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Abstract - A sliding mode control design for a railway traction induction motor is presented in this research. In addition, this 

paper discusses modeling, load torque, control design, and simulation using a field-oriented control (FOC) structure with a 

voltage source inverter and space vector modulation. The usefulness of speed control design over the operating range of IM 

with constant, changing, and uncertain parameters will be demonstrated by comparing SMC and PI controllers. The MATLAB 

simulation results will illustrate the efficiency of the traction motor SMC controller when the motor settings are updated and 

stable with the rotor flux set. 

Keywords - Sliding Mode Control, PI controller Induction motor, Field oriented control, Railway traction (RT). 

 

1. Introduction  
Three-phase induction motors began to replace DC 

motors in railway traction motors in the 1990s. Because the 

IMs are less expensive, more durable, and better suited to the 

characteristics of railway traction motors [1]. According to 

the study [2], the railway traction driver will demand torque 

at a given speed. This torque demand is determined by the 

current limit of the motor stator, pulse modulation, and 

inverter and is restricted by saturation and available DC link 

voltage. Furthermore, changing the stator voltage frequency 

will result in the torque and speed required for railway 

traction motors. The available voltage three-phase inverter 

supply is used to control the IMs speed. 

Further, the IM slip-on features allow many motors with 

varying speeds and wheel sizes to be fed by a single inverter 

[3]. The advancements in asynchronous driver control 

technologies are reassuring. Today's control techniques for a 

railway traction motor include u/f control, direct torque 

control (DTC), and field-oriented control (FOC). As a result 

of the advantage of field-oriented control, the two stator 

currents at the d and q axes have been separated. The stator 

current on the d-axis controls the rotor flux, whereas the 

current on the q-axis controls the torque. Hence the IM is 

handled similarly to DC motors. The FOC control, in 

particular, allows IMs to operate in the flux weakling zone. 

Therefore, the flux must be reduced in this circumstance 

[4,5]. In addition, load torque must be factored into the load 

model while designing a controller. The parameters of 

friction forces characterize train motion. Hence, the speed 

model shown by load torque [6] must be added. Linear 

methods such as proportional-integral (PI) controller using 

space vector modulation (SVM) section voltage module and 

nonlinear techniques such as flatness based on control, 

backstepping, exact nonlinear, sliding mode control 

(SMC)...have been documented in the literature as well as 

experimental research for IM speed control strategies [4,5]. 

In the meantime, regardless of the drive system parameters, 

the PI controller has a basic design. It's created using an 

optimal control strategy. However, the driver system's 

robustness is compromised because the PI controller is the 

single operating point [7]. Nonlinear control with rapid 

hardware changes is increasingly being studied in practical 

applications. For speed and flux control, the flatness-based 

control approach is applied. The planned speed and flux 

reference trajectories can be chosen based on the amplitude 

constraint of current by simply decreasing the order of the 

governing equations [8,9,10]. In addition, the backstepping 

control approach [11], which ensures that the error between 

set values and actual values satisfies Lyapunov's stability, is 

also used for speed and flux loops, despite the IM model 

being a stringent feedback type. In another study, slide mode 

control (SMC) is a simple and effective nonlinear control 

approach. However, this controller must know the object 

model's parameters and the component's upper limitations. 
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On the other hand, this controller must be mindful of the 

object model's parameters and the upper bounds of the 

elements on the model's uncertainty. SMC is represented by 

an sgn(.) function and asserts chatter around the slip surface 

[12,13]. Evaluation of dynamic response between different 

speed control structures based on speed and ripple torque 

performance [14,15,16,17]. Thus, the paper presents the 

speed control design of IM for railway traction motor based 

on FOC construction. The speed and torque responses of the 

railway traction motor can be improved by using the sliding 

mode controller. The proposed controller will be compared 

with a speed proportional-integral (PI) controller for speed 

and torque responses. 

The following parts will present the paper's content. The 

induction motor and load model is created first, and then the 

speed control loop is created using sliding mode control. 

Matlab/Simulation is then used to demonstrate the 

effectiveness of the control mechanism. Finally, various 

conclusions and points of view are offered. 

 

2. The mathematical of the three-phase 

induction motor and load 
2.1. The three-phase induction motor  

According to the FOC method, IM’s 

mathematical model is described by the following 

equations Eq(1).  

With 

2 2
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;
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In which, ;sd sqi i  are dq  in the stator current;  is 

electromagnetic currents; , sw w  are mechanical and 

synchronous speed, respectively; 
' ',rd rqy y are dq is the rotor 

flux;  is total leakage factor;
rT is rotor time constant; 

, sqsdu u are dq  is the stator voltage; 
sL is stator inductance, 

mL

,
rL are mutual, rotor inductance,

Lm : torque load. Eq. (1), the 

initial state is bilinear and of the fourth order, as may be 

observed.  
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The mechanical equation for an IM is as follows: 

M L

Jd
m m

dt


                                  (1) 

Where J is inertia torque constant; 
Lm is load 

torque;  is the rotor  
 

2.2. The load model of the railway traction motor  

The load model of the railway traction motor must add 

train resistance. It's the total amount of resistance to the 

train's motion. It's the total of the resistance forces opposing 

an electric train's movement. Train resistance includes 

rolling resistance due to friction between the wheels and 

rails, sliding resistance due to friction between the belt wheel 

and rail, and air resistance. Since the controller is designed 

by simulation, we need to include the train resistance. Train 

resistance is calculated by the following as Eq. (2) 

3

2

11 12 2( ) ( ) ( )
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Mg

 



   
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             (2) 

Where, , , , ,M n A k   are represent the weight of the train, 

the shaft, the track and gear specifications, and the surface 

area in the displacement direction determine train speed. 

 

3. Sliding mode controller design (SMC) 
The SMC is effectively used for nonlinear systems, load 

torque disturbance, and parameter variation changes. The 

speed control for railway traction motor is designed to 

follow these steps: 

1 1
L Mm m

J J
      (3) 

Where:     
2

3 3
;
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Second, we add the following mechanical uncertainties to 

Eq. (5). Eq. (5) may so be rewritten as Eq. (6): 

( ) ( ) , , , ,sqa a b b i M n A k        (4) 

Where ,a b   are the uncertainties parameters 

Then, the speed error can be calculated as: 

*( ) ( ) ( )e t t t b        (5) 

Where * is the conference speed.  

Taking the derivative of the previous Eq. (5) concerning 

time yields, Eq. (5) becomes as: 

( ) ( ) ( )e t u t d t      (6) 
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Where:   

*( ) ( ) ( ) ( )

( ) ( ) ( )

sq

sq

u t bi t a t t

d t bi t a t

   


  
 

In the third step, we'll define the sliding surface 

variable s(t) as follows:  

0

( ) ( ) ( ) ( ) 0
t

s t e t k c e t dt       (7) 

With c is a typical motion under sliding mode 

control to zero. 

Next, the variable structure speed controller is designed as: 

( ) ( ) sgn( )u t ke t s      (8) 

The gain defined before with k is k<0 to 

( ) 0k c  . The switching gain must be selected to 

( )d t  , sgn(.) is the switching function. 

  Then, define the Lyapunov function and derivate it 

in eq. (9) 

        
1

( ) ( ) ( )
2

V t s t s t     (9) 

The derivative Eq. (11) is then calculated as: 

( ) [ sgn( ) ] 0V t s d s ce       (10) 

   

 

In Eq.(10) ( ) 0V t   , that means the design of SMC and 

the conditions of SMC. Therefore, the SMC for the system 

can be determined as: 

   * *1
( ) ( ) [ sgn( ) ]sq sqi t i t ke s a

b
        (11) 

4. Simulation Results  
Figure 1 shows the sliding mode control for an IM in a 

railway traction system, and table 1 shows the simulation 

using the IM's parameters for a railway traction motor. 
 

Table 1. Simulation with IM’s parameters used railway traction motor 

Parameters Symbol Value 

Power dmP  270 kW 

Rated speed dmn  2880 rpm 

Rated voltage 
dmU  400V 

Pole pair p 1 

Power factor cos  0.9 

Stator resistance Rs 0.0138  

Rotor resistance Rr 0.00773  

Rotor inductance Lr 0.0078H 

Mutual 

inductance 

Lm 0.0077H 

Voltage  750 VDC 

Maximum speed 

for the train 

 80km/h 

In Fig.1, the stator current controller is PI with 

0.385; 0.052p iK T   coefficients. With these coefficients, 

the current controller response is perfect. 

The following simulation scenario investigates some of 

the typical working modes of the SMC. 

      + From t = 1s to t=3s, the IM is operating at the pull 

process with parameters: 

1 0( / )st km h 2 40( / )st km h  
3; 70( / )st km h . 

+ From t = 3s to t=6s, the IM operates at the coasting 

process with parameters:
6 60( / )st km h . 

+ From t = 6s to t=8s, the IM is operating at the braking 

process with parameters: 

7 5( / )st km h ,
8 0( / )st km h  
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Fig. 1 The speed sliding mode control construction for an IM used in the RT system 

 

The research compares employing the PI speed control 

in two scenarios, where the rotor resistance parameters are 

left unchanged and increased, to evaluate the effectiveness of 

the suggested speed sliding mode control. 

Case 1: In simulation as the rotor resistance parameters 

are constant. Figures 2 and 3 demonstrate the simulation 

results.  

The results of IM speed control using both methods 

(SMC and PI) at high and low-speed zones are shown in 

Fig.3. The measured velocities follow the reference speeds 

when the reference speeds are adjusted. However, the torque 

responses for SMC and PI in Fig 3 indicate a high ripple 

torque with THD%= 30%, indicating that a better solution is 

required 

Case 2:  Furthermore, increasing rotor resistance 

demonstrates the railway traction drive's resilience. This 

parameter is directly linked to the IM's dynamic reaction, 

affecting the rotor time constant as Rr increases. When the 

value of Rr was raised by 50% of the nominal amount, the 

torque and speed were reduced. Figures 4 and 5 depict the 

findings. 

In comparison to the other two approaches, Fig. 4 and 5 

indicate that the configuration of the speed loop with sliding 

mode control gives higher system resilience against rotor 

resistance change than PI control. The PI control's speed 

response has a sizeable actual speed reduction than the 

reference speed response at t=3s. The systems are due to the 

significant ripple torque in the torque with THD%= 30%.
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Fig. 2 Speed responses 

 

0 1 2 3 4 5 6 7 8
Time[s]

-400

-200

0

200

400

600

800

[
N

.m
]

Te

 

0 1 2 3 4 5 6 7 8
Time[s]

-400

-200

0

200

400

600

800

[
N

.m
]

Te

 

Fig. 3 Torque responses 
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Fig. 4 The speed response with value of rotor resistance Rr increasing to 50% 

Fig. 5 The torque response with value of rotor resistance Rr increasing to 50% 
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6. Conclusion  
This work investigated sliding mode control for railway 

traction motors based on the FOC control method. The 

dynamic reactivity and resilience of this control mechanism 

are excellent. When the motor parameters are altered and 

the rotor flux is set, the effectiveness of the traction motor 

SMC controller will be shown using MATLAB simulation 

data. This controller generates the desired response. 

Furthermore, this system required higher reference torque 

than a PI controller. However, torque response still has an 

ample ripple torque. Thus, we advocate using a multi-level 

inverter in combination with a novel pulse modulation for 

the inverter to increase torque response. 
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