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Abstract - Fitness Landscape Analysis is a well-known method that has been used to evaluate or predict the performance 

of evolutionary or metaheuristic algorithms for tackling combinatorial optimization problems. Researchers often attempt 

to solve combinatorial optimization problems using metaheuristic algorithms without having proper knowledge of the 

underlying nature and behaviour of the problem. A similar scenario is observed in cryptanalysis using metaheuristic 

methods with limited or unconvincing results. There is no evidence of successful cryptanalysis of modern block ciphers 

such as DES or AES using metaheuristics except for toy, weakened or classical ciphers. This work aims at establishing 

whether metaheuristics, in general, is an efficient and promising approach to solving the problem of cryptanalysis of block 

ciphers. FLA has been used for this purpose. Experimental investigations reveal that the failure of cryptanalysis might be 

due to the high level of the ruggedness of the fitness landscape of the cryptographic keys. Furthermore, it is shown that the 

terrain of the fitness of cryptographic keys tends to become more rugged as the key space becomes larger, which, at this 

stage, tends to indicate that metaheuristic algorithms may not be very appropriate to perform rigorous cryptanalysis. 

Keywords - Block Cipher, Cryptanalysis, Fitness Landscape Analysis, Local Optima Network, Metaheuristics. 

1. Introduction 
Cryptanalysis of block ciphers can be viewed as a 

problem in combinatorial optimization, whereby the main 

goal is to search for the secret cryptographic key that has 

been used to encrypt the plaintext into the ciphertext. One 

method of black-box known-text attack of modern block 

ciphers is to use metaheuristic algorithms for cryptanalysis. 

Several works have shown that metaheuristics can be used 

to perform the cryptanalysis of classical ciphers [1], [2], 

[3], [4]. Numerous attempts to attack block ciphers with 

comparative results have been suggested by some authors 

[5], [6], [7]. However, if at all, there is very little evidence 

that successful cryptanalysis of modern ciphers can be 

achieved using metaheuristics. Most of the works evaluate 

and compare the efficiency of one metaheuristic algorithm 

with another for the problem of cryptanalysis. 

Metaheuristics have the natural particularity of being 

relatively simple algorithms and easy to implement and 

might be the best alternative resort when no other method 

works. Unfortunately, metaheuristic algorithms have 

inherent drawbacks: firstly, they cannot assure the optimal 

solution to a problem; secondly, experimental 

metaheuristic optimization results are irreproducible. And 

lastly, metaheuristics are frequently trapped in local optima 

leading to suboptimal solutions. 

 

 

 

The No Free Lunch (NFL) theorem states that the 

overall average performance of different algorithms on a 

class of problems is comparably similar [8]. Consequently, 

comparing the performance of different metaheuristic 

algorithms in an attempt to tackle a combinatorial 

optimization problem might prove to be futile. A way must 

be devised to pre-establish whether a chosen algorithm can 

solve a given combinatorial problem. Furthermore, given 

the growing plethora of metaheuristic algorithms such as 

the Firefly algorithm or Whale optimization algorithm as 

chronologically enumerated in the historical survey [9], the 

systematic selection of the most efficient ones for a 

problem at hand becomes challenging.  

 

This work performs an in-depth FLA of the key search 

space for two specific block cryptographic algorithms: 

reduced versions of DES and AES. The purpose is to 

determine the suitability of the algorithm for doing 

cryptanalysis. More precisely, the local search 

methodology is used to study the characteristics of the 

fitness landscape of cryptographic keys of block ciphers. 

Fitness landscape analysis can assess the complexity of an 

optimization problem and consequently help design 

algorithms with higher efficiency. Furthermore, it gives the 

researcher an informed insight into the hardness of the 

given problem based on its characteristics. It provides 

substance to predict the success or deceptiveness of an 

optimization algorithm.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The prime motivation of fitness landscape analysis is to 

investigate the search space from the local search 

perspective. Therefore, this paper is organized as follows: 

In Section 2, an account of the idea of fitness landscape as 

applied to combinatorial problems and some definitions 

and metrics. In Section 3, the novel complementary 

method of Local Optima Networks is described by 

examining some specific and relevant metrics for the 

cryptanalysis problem. The methodology section conducts 

an in-depth fitness landscape analysis for cryptanalysis of a 

few miniaturized versions of modern block ciphers. The 

results of the investigations are afterward reported and 

discussed. In the conclusion section, the findings of the 

current work are summarized, and the potential future 

research directions are proposed. 

 

2. Background 

2.1. Definitions 

The definitions below will prove useful in the 

following subsections: 

A genotype is a set of genes (attributes) of a given 

organism (object, individual, solution). 

A phenotype is an observable characteristic (value) of a 

genotype of an organism. An organism's phenotype 

depends on its genotype, environmental (not inherited), 

and epigenetic (inherited) factors. 

An Individual is an abstraction of a solution to a 

problem. 

Fitness is a quantitative measure of the success of 

survival or reproduction of a phenotype. 

2.2. Fitness Landscapes 

The concept of fitness landscapes emanates from the 

field of theoretical biology. Sewall Wright [10] is the first 

author to introduce the idea of a fitness function defined 

over a collection of genotypes. The plot of all potential 

solutions to a given problem against their corresponding 

fitness is known as the fitness landscape of the problem. 

The term was first coined by Kauffman and Levin in [11]. 

Simply stated, the fitness landscape exposes the fitness 

behavior of the different individuals in the search space 

concerning each other. On a two-dimensional plot of 

fitness against the solutions of a search space, a line may 

be observed with hills, mountains, dips, and valleys, as 

shown in 

 
Fig. 1.  

 

 
 

 
Fig. 1 Fitness Landscape 

 

For a maximization problem, the hill peaks represent 

potential solutions (local optima), whereas the highest peak 

is the global optimum. The fitness landscape model of a 

problem is an abstract expression of the interrelationships 

among the genotype, phenotype, and fitness of solutions to 

the problem. Fitness landscapes represent the dynamic 

behaviour of evolutionary processes. Evolution is the 

defining factor of the success or failure of a species (a 

collection of individuals). 

 

Heuristic search methods such as metaheuristics and 

evolutionary algorithms attempt to locate the optimal 

solution(s) in huge n-dimensional spaces of candidate 

solutions, where n is the problem’s dimension. The search 

space may be conceptualized as a collection of points in an 

n-dimensional spatial structure. Each point represents a 

candidate solution and has fitness. The scatter plot of the 

points against fitness produces the fitness landscape 

surface. Interestingly, this fitness landscape structure 

reveals important insights into the complexity and the 

efficiency of the heuristic search algorithm(s) on the 

problem at hand. 

 

Stadler [14] formally defines a fitness landscape 

composed of a triplet (𝑋, 𝒩, 𝑓), where 

• 𝑋 – search space, the set of genotypes 

• 𝒩 – neighbourhood relation, 𝒩: 𝑋 → 2𝑋 

• 𝑓 – objective, fitness or cost function, 𝑓: 𝑋 → ℝ 

 

The fitness of a solution is a numerical measure of the 

quality of a potential solution to a problem. The scatter plot 

of phenotype (candidate solutions) against their 

corresponding fitness produces a fitness landscape.  
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It is important to emphasize the operator(s), often 

simple, which transform a potential solution into another, 

thus enabling the “discovery” of the neighbourhood of a 

particular solution. Two neighbours are separated by a 

distance, which a distance function can determine (e.g., 

Hamming distance). 
 

The following concepts are related to fitness 

landscapes: 
 

Ruggedness: A measure of roughness or unevenness of a 

surface. It is generally presumed that search is easier in 

smooth landscapes than in rugged ones. 

 

Random Walk: A path through the search space in the 

neighbourhood of a particular solution, starting with an 

initial solution, 𝑠0. 

 

Hill Climbing: A procedure that traverses the search space 

of a problem by starting with a random solution, then 

iteratively improves the solution by incrementally 

modifying it until no further improvement is possible. 

There are two variants of hill-climbing: Best Improvement 

and First Improvement. The Best-Improvement hill-

climbing approach authorizes a movement to the neighbour 

with the highest fitness in the individual’s neighbourhood. 

The First-Improvement approach moves towards the first 

solution whose fitness is higher than the current one.  

2.3. The essence of metaheuristic algorithms 

Some combinatorial optimization problems are 

extremely complex to be addressed using traditional exact 

algorithms. In such cases, approximate algorithms provide 

an alternative route toward solving the problem. 

Metaheuristic algorithms (MA) fall under approximate 

algorithms that guide the search process based on some 

heuristic rule(s). The term “metaheuristic” was first 

introduced by Glover [12]. While there are several 

different definitions for metaheuristics, it is commonly 

agreed that “a metaheuristic is a strategy that guides the 

search process towards a (near-)optimal solution” [13]. 

MA incorporates mechanisms, namely, intensification and 

diversification, to avoid being trapped in local solutions. 

Nonetheless, MA cannot guarantee a global solution to a 

problem, though good-enough solutions may be obtained. 

2.4. Fitness Landscape Analysis 

During the last decade, the analysis of fitness 

landscapes has been applied extensively in performing the 

following [15]: 

 

(a) comprehension of complex problems 

(b) analysis and interpretation of algorithm behaviour 

(c) algorithm performance prediction 

(d) parameter configuration of algorithms 

(e) automated algorithm selection 

 

FLA helps to establish whether the solutions in a 

search space are related and whether bonds, structures, or 

patterns are observed among them. FLA is a huge 

resource-consuming activity for moderate to large complex 

problems. Consequently, performing a one-time FLA to 

gain problem insights is expensive and probably futile. 

However, FLA is highly relevant for obtaining a deeper 

understanding of problems falling into the NP-hard class 

[16]. 

 

3. Fitness Landscape Analysis Metrics 
An FLA can be conducted using two complementary 

approaches: Statistical and Informational. Malan et al. [17] 

identified 22 techniques for analysing fitness landscapes 

based on ruggedness, modality, and evolvability metrics. 

Recently, Malan [15] extended the survey with 11 

additional methods for landscape analysis ranging from 

Local Optima Networks to loss-gradient clouds. Some of 

the enumerated techniques provide metrics that may help 

assess the effectiveness of metaheuristics in solving a class 

of problems. However, the assessment of the hardness of a 

problem based only on one metric might be too risky. On 

the other hand, too many metrics for such a task could be 

confusing and misleading. Furthermore, the efficiency of a 

metaheuristic approach depends on the selection of the 

particular algorithm, its proper parameter calibration, and 

the characteristics of the problem at hand. 

3.1. Statistical Metrics 

In statistical FLA, the following metrics are useful to 

obtain a coarse view of the hardness of the problem based 

on its fitness landscape. 

3.1.1. Fitness Distance Correlation 

Jones introduced Fitness Distance Correlation (FDC) as 

a measure of problem difficulty [18]. It characterizes the 

correlation between fitness values and their corresponding 

distance to the optimal global solution. The FDC can be 

calculated by Equation (1). 

 

𝐹𝐷𝐶 =  
1

𝑛
∑ (𝑓𝑖−𝑓̅)(𝑑𝑖−�̅�)𝑛

𝑖=1

𝜎𝐹𝜎𝐷
  (1) 

 

where 𝑛 is the total number of solutions, 𝑓𝑖 is the 

fitness of the ith solution and 𝑑𝑖 Represents the distance of 

the ith solution to the global solution. 𝜎𝐹 represents the 

standard deviation of fitness whereas 𝜎𝐷 is the standard 

deviation of distance. The Equation may be adapted for a 

representative sample of random individuals. Jones [18] 

formulated that the difficulty of a problem could be 

deduced from the calculated value of its FDC according to 

Table 1. 

Table 1. Fitness Distance Correlation 

Fitness Distance Correlation Meaning 

FDC ≤ −0.15 "Easy" 

−0.15 < FDC <0.15 "Difficult" 

FDC ≥ 0.15 "Deceptive" 

3.1.2. Fitness Autocorrelation Coefficient 

The fitness autocorrelation coefficient, 𝜌, is the 

correlation between adjacent fitnesses and measures the 

extent of ruggedness present within a fitness landscape 

[19]. Autocorrelation is the correlation coefficient that 

characterizes a relationship between values of the same 

data series at a given interval (called a lag) in a time series. 

It can be calculated by recording the fitness of visited 
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solutions during a random walk of arbitrary length in the 

search space using Equation (2). 

 

𝜌(𝑙𝑎𝑔) =  
∑ (𝑓(𝑥𝑖)−𝑓̅)(𝑓(𝑥𝑖+𝑙𝑎𝑔)−𝑓̅)

𝑛−𝑙𝑎𝑔
𝑖=1

𝜎2(𝑓(𝑥𝑖))
 (2) 

 

where 𝑓(𝑥𝑖) is the calculated fitness of the solution 𝑥𝑖, 

     𝑓 ̅– the mean fitness in the random walk of 𝑛 steps, 

    𝑙𝑎𝑔 – the number of steps ahead of the current 

solution, 

   𝜎2 – the variance in fitness. 

 

A random walk of 𝑛 ≈ 1000 steps is sufficient for a 

good estimate of the autocorrelation coefficient [19]. 

 

The autocorrelation length, τ, is the reciprocal of the 

autocorrelation coefficient with lag = 1. The 

autocorrelation length is the distance beyond which 

solutions become uncorrelated. 

 

𝜏 =  −
1

𝜌(1)
 (3) 

 

A small value of τ indicates a rugged landscape, 

whereas a long τ means a smooth landscape. 

3.2. Entropy Metrics 

Statistical Fitness Landscape Analysis metrics based 

on correlation permit the study of fitness landscapes but 

give only a coarse picture of the landscape’s structure. 

Additional information is required to gain a detailed 

understanding of the landscape. Vassilev et al. [20] 

propose a set of entropy (or information) measures to 

define the topography of a fitness landscape by analyzing 

random walks over the landscape. The analysis of a 

random walk of 𝑛 steps on a landscape ℒ produces a 

sequence of fitness values {𝑓𝑡}𝑡=0
𝑛 , which holds features 

about the landscape structure. This information can be 

represented as a string 𝑆(𝜀) = 𝑠1𝑠2 ⋯ 𝑠𝑛 , where 𝑠𝑖 ∈
{1̅, 0, 1} as defined in Equation (4). 

𝑠𝑖 = 𝛹𝑓𝑡
(𝑖, 𝜀) = {

1̅, 𝑖𝑓 𝑓𝑖−1 − 𝑓𝑖 > 𝜀  

0, 𝑖𝑓 |𝑓𝑖 − 𝑓𝑖−1| ≤ 𝜀

1, 𝑖𝑓 𝑓𝑖 − 𝑓𝑖−1 > 𝜀   

 (4) 

 

Where 𝜀 is the difference in fitness between adjacent 

points on a path and  𝜀 ∈ ℐ. ℐ is the range of fitness values. 

The symbol 1̅ characterizes a downward slope () from 

the previous fitness to the next, 0 represents a flat 

transition (), whereas 1 denotes an upward slope (). 

The choice of 𝜀 affects the accuracy of the derivation of 

string 𝑆(𝜀). The string 𝑆(𝜀) can be viewed as a sequence of 

pairs of characters, 𝑠𝑖𝑠𝑖+1I.e., a substring of length 2. The 

value of 𝜀 should be chosen less than 𝜀∗, the information 

stability. The information measures proposed by Vassilev 

et al. [20] are described in the following subsections. The 

salient advantage of Information FLA is that it is based 

upon random walks, and the exhaustive analysis of the 

whole search space is not required. It makes the technique 

particularly attractive, especially for large search spaces. 

 

However, this proposed statistical analysis has an 

inherent drawback as it presumes that the landscape is 

statistically isotropic [38]. The statistical information 

derived from the random walks is assumed to be 

independent of the walk's starting point and depends only 

on the genotype distance. Any adequately long walk in any 

direction is assumed to yield similar results. Unfortunately, 

this assumption does not always hold for constrained 

combinatorial problems. 

3.2.1. Information Content 

The information content, 𝐻(𝜀), of a walk on a fitness 

landscape provides a measure of the amount of entropy in 

the structure of the landscape and can be calculated using 

Equation (5).  

 

𝐻(𝜀) =  − ∑ 𝑃[𝑝𝑞]𝑝≠𝑞 𝑙𝑜𝑔6 𝑃[𝑝𝑞] (5) 

 
𝑃[𝑝𝑞] is the probability of the block 𝑝𝑞 in the 

information string. 𝑛[𝑝𝑞] is the frequency of 𝑝𝑞 in 𝑆(𝜀), 

and 𝑛 is the number of substrings of length 2. The 

logarithm in Equation (5) is off base 6 because #𝑝𝑞 = 6. 

Hence the information content is normalised in the range 

[0, 1]. Information content measures the percentage of 

divergence in sequential fitness values for the chosen 

parameter, 𝜀. Hence, it pertains to the ruggedness, 

smoothness, and neutrality of the landscape's surface. 

3.2.2. Partial Information Content 

The partial information content, 𝑀(𝜀), of a walk on 

the landscape is a characteristic that is directly associated 

with the number of local optima as it characterizes the 

slope changes in the walk. 𝑀(𝜀) is calculated by Equation 

(6). 

𝑀(𝜀) =  
𝜇

𝑛
 (6) 

 

where 𝜇 is the length of 𝑆′(𝜀) , a special string derived 

from 𝑆(𝜀). String 𝑆′(𝜀)  is obtained by removing all 0’s 

and duplicating adjacent values from 𝑆(𝜀). Hence, 𝑆′(𝜀) is 

obtained by eliminating unimportant parts of 𝑆(𝜀). The 

length of 𝑆′(𝜀) is 𝜇, the modality of the path on the 

landscape. 

 

The number of optima of a path ℓ of a landscape with 

partial information content, 𝑀(𝜀), can be calculated as : 

 

#𝑜𝑝𝑡𝑖𝑚𝑎(ℓ) = ⌊
𝑛𝑀(𝜀)

2
⌋ (7) 

 

When a landscape path is flat, i.e., without any slopes, 

then the partial information content 𝑀(𝜀) equals 0. When 

𝑀(𝜀) is equal to 1, then the landscape path contains the 

highest number of optima. 

3.2.3. Landscape Modality 

The modality of a fitness landscape is characterised by 

the number of local optima and their distribution in a 

search space. A landscape with only one optimum is called 

unimodal, whereas bimodal with two optima and 

multimodal with many optima. It is still unknown how 
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landscape modality affects search complexity; however, it 

is established that unimodal landscapes may be difficult to 

search [22], and multimodal landscapes may be adapted to 

improve search efficiency [23]. Landscape modality is also 

associated with the magnitude of the basins of attraction of 

the optima. The degree of isolation of an optimum solution 

is determined by the number of solutions present within its 

basin of attraction. Hence, a larger basin of attraction leads 

to a smaller degree of isolation and vice versa. 

Furthermore, evolutionary search may present different 

levels of difficulty for landscapes with equal number of 

optima [20]. 

3.2.4. Density-Basin Information 

The density-basin information is a landscape feature 

that assesses the amount of neutral and smooth sections on 

a landscape [20]. For a landscape path expressed as a string 

𝑆(𝜀), the density-basin information is calculated using 

Equation (8). 

 

ℎ(𝜀) =  − ∑ 𝑃[𝑝𝑝]𝑝∈{1̅,0,1} 𝑙𝑜𝑔3 𝑃[𝑝𝑝] (8) 

 

The log of base 3 is taken because there are three 

blocks of interest, namely, 1̅1̅11 and 00. The higher the 

density-basin information, the more neutral or smoother 

the landscape. 

3.2.5. Information Stability 

The difference, ε, between adjacent fitnesses on a path 

determines the accuracy of the information content and the 

partial information content on a landscape. The minimum 

value of 𝜀, denoted by 𝜀∗, for which the string 𝑆𝑖(𝜀) 

Becomes all zeros is known as the information stability 

shown in Equation (9). 

 

𝜀∗ = 𝑚𝑖𝑛 {𝜀, 𝑆𝑖(𝜀) = 0} (9) 

 

Conceptually, the information stability is the largest 

difference between consecutive neighbours in a random 

walk. Information stability, 𝜀∗, characterizes ruggedness, 

smoothness, and neutrality of fitness landscapes. Large 

values of 𝜀∗ Corresponds to highly rugged landscapes, 

whereas smaller values relate to smooth ones. 

 

4. Local Optima Networks 
Network structures show interconnections among 

entities in a system. Lately, much attention has been 

devoted to studying and analyzing networked systems such 

as transportation, professional or social interaction, and 

biological systems. Statistical features and metrics of such 

networks provide deeper insight and understanding of how 

such systems operate and reveal approaches to optimize 

them. This work investigates the use of network structures 

to study the fitness landscapes of cryptographic algorithms, 

particularly local optima networks. 

 

The Local Optima Networks (LONs) techniques offer 

an alternative model of fitness landscapes based on graphs 

[24] and are inspired by the analysis of landscapes of 

energy in theoretical chemistry [25]. LONs model a search 

space as a weighted directed network whose nodes 

represent local optima, whereas edges display potential 

transitions among optima. The size of the nodes 

corresponds to the size of the basin of attraction. The 

weight of the directed edges gives a quantitative measure 

of the probability of a potential transition between two 

connected optima. This approach is useful but requires an 

exhaustive treatment of the basins of attraction and 

produces a densely connected network. Another approach 

is to consider escape edges [26], in which the edges’ 

weight accounts for the probability of escaping a local 

optimum by hill-climbing following a controlled mutation. 

One achieves a controlled mutation by flipping one or two 

bits in the current individual in the search space.  
 

It is now a fact that the analysis of local optima 

networks of certain combinatorial problems shows striking 

correlations between the LON features and the search 

difficulty of the problem.  
 

A basin of attraction is a region where all the solutions 

lead towards the same local optimum (the attractor) and are 

subjected to a hill-climbing operation. The number of 

solutions, including the optimal solution, that fall into this 

area is known as the size of the basin of attraction. The 

basin of attraction surrounding optimum local yields a 

partition in the search space.  

 
shows a partial search space with local optima 

surrounded by their respective basin of attraction. The 

boundary of a basin of attraction is a set of solutions that 

have at least one neighbour in another basin. During 

landscape traversal, boundary elements allow the transition 

between basins of attraction with a certain probability 

within a search space. It is known as basin transition. 

 

Fig. 2 Basin of Attraction with Local Optima 
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Another approach is to treat the weight of the edges as 

representing the probability of escaping the basin of 

attraction of a local optimum after a mutative operation (of 

one or two-bit flips in a binary space) followed by a local 

search step (hill-climbing). These edges are known as 

escape edges and do not require an exhaustive evaluation 

of the basins of attraction [26]. 

 

Consequently, the LON model consisting of a 

weighted and directed graph permits the analysis and 

evaluation of the global terrain of a fitness landscape by 

identifying the local optima in the search space and 

examining the transitions among them. 

4.1. General Characteristics of Weighted Networks 

A network (or graph) has 𝑁 nodes (also known as 

vertices) and 𝑀 edges (links) between pairs of nodes. Each 

node is numbered, 𝑗 =  1, … , 𝑁. The structure of a network 

is represented by an 𝑁 × 𝑁 matrix 𝐴 = {𝑎𝑖𝑗} and an edge 

that connects node i to j has weight 𝑤𝑖𝑗 . Sometimes, the 

weights are normalized so that they fall in the range [0, 1] 

by dividing all the weights by the largest weight; i.e., the 

normalized weights are 𝑤𝑖𝑗 max (𝑤𝑖𝑗)⁄ . If the direction of 

the link between nodes is important, then a directed graph 

is formed. The LON metrics of interest are summarized in 

Table 2. 

Table 2. Local Optima Network Metrics 

Notation Description 

𝑓𝑖𝑡 The average fitness of local optima 

𝑧𝑜𝑢𝑡 Average out-degree 

𝑤𝑖𝑖 The average weight of self-loops 

𝑦2 The average disparity for out-going 

edges 

𝑘𝑛𝑛 Weighted assortativity 

𝑤𝑐𝑐 Average weighted clustering coefficient 

𝑓𝑛𝑛 Fitness-to-fitness correlation 

 

The definitions of the main and auxiliary LON metrics 

are given below. 

The vertex strength 𝑠𝑖 is a measure of the importance, 

or centrality, of the vertex 𝑣𝑖 is calculated as the total 

weight of its immediate neighbours using Equation (10). 

 

𝑠𝑖 = ∑ 𝑎𝑖𝑗𝑤𝑖𝑗
𝑁
𝑗=1  (10) 

 

The vertex degree, 𝑘𝑖𝐼s the number of connected 

vertices to the vertex. For a directed graph, the number of 

incoming connections is known as in-degree, 𝑘𝑖
𝑖𝑛And the 

number of out-going connections is known as the out-

degree, 𝑘𝑖
𝑜𝑢𝑡. Intuitively, 𝑘𝑖 =  𝑘𝑖

𝑖𝑛 + 𝑘𝑖
𝑜𝑢𝑡  . 

 

The average fitness of the local optima gives an 

estimate of the overall quality of the optima. The higher 

the average fitness, the larger the basins of attractions, and 

the higher the chance for a successful search process. 

 

A self-loop to a basin indicates that starting with a local 

optimum followed by a series of random moves ends 

within the same basin. If the weight of the self-loop is 

high, then the probability that a random move ends within 

the same basin is high. If the average self-loop weight is 

high, then the search process will likely be trapped in local 

optima basins. 

 

The disparity measures the diversity of the weight 

proportions of the edges of node i to the total weight and is 

calculated using Equation (11).  

 

𝑌2(𝑖) =  ∑ [
𝑤𝑖𝑗

𝑠𝑖
]

2

𝑗∈𝒱(𝑖)           (11) 

 

where 𝑠𝑖 =  ∑ 𝑤𝑖𝑗𝑗≠𝑖  Termed as the strength of the ith 

vertex. This parameter reveals whether there are 

preferential directions when a walk leaves a given node in 

the network.  

 

The weighted assortativity is a measure of preference 

for a node in a network to attach to others based on a 

particular feature(s). The assortativity coefficient of a 

network is defined as the Pearson correlation coefficient of 

vertex degree between pairs of connected vertices, as 

shown in Equation (12). It measures the tendencies of 

nodes of a network to connect with other nodes [27]. 

 

𝑘𝑛𝑛,𝑖
𝑤 =  

1

𝑠𝑖
∑ 𝑎𝑖𝑗𝑤𝑖𝑗𝑘𝑗

𝑁
𝑗=1  (12) 

 

where 𝑠𝑖 – the strength of ith node 

The assortativity of a weighted and directed graph, 

G(V, E), can be calculated using the Equation (13) based 

on the sample Pearson correlation coefficient 

 

𝜌𝑋,𝑌(𝐺) =  
∑ 𝑤𝑖𝑗(𝑋𝑖 − �̅�𝑠𝑜𝑢𝑟𝑐𝑒)(𝑌𝑗 − �̅�𝑡𝑎𝑟𝑔𝑒𝑡)𝑖,𝑗∈𝑉

𝑊𝜎𝑋𝜎𝑌

(13) 

where 

        𝑊 = ∑ 𝑤𝑖𝑗𝑖,𝑗∈𝑉                                         (14) 

 

When a network mixes assortatively (i.e., with a 

positive assortativity), then its high-degree nodes tend to 

group, forming a subnetwork with a higher mean degree 

than the rest of the network [28] hence enhancing higher 

connectivity and reachability among vertices of the whole 

network. The assortativity coefficient of a network ranges 

from -1 to +1. When closer to -1, it indicates that two 

nodes of similar properties might not be related. When its 

value approaches +1, there exists a high likelihood that two 

nodes of similar properties are connected. 

The average weighted clustering coefficient, 𝑤𝑐𝑐, of a 

network is a measure of the tendency of nodes of the graph 

to a group. The overall average weighted clustering 

coefficient can be calculated using Equation (15). 

 

 𝑤𝑐𝑐 =  
1

𝑛
∑ 𝑐𝑖

𝑤
𝑖                                              (15) 

 

The weighted clustering coefficient, 𝑐𝑖
𝑤 The node in a 

network is a measure of local cohesiveness 

(“cliquishness”) of a neighbourhood based on the degree 
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and strength of the node formed by a triplet (triangle) of 

nodes 𝑖, 𝑗, and ℎ. It is calculated by Equation (16). 

 

𝑐𝑖
𝑤 =  

1

𝑠𝑖(𝑘𝑖−1)
∑

(𝑤𝑖𝑗+𝑤𝑖ℎ)

2
𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ𝑗,𝑘  (16) 

 

The fitness-to-fitness correlation metric, 𝑓𝑛𝑛, gives the 

average correlation between fitness values of connected 

local optima of the whole network. The fitness-to-fitness 

correlation of a given vertex can be calculated using the 

Spearman rank correlation coefficient between the fitness 

of the ith vertex and the weighted average of its 

neighbourhood vertices. 

 

𝑓𝑛𝑛,𝑖
𝑤 =  

1

𝑠𝑖
∑ 𝑤𝑖𝑗𝑓𝑗

𝑛𝑖
𝑗≠𝑖                                             (17) 

 

where 𝑛𝑖 is the neighbours of the ith vertex, and 𝑠𝑖.is the 

strength of the ith node. 

 

5. Methodology 
In broad terms, this endeavor aims to apply FLA to 

investigate the pertinence and performance of 

metaheuristic algorithms in the cryptanalysis of block 

ciphers. The procedure is split into two steps. Firstly, the 

general Fitness Landscape Analytic metrics are evaluated 

to assess the difficulty of the block-cipher cryptanalysis 

problem. The second step consists of modelling the fitness 

landscape using the Local Optima Network approach to 

extract additional features and information about the 

fitness landscape. Consequently, it is anticipated that 

sufficient insights will be gained from the fitness landscape 

of cryptographic keys of a few selected block ciphers to 

understand, assess and improve cryptanalysis by 

metaheuristics. The general framework for the fitness 

landscape analysis is shown in Fig. 3. 

 
Fig. 3 Fitness Landscape Framework Setup 

 

This work analyzes simple block ciphers with small 

keys (8 to 16 bits). Such tiny-key ciphers are 

cryptographically weak but are complex enough to mimic 

the architecture of their stronger versions. Consequently, 

the exhaustive set of keys may be generated and their 

fitness calculated using the fitness calculator, 𝑓(𝑘): 

 

𝑓(𝑘) =  
1

𝑑⋅𝑛
∑ #(𝑒(𝑘∗, 𝑝𝑖) ⊙ 𝑒(𝑘, 𝑝𝑖))𝑛

𝑖=1  (18) 

 

where 𝑑 is the data block size and 𝑛 is the number of 

plaintext/ciphertext pairs available for known text 

cryptanalysis using 𝑘∗It is the actual key. 𝑒(𝑘, 𝑝) is the 

ciphertext bitstring obtained after the encryption of 

plaintext 𝑝 using key 𝑘. ⊙ are the 𝑋𝑁𝑂𝑅 operator, and # 

counts the number of bits set to 1. The data and key can be 

represented as bit strings per their cryptographic 

specifications. 

 

It is important to note that for a given block cipher, the 

fitness landscape is expected to be static, i.e., it does not 

change each time it is generated. However, in our case, 

because the fitness of a cryptographic key is based on 

random plaintext-ciphertext pairs, it could be different, 

though with an insignificant difference, if calculated with a 

different collection of plaintext-ciphertext pairs.  

 

The known-text cryptanalytic attack strategy is used 

whereby, for a selected block cipher, a finite collection of 

𝑛 plaintext/ciphertext pairs are created by making use of 

the (selected) key 𝑘∗ Being cryptanalysed. The following 

cryptographic schemes were analysed: 

Table 3. Cryptographic Schemes under study 

Cipher Acronym 
Key 

Size 

Block 

Size 

Simplified AES [29] AES8 8 8 

Simplified DES [30] DES10 10 8 

Simplified AES [29] AES12 12 12 

Mini AES [31] AES16 16 16 

5.1. Exhaustive Fitness Landscape metrics 

For the Simplified DES and AES versions listed in 

Table 3, the exhaustive set of keys, 𝑘, in the search space is 

generated, and for a specifically selected key, 𝑘∗The 

fitness for each key, 𝑓(𝑘), is calculated and stored in an 

array. The fitness of 𝑘∗is the 1.0. First, an arbitrary key is 

selected as the cryptographic key somewhere midway in 

the search space, and the remaining keys are plotted 

against their calculated fitness. Furthermore, the frequency 

distribution of the fitness among the keys can also be 

plotted. These two plots shall give a general visualization 

of the distribution of the fitness of the keys over the entire 

search space. 
 

The above experiment is executed several times with 

different chosen cryptographic keys. Ideally, every key 

could be designated as the encryption key and 

systematically generate the exhaustive array of 

corresponding fitness values. However, only a few 

randomly selected keys are used as the cryptographic key, 

one at a time, while others act as potential keys (solutions). 

The average fitness-distance correlation and the average 

fitness autocorrelation coefficients are calculated for a 

sample of selected keys. 

5.2. Local Optima Network Analysis 

The LON analysis starts with constructing the LON, 

which consists of identifying the local optima (the vertices) 

and establishing the connections (the edges with 

corresponding weights) among them. The edges can be 

either escape edges or basin transition edges. An escape 

edge exists between two local optima if there is some 

solution s, which is at most at a distance D steps away 

from one optimum. Still, it can reach the other optimum if 

subjected to a controlled mutation (one or two-bit flips) 

followed by a hill-climb. Two local optima have a basin 
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transition if at least one solution belongs to both basins of 

attraction. The weight of the edge between the two optima 

is the number of solutions that satisfy the criteria 

mentioned. Implementing the connections with escape 

edges is privileged instead of basin transition edges, as the 

former yields a less dense LON [32]. J. E. Fieldsend [33] 

has proposed a computationally efficient LON construction 

Java package, which has proved to be exceptionally fast 

with large LONs. This package has been adapted for the 

LON construction for the cryptanalysis problem. 

Additionally, for each identified local optimum, the fitness 

value and corresponding basin size are computed and 

recorded in a CSV file for further processing in the 

network analysis software. 
 

Since the search space of this problem is relatively 

small, the exhaustive set of local optima (vertices) is 

identified using the algorithm given in Fig. 4. The 

algorithm for extracting the escape edges is given in Fig. 6, 

and the auxiliary hill-climb operation is shown in Fig. 5. 
 

Algorithm: Extract LON Vertices  

1: def 𝑉 ← { } as the list of vertices 

2: foreach 𝑥 ∈ 𝑋 do 

3: 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑢𝑚 ← 𝑡𝑟𝑢𝑒 

4: 𝑖 ← 1 

5: while 𝑥 𝑖 ∈  𝒩(𝑥) 𝐴𝑁𝐷 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑢𝑚 do 

6: if 𝑓(𝑥) < 𝑓(𝑥𝑖) then 

7: 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑢𝑚 ← 𝑓𝑎𝑙𝑠𝑒 

8: endif 

9: 𝑖 ← 𝑖 + 1 

10: end while 

11: if 𝑖𝑠𝑂𝑝𝑡𝑖𝑚𝑢𝑚 then 

12: 𝑉 ← 𝑉 ∪ {𝑥} 

13: end if 

14: end for 

15: return 𝑉 

Fig. 4 LON Vertices Extraction Algorithm 

Algorithm: 𝒉𝒊𝒍𝒍𝒄𝒍𝒊𝒎𝒃(𝒙, 𝑿, 𝒇, 𝓝) 

1: def 𝑣 as local optimum 

2: 𝑣 ← 𝑥 

3: foreach 𝑢 ∈  𝒩(𝑥) do 

4: if 𝑓(𝑢) > 𝑓(𝑣) then 

5: 𝑣 ← 𝑢 

6: endif 

7: end for 

8: if 𝑣 ≠ 𝑥, then 

9: 𝑣 ← ℎ𝑖𝑙𝑙𝑐𝑙𝑖𝑚𝑏(𝑣, 𝑋, 𝑓, 𝒩) 

10: end if 

11: return 𝑣 

Fig. 5 Hill-climb Algorithm 

 

 

 

 

 

Algorithm: Extract Escape Edges 

1: def 𝑉 as a set of local optima  

2: def 𝑛 as #𝑉 

3: def 𝑚 as neighbourhood Hamming distance 

4: def 𝐴[1. . 𝑛][1. . 𝑛] ← 0 as an adjacency matrix 

5: def 𝐵[1. . 𝑛]  ← 0 as basin size vector 

6: foreach 𝑥 ∈  𝑋 do 

7: 𝑣 ← ℎ𝑖𝑙𝑙𝑐𝑙𝑖𝑚𝑏(𝑥, 𝑋, 𝑓, 𝒩) 

8: 𝐵[𝑣] ← 𝐵[𝑣] + 1 

9: end for 

10: foreach 𝑣 ∈  𝑉 do 

11: 𝑢 ← ℎ𝑖𝑙𝑙𝑐𝑙𝑖𝑚𝑏(𝑣, 𝑋, 𝑓,  𝒩𝑚) 

12: 𝐴[𝑣][𝑢] ← 𝐴[𝑣][𝑢] + 1 

13: the end for 

14: return 𝐴, 𝐵 

Fig. 6 Escape Edges Extraction Algorithm 

Once the vertices are identified, an adjacency list of the 

resulting network is constructed. The edges and 

corresponding weights are calculated and stored in a CSV 

file. The list of optima (nodes) and edges can be imported 

into network analysis environments for metrics extraction 

and visualisation. In this work, a Java program was 

developed to calculate some LON statistics, and the R 

environment with the network analysis library igraph was 

used for visualisation. For some metrics like disparity and 

assortativity, the standard functions in igraph and R 

language were used. 

 

6. Results and Discussion 
6.1. Statistical FLA Analysis 

The scatter plots of the cryptographic key against 

fitness for the selected ciphers are given in Fig. 7. The 

chosen cryptographic key with fitness 1.0 is marked with a 

star. It can be observed that the fitness is spread around the 

average fitness (0.5). The standard deviation of the fitness 

decreases with the increase of the size of the keys, as 

shown in the top left corner of Fig. 9. Hence, the fitness of 

the keys tends to be closer to the overall mean for larger 

search spaces. It follows that the evolvability of the keys is 

greatly compromised in the band of fitness that does not 

contain any key. It can be observed more clearly in the 

scatter plots for AES12 and AES16 in the fitness region 

between 0.7 and 0.99 in Fig. 7 (c) and Fig. 7 (d).  

 

The results of the frequency distribution of fitness of 

keys are given in Fig. 8. As observed from the bar charts, 

the plots are skewed to the right (lower fitness), with the 

peak at the 0.5-0.6 band as the key size increases. It reveals 

that the larger the key search space, the percentage of 

higher quality keys decreases. In other words, the gap 

between the average solutions and the global optimum 

contain fewer or no solutions. Hence, there is less 

likelihood of average solutions evolving into the global 

optimum, thus making the search more difficult.  

 

The entropic metrics obtained from the experiments 

are summarized in Table 4 and depicted in the plots in Fig. 

7.
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             (a) 

 

             (b) 

 

            (c) 

 

             (d) 

 

Fig. 7 Scatter plots of Fitness vs. Key value 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Frequency Distribution of Fitness of 

Ciphers 
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Table 4. Entropic Fitness Landscape Metrics 

 Cipher 

Fitness Landscape Metric AES8 DES10 AES12 AES16 

Standard Deviation of Fitness, 𝜎𝑓 0.1768 0.0915 0.0524 0.0420 

Average FDC, 𝑟 0.0 -0.163627 -0.002126 -0.000386 

Average Autocorrelation, 𝜌 -0.186586 0.423415 0.176619 0.001227 

Information Content, 𝐻(𝜀) 0.551901 0.426946 0.427924 0.430992 

Partial Information Content, 𝑀(𝜀) 0.659381 0.686394 0.730106 0.714205 

Density-Basin Information, ℎ 0.198301 0.268162 0.243319 0.252595 

Information Stability, 𝜀∗ 0.657267 0.309933 0.254533 0.174633 

(a) 

  

(b) 

 

(c)

 

(d)

 

Fig. 7 Fitness Landscape Analysis Metrics 

 

From Fig. 9(a), it is observed that the standard 

deviation of fitness gradually decreases with key size. 

Hence, as the key size of the ciphers increases, the 

tendency of the fitness of the keys to wrap closer around 

the mean. The average FDC remains approximately zero 

for all ciphers except for DES10, as shown in Fig. 9(b). 

According to the rough classification based on FDC 

proposed by Jones [18], the performance prediction of 

metaheuristics on cryptanalysis of ciphers is summarised in 

Table 5. Hence, the cryptanalysis of DES10 is predicted to 

be “Easy,” while the other ciphers are categorised as 

“difficult.” 

Table 5. Fitness Distance Correlation Coefficient 

Cipher FDC, r Range 
Difficulty 

Class 

AES8 0.0 −0.15 < 𝑟 < 0.15 Difficult 

DES10 -0.163627 𝑟 ≤ −0.15 Easy 

AES12 -0.002126 −0.15 < 𝑟 < 0.15 Difficult 

AES16 -0.000386 −0.15 < 𝑟 < 0.15 Difficult 

 

The results observed while performing cryptanalysis 

using brute force (BF) attack and a few selected 

metaheuristic algorithms; namely, Simulated Annealing 
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(SA), Firefly Algorithm (FA), Tabu Search (TS), and 

Genetic Algorithm (GA), are summarised in .” 

Table 6. The number of generations/loops required for 

cryptanalysis was collected and averaged over 1000 runs 

for each cipher and metaheuristic method. The chosen 

ciphers were cracked relatively rapidly using the selected 

metaheuristic algorithms, although the performance 

prediction for reduced AES was categorised as “difficult.” 

Table 6. Average number of generations for cryptanalysis 

Cipher BF SA FA TS GA 

AES8 128.0 321.13 16.62 7.65 3.72 

DES10 512.0 1134.35 35.55 27.42 3.47 

AES12 2048.0 4787.24 261.04 106.48 42.84 

AES16 32768.0 70292.17 3325.45 1705.90 686.31 

 

Here, " difficult " performance prediction would mean 

“difficult, but not impossible.” This outcome could be 

explained by the relatively small size of the search space of 

the cryptographic keys being studied, whereby the global 

optimum could have been visited by mere luck. 

 

The average autocorrelation plot in Fig. 9(c) shows no 

observed trend with key size. The Information Fitness 

Landscape Analysis metrics are displayed in Fig. 9(d). The 

information content, partial information content, and 

density-basin information metrics are approximately 

constant with an increase in key size. However, the 

information stability decreases gradually with key size. It 

implies that the fitness landscape would paradoxically tend 

to be smoother with the increase in key size. 

 

6.2. FLA using LONs 

The results of FLA based on LONs are listed in Table 

7, and their corresponding plots are displayed in Fig. 8. 

The trends displayed by the LON metrics concerning key 

size can be visually observed from the graphs in Fig. 10. 

 

Table 7. LON Metrics 

 Cipher 

LON Metric AES8 DES10 AES12 AES16 

Average number of optima, 𝒏 51 45 409.04 4333.5 

Average fitness of local optima, 𝒇𝒊𝒕 0.740196 0.655 0.587541 0.571542 

The average weight of self-loops, 𝒘𝒊𝒊 3.705882 5.377778 5.735611 7.916896 

Average out-degree, 𝒛𝒐𝒖𝒕 3.058824 2.866667 4.238763 5.457782 

Average disparity for outgoing edges, 𝒚𝟐 0.019608 0.111111 0.114047 0.087281 

Average weighted assortativity, 𝒌𝒏𝒏 5.941176 6.133333 8.343162 10.60166 

Average weighted clustering coefficient, 𝒘𝒄𝒄 0.169406 0.082901 0.026459 0.027991 

Average fitness-fitness correlation, 𝒇𝒏𝒏 0.657286 0.719186 0.562187 0.54449 
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Fig. 8 LON metrics vs. Key Size 

From the results of the experiments, it is observed that 

the average number of optima, 𝑛, increases exponentially 

as the key size becomes larger. A larger number of local 

optima renders the search space more rugged. 

 

Furthermore, the average fitness, 𝑓𝑖𝑡, of the local 

optima decreases with larger key sizes resulting in lower 

quality solutions during hill-climbing operations. It follows 

that for ciphers with larger key sizes, the fitness of the keys 

shall tend to be lower. The same result has been observed 

in the fitness distribution of keys in Fig. 7. 

 

Larger key size ciphers result in a larger average 

weight of self-loops, 𝑤𝑖𝑖. The growing weight of self-loops 

entails that local search shall have a higher probability of 

being trapped in the local optima basin, which hinders the 

convergence of a metaheuristic search algorithm towards 

the global optimum.  

 

The increasing average out-degree, 𝑧𝑜𝑢𝑡, of nodes in 

the LONs indicates that the number of possible escape 

edges from each node increases with key size. The average 

disparity for out-going edges, 𝑦2, does not show a 

distinctive trend. Its value is observed to be positive for all 

key sizes, which means that the fitness of local optima in a 

chain of local optima tends to increase. However, the 

disparity of each cipher is of low magnitude (<0.12).  

 

The average weighted assortativity, 𝑘𝑛𝑛, is an 

increasing function concerning the key size. It means 

network vertices with similar properties are more likely to 

be highly connected. The average weighted clustering 

coefficient, 𝑤𝑐𝑐, also known as transitivity, of a weighted 

and directed graph, measure thus the average strength 

among all the vertex-triplets forming a network triangle 

[34]. It hence provides another measure of the 

connectedness of vertices in a network. The average fitness 

to fitness correlation, 𝑓𝑛𝑛, shows little variation as the key 

size grows, meaning that the key size does not affect any 

correlation among local optima. 

 

The resulting LONs for each cipher using a selected 

key (for each) are depicted in Fig. 9. The bubbles represent 

the nodes (local and global optima) of the LON, while the 

edges show the possible transitions between the nodes. For 

clarity of the diagrams, the weights of the edges have not 

been displayed. The diameter of a node represents the size 

of its basin of attraction, i.e., the number of neighbourhood 

elements it contains. The colour palette of the nodes ranges 

from dark red (dark grey in grayscale) for nodes with the 

highest fitness to bright yellow (light grey) for nodes with 

lower fitness. Incidentally, the size of the basin of 

attraction of a node is directly proportional to its fitness.  

 

The visualisation of LONs with a small number of 

local optima (Fig. 9 (a) and Fig. 9 (b)) allows the manual 
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tracing of the paths from remote nodes to nodes with 

higher fitness (or higher size of the basin of attraction). 

The sources and sinks can also be seen on the graphs in 

Fig. 9 (a) and Fig. 9 (b). However, the “hairball” LONs of 

larger search spaces shown in Fig. 9 (c) and Fig. 9 (d) is 

denser and more complex. The global optimum is less 

visible, if at all, and the colour gradation among local 

optima is less distinctive. It follows that the local optima 

have approximately similar fitness. 

 

(a) AES8

 

(b) DES10

 

(c) AES12

 

(d) AES16

 

Fig. 9 Visualisation of LONs 

7. Conclusion 
In this paper, an unprecedented formal FLA has been 

conducted to study the fitness landscape of cryptographic 

keys of simple ciphers to gain insight into their landscape 

ruggedness. Consequently, this information is used to 

predict the hardness of search optimisation using 

metaheuristic algorithms. In the first part of the work, 

statistical and informational FLA have been conducted 

based on the work of Jones et al. [18] and Vassilev et al. 

[20], respectively. Results show that cryptographic key 

landscapes are rugged even for small key search spaces, 

which leads to the conclusion that cryptanalysis using 

metaheuristic algorithms is generally “difficult.” 

Furthermore, the present study demonstrates that the 

ruggedness of cryptographic fitness landscape increases 

with the key size. The ruggedness of cryptosystems with 

larger keys is expected to be higher, hence harder to 

cryptanalyze using metaheuristic techniques. 

 

In the second part of the work, a recent novel 

technique known as LONs for FLA is used to analyse 

relationships and connectivity among local optima within a 

network of cryptographic keys. These methods provide a 

unique prospect to perform an exhaustive local search and 

obtain a better grasp of the interrelated features and metrics 

of the fitness landscape. From a mathematical perspective, 

LONs “reduce” the search space from an exhaustive 

enumeration of all the potential solutions to a smaller set of 

local optima and their interrelated features.  
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To summarize, FLA has been successfully used to 

show that the cryptanalysis of miniaturized versions of 

DES and AES is categorised as “difficult” due to their 

highly rugged fitness landscape. FLA metrics based on 

resulting LONs provide additional insights into the 

complexity of the search problem and show trends, which 

can predict the metaheuristic search performance on block 

ciphers. 

 

8. Future Work 
The statistical information (entropy) and network 

analyses of fitness landscapes of cryptographic keys 

provide useful additional insights into the ruggedness of 

fitness landscapes. FLA provides an effective method to 

predict the efficiency of metaheuristic algorithms on the 

cryptanalysis problem. However, the methodology covered 

in this work requires an exhaustive enumeration of 

potential solutions for statistical analysis, which can be 

difficult for very large search spaces. Furthermore, the 

number of local optima for network analysis can 

nonetheless be too large for efficient processing despite 

being much less in number than when compared to an 

exhaustive search. 

 

 

 

Due to memory and processing constraints, it is hard 

to perform exhaustive FLA on modern ciphers, like DES 

and AES, with key sizes larger than 32 bits. One potential 

solution to tackle this problem is to examine the use of 

statistical sampling of a large population of keys and look 

into the sampling of LONs for FLAs. The major challenges 

with this approach involve the efficiency of the sampling 

techniques and the sample representativeness of the 

exhaustive key space. The FLA of modern ciphers based 

on statistical and informational metrics using samples 

instead of the entire population is relatively 

straightforward. The statistical formulae for fitness-

distance and fitness-autocorrelation coefficients can be 

modified for sample data. The informational metrics based 

on entropy do not require any special adaptation as they 

involve hill-climbing walks of a finite length. For the 

sampling of LONs, two promising techniques have been 

proposed, namely, the Snowball Sampling method [35], 

[36] and the Markov-Chain LON sampling approach [37]. 

Initial work has already been started in this direction, and 

the preliminary outcomes indicate to be promising. Based 

on the results of the current work coupled with the 

sampling techniques, it is expected that the FLA of modern 

block ciphers like DES and AES can be achieved to 

forecast the potential performance of metaheuristic 

algorithms on their cryptanalysis. 
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