao, X. Wang, M. Palesi, A.K. Singh, L. Wang, & T. Mak, On Performance Optimization and Quality Control for Approximate-

Communication-Enabled Networks-on-Chip, IEEE Transactions on Computers. 70(11) (2020) 1817-1830.

[26] Y. Chen & A. Louri, An Approximate Communication Framework for Network-on-Chips, IEEE Transactions on Parallel and

Distributed Systems. 31(6) (2020) 1434-1446.

[27] IEEE Standards Committee et al., IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society Standard. 517 (2008).

[28] Krutthika H.K, A R Aswatha, Design of Efficient FSM Based 3D Network on Chip Architecture, International Journal of Engineering

Trends and Technology. 68(10) (2020):67-73.

