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Abstract - Recently, remote sensing images have been extensively used in different scene classification. Satellite image 

classification is used for different applications like land use classification, crop monitoring, forest cover mapping, and natural 

disaster detection. Accurate classification of scenes in satellite images is very challenging due to the complex, rich details in 

the images. This work presents a deep learning framework for accurately classifying scene types through improved learning. 

The proposed approach pre-processes the input image with an adaptive bilateral filtering approach. Then, the pre-processed 

input image is given as an input to the proposed Optimized Deep Convolutional Neural Network (ODCNN) for improved 

feature learning and classification. Here, the ODCNN framework is utilized to classify different scenes in the satellite images 

accurately. 

Moreover, the modified beetle swarm optimization (MBSO) algorithm is utilized for weights optimization in the ODCNN 

classifier. This process improves the learning of the ODCNN classifier by accurately detecting the scene in remote sensing 

images. The results of the presented approach are compared with various existing schemes using different performance 

measures. It is proved that the examined presented approach outperforms the various existing schemes in accuracy (99.75%), 

precision (99.16%), recall (99.523%), and F-measure (99.34%), kappa measure (0.99), and processing time (10.67 seconds). 

Keywords - Filtering, Feature learning, Optimization, Deep learning, Classification. 
 

1. Introduction  
With the advancements in remote sensing techniques, 

scene classification plays a vital role in capturing photos and 

object recognition. Scene classification is a task in which 

scenes from photographs are orderly classified [1]. It mostly 

uses the drafts of the objects within the scene and the 

environmental context for classification [2]. In recent years, 

the main advancement in visible sensor techniques has been 

provided due to the attention to scene detection on various 

inner and outer scene images [3]. Recently, scene detection 

in remote sensing images has greatly increased attention [4]. 

Scene detection and classification is a current research topic, 

and it has vast applications in image recovering, land use, 

remote sensing, automatic disease detection, face detection, 

geographical imaging, etc. [5].  

 

Satellite-based scene classification is continuously 

recorded using satellite imaging sensors, and each satellite 

image scene consists of multiple lines, and each line 

indicates the number of components [6]. Satellite imaging 

techniques have wide applications such as detecting natural 

disasters, crop monitoring, forest cover mapping, land cover 

changes, water resource application, dry land mapping, etc. 

[7]. Satellite images are classified into two types and they are 

utilized and unutilized areas. Utilized areas are further 

classified into residential, factories, transport, and cultivation 

lands [8]. Unutilized areas are further classified into forests, 

waterfalls, deserts, and sea areas [9]. For continuously 

mapping these places, image interpretation techniques need 

more time and field experts [10]. The GPU (Geographical 

Processing Unit) technique is initially performed to 

overcome these limitations.  

 

GPU is lightweight with the highest performance 

computing technology that can find any type of 

computational necessities based on objective systems [11]. 

GPU uses RHSeg (Recursive Hierarchical Segmentation) 

grouping method with the help of hybrid multicore CPU 

(Central Processing Unit) clusters [12]. RHSeg is a 

methodology introduced by NASA (National Aeronautics 

and Space Administration) to present hierarchical 

classification data with multiple outcomes [13]. There are 

limitations, such as cost-effectiveness, time consumption, 

and low performance when many images are used [14]. To 

overcome this, AI (Artificial Intelligence) based techniques 

are used. 

Machine Learning (ML) is an application of AI that can 

learn the information of remote sensing images [15]. It is 

mainly used in sensing socio-economic and environmental 

conditions in data weakened places [16]. Here ML-based 

algorithms such as K-Nearest neighbour (KNN) [36], ANN 

(Artificial Neural Network), Decision tree, and Random 
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Forest (RF) are used in the field of satellite imagining 

technique [17]. The accuracy based on land cover mapping is 

significantly increased compared to GPU technology [18]. At 

the same time, there is a lack of accuracy in scene 

classification [19]. The Deep Learning approach is used to 

classify satellite images to overcome this.  
 

Deep Learning (DL) technique is the division of ML that 

uses a Convolutional Neural Network(CNN) with multiple 

layers [20]. CNN is the main part of extracting features in the 

classification field based on satellite images [21]. In the deep 

learning technique, the images are first divided, then the 

feature is extracted based on pixels, and the featured images 

are classified based on DL algorithms [22]. VGGNet, UNet 

[23], Dense U-Net+ [37], InceptionV3, along with ImageNet 

are some of the pre-trained models used for processing, 

feature extracting, and classifying satellite images [24]. In 

the Deep Learning technique, for the detection of satellite 

imaging, there are some limitations such as noise, overfitting 

problems, non-uniformity of the images, and low batch size 

compared to other models [25]. To overcome these 

limitations, a newly proposed methodology with automatic 

learning of images from the satellite is presented. 
 

Motivation 

Scene detection from remote sensing data is a tedious 

task. The performance of scene detection is enhanced by 

incorporating the deep learning approach with the effective 

feature learning processes. The main motivation of the deep 

learning approach in remote sensing images is the accurate 

detection of scene types through automatic feature learning. 

With clear input and creative algorithmic design, the deep 

learning approach is a promising field in scene classification.  
 

The important contributions of the presented approach are 

described as follows, 

 To enhance the quality of the image, pre-processing is 

performed with adaptive bilateral filtering.  

 To develop an optimal feature learning and 

classification, and optimized deep convolutional neural 

network is performed.  

 To improve the classifier performance, a modified beetle 

swarm optimization algorithm is utilized for weight 

optimization in the ODCNN framework. 

 The effectiveness of the proposed methodology is 

validated using various performance metrics, and the 

comparison is done with different existing methods. 
 

The paper organization is summarized as Section 2 

analyses the current related works, the explanation about the 

proposed methodology is provided in section 3, Section 4 

analyses the results and its corresponding discussion is also 

performed in this section, and the paper is concluded in 

Section 5. 
 

 

 

2. Related works 
Shabbir et al. [26] studied the ensemble of Transfer 

Learning, VGGNet, and Fine Tuning of ResNet50 to classify 

scenes. The pre-trained model used here was ResNet50 to 

network with tuning hyper parameters. For tuning, the linear 

corrupted scheduler rate is called vector-field. Here, five 

datasets were used for the analysis: SIRI-WHU, Corel-1.5k, 

RSSCN (Remote Sensing Scene Classification), Corel-1k, 

and UCM (UC Merced Land Use). The performance was 

based on accuracy, precision, recall, and F-1 score. The 

overall performance based on accuracy was nearly 92%. 

There were some limitations, such as the Lack of Remote 

Sensing for forest cover needs more advancements in distant 

image viewing and image classification in the field of 

satellite imaging. The efficiency of ResNet50 was very low 

while using less number of trained models.  
 

Robinson et al. [27] investigated tree-based CNN for 

image classification in scene classification. Here, a tree-

based CNN model and a hidden layer, Maxpool layer, ReLu 

activation function, fully convoluted layer, epochs, and ROI 

pooling layer were used for filtering, feature extracting, and 

segmenting of the images. The tree-based convoluted model 

compares with HUSTW4, CVEO (Civeo Corporation), and 

TreeUNet. The dataset used was NWPU_VHR_10 

(geospatial object detection dataset) with 60,000 images to 

implement object classification. The performance was based 

on accuracy, F-1 Score, recall, and precision. The overall 

performance is based on accuracy for the Tree-based CNN 

model, 96.5%, CEVO model 94.8%, HUSTW4 model 

95.2%, and TreeUNet model 93.4%. There was some 

limitation, such as a Lack of data augmentation technique, 

and the efficiency of this method was low compared to other 

models. The bulk of storage was required while using many 

satellite images. Here only a few pre-trained models were 

used for classification. 
 

Zhang et al. [28] developed the pre-trained model called 

CNN-CapsNet comes under two models, namely: CNN 

(VGG-16 and Inceptionv3) and CapsNet (Capsule Neural 

Network) for scene detection. The CNN model was mainly 

used for feature extraction, and the extracted image was 

given as input to CapsNet for the final classification result. 

Three datasets were used: the UCM dataset with 21 images, 

AID (Association for India’s development) dataset with 30 

images, and the NWPU-RESISC45 (Northwestern 

Polytechnic University-Remote Sensing Image-Scene 

Classification) dataset with 45 images. The performance was 

calculated based on accuracy. The overall accuracy for UCM 

is 94%, AID dataset 96%, and NWPU-RESISC45 dataset 

90%. The limitations they have highlighted with the Lack of 

merging featured maps with different pre-trained CNN 

models. Moreover, it was a very complex and time-

consuming process 
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Using deep learning methods, Xu et al. [29] performed a 

novel approach for scene classification from remote sensing 

images. This method's classification method was Recurrent 

Neural Network (RNN) along with RF for land cover 

mapping using satellite images. The dataset used here was 

UCM with 21 classes of high-resolution images. This dataset 

used image clipping and filtering techniques to avoid 

radiometric corrections, noise, and other discrepancies. The 

performance was calculated based on accuracy, precision, 

and recall. The overall performance based on accuracy was 

95%. There were some limitations, such as the datasets used 

here being small. This method was not suitable for large and 

complex image scene classification. The featured maps used 

here cause high overlapping. Lack of mapping forest cover, 

highly confused among residential and beach images due to 

the low number of datasets, and the error rate was very high 

due to improper image classification. 
 

Cheng et al. [30] performed remote sensing 

classification using deep learning techniques and the role in 

methods, their benchmarks, and opportunities. The pre-

trained model used here was auto-encoders, CNN, and GAN 

(Generative Adversarial Network) based model. The dataset 

used here was NWPU-RESISC45, UCM, and AID dataset. 

The performance was calculated using a confusion matrix. 

The overall performance-based in accuracy for the AID 

dataset was 96%. There were some limitations, such as when 

a large number of datasets were used, the performance would 

be very low, this method was very complex and time-

consuming, the method called auto-encoders had very low 

accuracy due to the Lack of advancements, and the 

algorithms used in GAN was very complex with less 

compatibility. 
 

Anwer et al. [31] investigated the compact deep color 

features for remote sensing classification. Here deep CNN 

with normalization, pooling, and Fully Connected (FC) 

layers were used. The datasets used here were as follows: 

UCM with 21 images, WHU-RS19 with 19 images, RSSCN7 

with 7 images, AID with 30 aerial images, and NWPU-

RESISIC45 with 45 images. The ImageNet dataset was used 

for extracting features. The performance was calculated 

using compact color feature fusion, standard RGB (Red, 

Green, Blue) deep features, and RS scene classification 

datasets. The overall accuracy for UCM, WHU-RS19, AID 

and NWPU-RESISC45 were 96%, 98%, 94%, and 87%, 

respectively. There were limitations such as a Lack of 

integration of texture features with color features, and only a 

few colors can be classified using this method, and need 

more advancements in multi-color deep feature fusion for 

object detection. 

Liechang et al. [32] studied the remote sensing image 

scene classification based on the fusion method. The pre-

trained models used here were VGG16, MobileNet, and 

ResNet50. The datasets used here were: UCM from national 

map urban area imagery collection of 21 images, WHU-

RS19 from satellite images using Google Earth, and NWPU-

RESISC45 from Google Earth with 31,000 images. The 

performance was based on the accuracy of the front side, 

middle side, and back side fusion methods. The overall 

accuracy is based on the front side at 91%, the middle side at 

90%, and the back side at 92%. Here, the fusion method is 

too complex and needs more special architectures; this 

method was more expensive and needed more computation 

and storage. The training model used in the middle side 

fusion method was inefficient and Lacked enough libraries 

for further improvement. 

 

Yue et al. [33] developed the remote sensing 

classification based on a high-order graph convolutional 

network. The pre-trained model used here was the CNN 

model based DenseNet and MobileNetV2. It is mainly used 

for extracting the feature images. The features were gained 

through GAP (Global Average Pooling and H-GCN (High 

Order Graph Convoluted Network) to cover the semantic 

features of images. The datasets used were UCM, RSSCN7, 

AID, and NWPU-RESISC45. The SGD (Stochastic Gradient 

Descent) method was used for optimizing the dataset images. 

The overall accuracy was nearly about 97%. Here also were 

some limitations, such as a Lack of key components within 

the featured images, automatic selection of different 

structures of images, a need for more improvement in image 

classification, and a time-consuming process. The 

comparison of different existing techniques is provided in 

table 1. 
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Table 1. Comparison of different existing techniques 

Author 

&Reference 

Techniques Datasets Merits Demerits 

Shabbir et al. 

[26] 

ResNet50, VGGNet. UCM, RSSCN SIRI-

WHU, Corel-1k and 

Corel-1.5k. 

Noise-free, low power 

consumption. 

Lack of forest cover, 

low efficiency, Lack of 

combining natural 

image with RS image. 

Robinson et al. 

[27] 

Tree-based CNN 

model. 

NWPU_VHR_10 

dataset 

Fast output, low energy 

consumption. 

Lack of data 

augmentation 

technique, low 

efficiency. Zhang et al. 

[28] 

CNN (VGG-16 and 

Inceptionv3) and 

CapsNet. 

UCM, AID dataset, 

NWPU-RESISC45  

High compatibility, 

high efficiency, and 

superior output without 

data augmentation 

techniques. 

Lack of merging 

featured maps with 

different pre-trained 

CNN models, highly 

complex process. Xu  et al. [29] RNN along with RF. UCM dataset Without feature 

extraction, weather 

prediction can be done 

easily, with a simple 

method, and with high 

efficiency. 

Datasets used here were 

small. This method was 

not suitable for large 

and complex image 

scene classification; the 

error rate was very high 

Cheng et al. 

[30] 

Auto-encoders, CNN, 

GAN. 

NWPU-RESISC45, 

UCM, and AID dataset. 

High efficient, fast 

output requires less 

storage. 

The algorithms used in 

GAN were very 

complex with less 

compatibility. Auto-

encoders have very low 

accuracy. 

 
Anwer et al. 

[31] 

Deep CNN with 

normalization, pooling, 

and FC layers. 

UCM, WHU-RS19, 

RSSCN7, AID and 

NWPU-RESISIC45. 

High dimensionality 

with compact output, 

highly compatible, 

simple method. 

Need more 

advancements like 

using multi-color deep 

feature fusion for object 

detection, Lack of 

integration of texture 

features with color 

features, and only a few 

colors can be classified. 
Liechang et al. 

[32] 

VGG16, MobileNet and 

ResNet50 

UCM, WHU-RS19, 

NWPU-RESISIC45. 

Low error rate, the 

fusion method used 

here shows high 

performance due to 

efficient training sets 

and high efficiency. 

Too complex a process 

and needed more 

special architectures; 

this method was more 

expensive and needed 

more computation and 

storage. 

Yue et al. [33] DenseNet and 

MobileNetV2. 

UCM, AID, RSSCN7 

and NWPU-RESISC45 

datasets. 

Fast output, the 

presence of attention 

module helps 

discriminate the images 

based on CNN models, 

Simple method. 

Lack of key 

components within the 

featured images, Lack 

of automatic selection. 

 

The existing studies introduce various approaches for 

scene classification in remote sensing images. Most 

approaches have used artificial intelligence (AI) for scene 

classification but fail in accurate scene classification. 

Moreover, the process is very complicated and takes much  

 

time for scene classification. An effective deep learning 

framework is presented for accurate scene classification 

through an optimal feature learning process to overcome 

these issues. The proposed architecture has introduced 

ODCNN, a metaheuristic, and a deep CNN combination. 
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CNN provides an accurate detection rate for all kinds of the 

classification process. Therefore, deep CNN is integrated 

with the proposed framework. Further, the processing time of 

the proposed classification technique is improved by 

combining a metaheuristic optimization algorithm along with 

the proposed DCNN. This combination reduces the 

processing time by selecting the optimal weight parameter 

required for efficient classification.  

 

3. Proposed methodology 
The proposed framework accurately detects scene types 

in remote sensing images using ODCNN. At first, the pre-

processing is done over the input image with an adaptive 

bilateral filtering technique and given as an input to a 

proposed optimized deep convolutional neural network. The 

ODCNN framework accurately calculates different scenes in 

the satellite images. Moreover, the modified beetle swarm 

optimization (MBSO) algorithm is utilized for the weights 

optimization of the ODCNN classifier. This process 

improves the performance of the ODCNN classifier by 

accurately detecting the scene in remote sensing images. The 

schematic architecture of the proposed scene detection 

methodology is depicted in figure 1.  
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Fig. 1 Schematic diagram of the proposed methodology 
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3.1 Pre-processing: Adaptive bilateral filter 

The input image is initially pre-processed with an 

adaptive bilateral filtering approach. Bilateral filtering is an 

edge-preserving and noise-eliminating effective smoothing 

filter in images. The proposed adaptive bilateral filtering not 

only smoothens the image and also sharpens the image 

edges.  The data points are replaced by the weighting points 

to achieve the accuracy of an image. The adaptive filtering is 

described in equation (1) 

ABF = 















s

n
n kQk






2

21 log2
2

1
                              

(1) 

In equation (1), a standard deviation of the noisy and 

noiseless images is denoted as n  representing the total 

number of pixels. ABF represents the adaptive bilateral 

filtering, and the constant parameters are denoted as 1k  

and 2k respectively.  

 

3.2 Scene classification in satellite images using optimized 

deep CNN 

The ODCNN framework operates feature extraction and 

classification decision in images. The developed ODCNN 

framework comprises a convolutional layer, max-pooling 

layer, and the FC layer. The structure of the optimized 

convolutional neural network is depicted in figure 2. 

 

Optimized deep convolutional 

neural network

Convolution 

layer

(224, 224, 

32)

Max 

Pooling 

layer

(56, 56, 

32)

Convolut

ion layer

(56, 56, 

32)

Pooling 

layer

(28, 28, 

32)

Greenery

Building

Land

Water
Convoluti

on layer

(112, 112, 

32)

Max 

Pooling 

layer

(112, 

112, 32)

Input pre-processed 

image

(224, 224, 32)

Flattened 

(25088)

FC layer (4)

 
Fig. 2 Optimized CNN structure 

 

Figure 2 shows the structure of the optimized 

convolutional neural network. This framework performs 

feature learning using a convolutional and max-pooling 

network. The FC layer performs the scene type classification. 

These layers are described in the subsequent sub-sections. 

  

3.2.1. Convolutional layer 

The pre-processed image is given as an input to the 

DCNN. The convolutional layer extracts the features from 

the pre-processed image. The convolutional layer performs 

the convolution operation, which performs the linear 

multiplication of weights with the input data. The operation 

of the convolutional layer is described in the subsequent 

condition (2),  

 

mWYZ 
                                                       

(2) 

Here Z the convolutional layer output, Y the input 

data, and mW the weight matrix. The deep framework 

initially applies the convolution operation on the images to 

directly extract the features. This feature extraction increases 

the ability of scene detection in remote sensing images. This 

framework considers images' distributed information learned 

for further processing. Here, the optimized weight data is 

updated by the modified beetle swarm optimization 

approach. The initial hidden layer is the convolutional layer, 

comprised of 32 feature maps. Here, the rectifier function has 

been incorporated for attaining the linear outputs.  

 

3.2.2. Weight optimization 

At first, the arbitrary weights are initialized, and the 

optimal weights are obtained according to the beetle search 
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behavior. The initial arbitrary weight vectors are described in 

the subsequent condition (3), 

 

 
 1,

1,

DR

DR
B 


                                         (3) 

Here, R represents the random function, D the dimension 

of search space, and  the norm function. Then, the 

coordinates of spatial search with right and left sides are 

described as follows, 

 Bdyy mmm

right




                                    
(4) 

 Bdyy mmm

left




                                  
(5) 

Here, B


represents the arbitrarily initialized weights, 
md the 

feature space dimension, and 
my the feature data. Afterward, 

the initial optimized weight factor is computed in the 

iterative condition (6), 

 

  minminmax WWW
M

CM
W

I

II
m 







 


                   

(6) 

Here, maxW  represents the maximum weight value, 

maxW represents the minimum weight value, IM represents 

the maximum iteration, mW represents the weight factor and 

IM represents the current iteration. The weight updated 

maximum iteration is expressed as per the subsequent 

condition (7), 

    m

Left

m

rightm

mm yfyfSignWByy 


~1

                       
(7) 

Here, ~ represents the step size of the beetle equivalent to 

0.95. The local optima issue is solved using the step size 

value of 0.95. The updated weight factor is represented 

as mW , sign function is represented as Sign , 

 m

rightyf represents the generated right side weight data 

and  m

rightyf  represents the generated left side weight data. 

The convolutional layer initially extracts the low level of 

features, and the remaining layers extract the higher level of 

features for learning.  

 

3.2.3. Rectified linear unit (ReLU) 

After the convolution operation, ReLU is adapted as an 

activation function due to its linearity. This activation 

function is important for transforming the convolution output 

to the next layer. In this layer, the non-zero elements are 

removed from the data. It is utilized for providing outputs in 

linear form. The output data is the same if it is positive, and 

the value is zero if it is negative. It is expressed by the 

subsequent condition (8), 

 

),0()(Re YMaxZLu 
                                      

(8) 

 

This layer function is performed to attain a rectified feature 

map.  

 

3.2.4. Max pooling layer 

This layer is one of the feature extraction layers, and this 

layer performs the pooling operation and chooses the 

maximum values from the feature map. Hence, the output of 

this layer will be the prominent features of the previous 

layer. It  is expressed in the condition (9), 

  blockeverymFO mpooling  ,max
                              

(9) 

Here, poolingO
 
the max-pooling layer output and mF  the 

feature value with block size m .are represented. This layer 

decreases the size of features by selecting the maximum units 

in each feature map.  

 

3.2.5. Fully connected layer 

The output attained in the max-pooling layer is given as 

an input to the FC layer. The features from the pooling layer 

are flattened and given as an input to the FC layer. In this, 

the two-dimensional data is converted into a one-dimensional 

vector.  

 

Softmax: The FC layer uses the softmax activation function 

to get the probabilities of input pixels for assigning in a 

particular class. It results from the output labeling by 

detecting the data class in remote sensing images. Various 

types of scene labeling in remote sensing images are 

expressed as,   

 
 
 

 









































,

,3

,2

,1

)(

yTzp

yzp

yzp

yzp

yh

d

d

d

d



                

(10)

                                         

   

     

Here,  ,yTzp d  represents the probability of output 

class with labelT ,  ,yTzp d  represents the scene 

type in images. This layer makes the final decision in scene 

detection of remote sensing images. In this layer, the number 

of neurons is equivalent to the type of classes that inferred. 

The pseudo code of the proposed approach is provided in 

algorithm 1. 
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Algorithm 1. Pseudo code of proposed methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In algorithm 1, the pseudo-code of the presented 

approach is provided. The accurate detection of scene types 

such as greenery, bare land, water body, and the building is 

obtained by the optimal feature learning and classification 

using the optimized deep convolutional neural network.  

 

4. Results and Discussion 
The experimental analysis using the proposed ODCNN-

based scene classification from remote sensing data is 

examined in this section. The presented scene type 

classification is implemented in the PYTHON platform, 

Anaconda – Spyder (tensorflow) environment. The 

performance achieved by the proposed framework is 

compared with the various existing methods in terms of 

accuracy, F-measure, Precision, and recall. The four different 

classes that are classified using this presented methodology 

are Class 1 (Greenery), Class 2 (water bodies), Class 3 (bare 

land), and Class 4 (buildings). The input remote sensing 

images of three different places, Kollam, Kovalam, and 

Trivandrum in India, are depicted in figure 3. The classified 

images of the Kollam, Kovalam, and Trivandrum regions in 

India are depicted in figure 4.  

  
(a) (b) 

 
(c) 

 
Fig. 3 Input remote sensing images (a) Kollam, (b) Kovalam, and (c) 

Trivandrum 

Input: 

 Input image )(I with size 224224, number of 

iterations )( maxi , learning rate=0.001, kernel size 33 and batch 

size 32. 

Output: 

 
 

Predicted scene types in input remote sensing image )(I  

Begin 

Pre-process the input image )(I
// adaptive bilateral 

filtering 
For j=1 to M pixels do 
 

For k=1 to N pixels do 

Compute equation (1) to attain filtered image.  

Fed the image samples to DCNN for feature learning and 

classification 

For image pixels 1i to kP  do   // feature extraction 

For layers )(K :    11  k  do   // here 

feature extraction layers K (Convolutional, 
Max pooling, Convolutional, Max pooling, 

Convolutional, Max pooling). 
For j=1 to M pixels do 
 

For k=1 to N pixels do 

 Obtain mWYZ   //Convolution 

operation 

End 

End  

ForY , initialize random population 

Compute equations from (3) to (7)// Weight 

optimization 

  End 

 For Z ,ReLu function  YMaxZLu ,0)(Re   

  End 

For j=1 to M pixels do 
 

For k=1 to N pixels do 

   Obtain 

  blockeverymFO mpooling  ,max  

End 

End  

Repeat feature learning N=3// convolution to max pooling 

function 

Attain the edge feature map mF
 
 

 For features mF   isolate the features based each scene in the data// 

data flatten 

Compute equation (10)//final decision with fully connected 
layer

 

For j=1 to M pixels do 

0arg ett
  

For k=1 to N pixels do  

 tmpett arg
 

End for  

End 

End
 

Return predicted scene labels in remote sensing images. 

End 
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(a) (b) 

         
                       (c) 
Fig. 4 Classified remote sensing images (a) Kollam, (b) Kovalam, and (c) 

Trivandrum 

4.1. Learning data analysis 

The deep learning framework performs the classification 

on unsupervised data, and this performs the improved 

learning. The hyper parameter in the CNN design is 

comprised of the number of filters, kernel size, and learning 

rate. Filter size is based on the amount of information taken 

in the convolution step as features. The chosen filter size is 

32, kernel size is 33, and the learning rate is 0.001. The 

hyper parameter selection enhances the performance of 

classification. The activation and loss function is an 

important function used in the deep learning framework, and 

it enables the network for capable of learning on layer-wise 

mapping. The input size of the image is 224 2241. Scene 

classification is the process of learning and finding the scene 

types in the remote sensing images. The categorical cross-

entropy is used as a loss function for multiple scene 

classification. The multi-class outputs are obtained with the 

classification model. The hyperstimulation parameters used 

for deep learning classification are provided in table 2. 

 
Table 2. Learning parameters 

Parameters Specification 

Learning rate 0.001 

Kernel or filter size 33 

Input image size 224224 

Batch size 32 

Epochs 100 

Activation function Softmax 

Padding Same 

Pooling size 22 

 

The optimal hyper learning parameter’s selection 

enhances the presented approach's performance and achieves 

improved results than the existing schemes. The kernel size 

used in the convolution layer is 33, and the kernel size 

used in the pooling layer is 22. The batch size describes the 

amount of data taken for iteration processing. Here, to attain 

better training stability, the chosen batch size is 32. The 

smaller kernel size decreases the computational cost and 

time. The optimal choice of the kernel size is 33. The 

kernel size 11 is utilized only for decreasing the feature 

size, and it is not preferred due to capturing features in a 1-

pixel feature map and eliminating important features. 

 

Moreover, 22, 44 size is not considered due to its 

even size, and it causes distortions among the layers. The 

maximum weight value in the optimization approach is 

8.811, and the minimum weight value is 0.60. Here, the 

weight value is increased to improve the global search time. 

The optimal weight value is 0.9, and the optimal result is 

attained at the 100th iteration. 

 

4.2. Performance metrics 

Different performance metrics are analyzed, and a 

comparison is done between the proposed and the different 

existing approaches. The accuracy, F-measure, Precision, and 

recall performances are evaluated, which are defined in the 

subsequent sub-sections.  

 

4.2.1. Accuracy 

This performance measure is the proportion of 

accurately predicted classes to the total number of classes. It  

computes the accurate prediction of classes, and it is 

evaluated by the subsequent condition (11), 

)()()()(

)()(

negativenegativepositivepositive

negativepositive

y
tfft

tt
A






                        
(11) 

Here, yA represents the accuracy, )(negativet represents the 

true negative, )( positivef represents the false positive, 

)( positivet represents the true positive, and )(negativef represents 

the false negative.  
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4.2.2. Precision  

This metric is utilized to predict the relevant positive 

class among all the positive classes. This measure is 

expressed in the condition (12), 

)()(

)(

positivepositive

positive

n
ft

t
P




                               

(12) 

Here, nP represents the precision metric.  

 

4.2.3. Recall  

This metric is utilized to compute the proportion of 

correctly predicted classes among the total data under a 

particular category. It is computed as per the condition (13), 

)()(

)(

negativepositive

positive

L
ft

t
R




                            

(13) 

Here, LR represents the recall performance.  

 

4.2.4. Kappa statistics 

This performance evaluates the probability level among 

the classified data. It is computed by the subsequent 

condition (14), 

v

v
a

a

aa
K






1

0

                                           

(14) 

Here, aK represents the kappa statistical metric, 0a and 

va evaluations are expressed as, 

N

tt
a

positivenegative ][ )()(

0


                                                              

(15) 

 

       
2

)()()()()()()()( ][

N

tftfftft
a

positivenegativepositivepositivepositivenegativenegativenegative

v


     (16) 

 

Here, 0a  represents the observed accuracy, N the total 

number of data, and  the accuracy probability. 

 

4.2.5. F-measure 

The F-measure performance is estimated by using both 

precisions and recall performance measures. This F-measure 

performance is expressed in the condition (17), 

 

 
 nL

nL
M

PR

PR
F




 2

                                              

(17) 

 

Here, MF represents the F-measure performance, LR the 

recall measure, and the precision measure.  

 

4.3. Performance analysis 

Performance achieved by proposed ODCNN-based 

classification using remote sensing images and the 

comparative analysis between the proposed and existing 

methods in terms of different performance metrics is 

discussed in this section. The confusion matrix attained for 

the Kollam image is depicted in figure 5. 

 
Fig. 5 Confusion matrix (Kollam) 

 

In figure 5, the generated confusion matrix of the 

Kollam region image. Here, the correctly predicted data 

samples in the building class are 4680 samples, greenery 

class is 109818 data samples, land class is 18429 data 

samples, and water class is 43647 data samples. Each 

performance evaluation is based on the confusion matrix's 

obtained false positive, true positive, false negative, and true 

negative values. Moreover, the confusion matrix of the 

Kovalam region remote sensing image is depicted in figure 6. 
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Fig. 6 Confusion matrix (Kovalam) 

 

In figure 6, the confusion matrix of the Kovalam region 

remote sensing image. Here, the accurately detected data 

samples in building class are 18108, accurately detected data 

samples in greenery class are 65692, the amount of 

accurately predicted data in land class is 38735, and the 

accurately predicted data in water class is 39102. 

Furthermore, the confusion matrix of the Trivandrum region 

is depicted in figure 7.  

 
Fig. 7 Confusion matrix (Trivandrum) 

 

In figure 7, the confusion matrix of the Trivandrum 

region is depicted. Here, the predicted data in the building 

class is 11245, the amount of correctly predicted data in the 

greenery class is 22141, the amount of correctly predicted 

data land class is 9034, and the number of accurately 

detected data samples is 63106. The overall performance of 

the presented approach for different performance metrics is 

provided in table 3.  
 

 

 

Table 3. Overall performance of the presented approach 

Performanc

e metrics 

Performanc

e value 

(Kollam) 

Performanc

e value 

(Kovalam) 

Performance 

value 

(Trivandrum

) 

Accuracy 

(%) 

99.75 99.75 99.75 

Precision 

(%) 

99.16 99.52 98.90 

Recall (%) 99.52 99.51 99.55 

F1-score (%) 99.34 99.519 99.22 

Kappa  0.9927 0.988 0.9895 

Processing 

time 

10.67 seconds 

 

In table 3, the performance of the presented approach for 

varying performance metrics is given. The processing time 

taken to detect the scene in the satellite image is 10.67 

seconds. The performance value of the Kollam region image 

in terms of accuracy, precision, recall, F1-score, and kappa is 

99.75%, 99.16%, 99.52%, 99.34%, 0.9927 respectively. 

Similarly, the Kovalam region image in terms of accuracy, 

precision, recall, F1-score, and kappa is 99.75%, 99.52%, 

99.51%, 99.519%, 0.988, respectively. Moreover, the 

performance of Trivandrum image region is 99.75%, 

98.90%, 99.55%, 99.22% and 0.9895 respectively. It proved 

that the optimal selection of parameters in deep learning 

enhances the output performance. Moreover, the 

performance evaluation of each predicted scene class is 

provided in table 4. 
 

Table 4. Class-wise performance of remote sensing image (Kollam) 

Performance 

metrics 

Scene types 

Building Greenery Land Water 

Accuracy (%) 99.995 

 

99.79 99.70 99.5 

Precision (%) 100 100 97.65 98.99 

Recall (%) 99.82 99.67 99.59 98.99 

F1-score (%) 99.34 99.519 99.22 98.997 

Kappa 0.99 0.99 0.98 0.98 

 

In table 4, the performance of four classes is given. It is 

the analysis of the performance of each class in different 

performance measures for the Kollam region. The accuracy 

performance value of building, greenery, land, and water 

scenes is 99.995%, 99.79%, 99.70%, and 99.5%, 

respectively. The precision performance value of building, 

greenery, land, and water scenes is 100%, 100%, 97.65%, 

and 98.99%, respectively.  The recall performance value of 
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building, greenery, land, and water scenes is 99.82%, 

99.67%, 99.59%, and 98.99%, respectively.  The F1-score 

performance value of building, greenery, land, and water 

scenes is 99.34%, 99.519%, 99.22%, and 98.997%, 

respectively. The kappa performance value of building, 

greenery, land, and water scenes is 0.99, 0.99, 0.98, and 0.98, 

respectively. It indicates the improvement of the proposed 

method. Similarly, the class-wise performance comparison 

on the Kovalam image is provided in table 5.  
 

Table 5. Performance of remote sensing image for 4 different classes 

(Kovalam) 

Performance 

metrics 

Scene types 

Building Greenery Land Water 

Accuracy 

(%) 

99.93  

 

99.64 99.92 99.5 

Precision (%) 100        99.78 100 98.31 

Recall (%) 99.42  99.33 99.67 99.64 

F1-score (%) 99.34 99.519 99.22 98.97 

 

Kappa 99.71 99.56 99.83 98.97 

 

Table 5 shows the class-wise performance comparison 

on the Kovalam image. The presented approach attains 

improved performance in each class for the Kovalam region. 

The accuracy performance value of building, greenery, land, 

and water scenes is 99.93%, 99.64%, 99.92%, and 99.5%, 

respectively. The precision performance value of building, 

greenery, land, and water scenes is 100%, 99.78%, 100%, 

and 98.31%, respectively.  The recall performance value of 

building, greenery, land, and water scenes is 99.42%, 

99.33%, 99.67%, and 99.64%, respectively.  The F1-score 

performance value of building, greenery, land, and water 

scenes is 99.34%, 99.519%, 99.22%, and 98.997%, 

respectively. The kappa performance value of building, 

greenery, land, and water scene is 0.9971, 0.9956, 0.9983, 

and 0.9897, respectively. It indicates the improvement of the 

proposed method. Similarly, the class-wise performance 

comparison on the Trivandrum image is provided in table 6.  

 
Table 6. Performance achieved by 4 different classes for image 

(Trivandrum) 

Performance 

metrics 

Scene types 

Building Greenery Land Water 

Accuracy (%) 99.50  99.75 99.99 99.74 

Precision (%) 95.66 100 100 99.96 

Recall (%) 99.82 99.67 99.59 98.99 

F1-score (%) 99.81  98.83 99.96 99.611 

Kappa 97.69  99.41 99.98 99.78 

 

Table 6 shows the class-wise performance comparison 

on the Trivandrum image. The presented approach shows 

better performance for each class. The accuracy performance 

value of building, greenery, land, and water scenes is 99.5%, 

99.75%, 99.99%, and 99.74%, respectively. The precision 

performance value of building, greenery, land, and water 

scenes is 95.66%, 100%, 100%, and 99.96%, respectively.  

The recall performance value of building, greenery, land, and 

water scenes is 99.82%, 99.67%, 99.59%, and 98.99%, 

respectively. The F1-score performance value of building, 

greenery, land, and water scenes is 99.81%, 98.83%, 99.96%, 

and 99.611%, respectively. The kappa performance value of 

building, greenery, land, and water scene is 0.9769, 0.9941, 

0.9998, and 0.9978, respectively. It indicates the 

improvement of the proposed method. Moreover, the 

comparative results for each compared and proposed 

approach in terms of overall accuracy are depicted in figure 

8. 

 
Fig. 8 Performance analysis of overall accuracy 

 

In figure 8, the achieved accuracy of proposed and 

compared techniques. Here, the proposed performance is 

compared with existing ResNet50, Inception_V3, 

GoogLeNet, and AlexNet [34]. The Inception_V3 framework 

used the residual connections in learning. The GoogLeNet 

framework used deep learning-based feature extraction to 

achieve better scene classification. AlexNet provides deep 

learning-based scene classification using different dataset 

images. Here, the accuracy comparison among the proposed 

and existing frameworks is carried out for the UCM dataset. 

The comparison analysis of processing time is mentioned in 

table 7.  
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Table 7. Comparison of processing time and accuracy 

Techniques Processing time 

(seconds) 

Accuracy (%) 

Tree based CNN 176 96.5 

CEVO 360 94.8 

HUSTW4 325 95.2 

TreeUNet 400 93.4 

Proposed 10.67 99.75 

 

In table 7, the performance comparison on processing 

time is depicted. A fair comparison is not possible when the 

proposed approach uses private datasets and not public 

datasets. Here, the processing time of the presented approach 

is 10.67 seconds, which is much lesser than the existing tree-

based CNN (176 seconds), CEVO (360 seconds), HUSTW4 

(325 seconds), and TreeUNet (400 seconds) [35] approaches. 

Tree-based CNN approach used pixel-based segmentation 

before feature extraction to attain the enhanced performance. 

CEVO approach used an attention-based semantic 

segmentation to enhance the scene image classification. This 

approach attains the important features on different scales. 

HUSTW4 approach is used for the high-resolution image 

segmentation. 

 

Moreover, the encoder and decoder-based approach is 

incorporated for scene representation. TreeUNet framework 

is used for semantic segmentation in complex remote sensing 

images. Figure 9 depicts the processing time comparison. 

 
Fig. 9 Comparison analysis of processing time 

 

The processing time obtained for the proposed 

architecture is much reduced than the existing approaches, 

which are illustrated in figure 9. Moreover, the F-measure 

performance of four scene classes like greenery, water 

bodies, land, and the building is illustrated in figure 10. 

 
Fig. 10 F-measure comparison (Kollam) 

 

In figure 10, the F-measure comparison for different 

scene types is illustrated. Here, the presented approach 

performance is compared with the existing ResNet50 

framework [34]. The ResNet50 performs the scene 

classification based on the mid-level feature extraction and 

transfer learning. The obtained F-measure of the greenery 

region is 99.11%, the water body region is 99.78%, the bare 

land region is 99.98%, and the building is 97.69%. Figure 10 

displays the F-measure value of the presented approach is 

much higher than the existing ResNet50 framework. 

Furthermore, the F-measure comparison for Kovalam is 

depicted in figure 11.  

 
Fig. 11 F-measure comparison for the Kovalam area 

 

Figure 11 illustrates the F-measure comparison of the 

Kovalam image. Here, the performance of the proposed 

framework is compared with the existing ResNet50. The 
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obtained F-measure of greenery class is 99.56%, water body 

class is 98.97%, bare land class is 99.83%, and the building 

class is 99.71%. It proved that the attained F-measure value 

of the presented architecture is much higher than the existing 

ResNet50 framework. Similarly, the F-measure comparison 

with the Trivandrum image is depicted in figure 12. 

 
Fig. 12 Performance comparison on F-measure (Trivandrum) 

 

Figure 12 illustrates the performance comparison on F-

measure for the Trivandrum image. The performance of the 

presented approach in terms of accuracy is improved than the 

existing framework for each class. Similarly, the recall 

comparison of the Kovalam image is illustrated in figure 13.  

 
Fig. 13 Comparison of Recall (Kovalam) 

 

Figure 13 illustrates the recall performance of the 

Kovalam image with four classes. Here, the performance of 

the presented approach is compared with the current 

ResNet50 framework. The attained recall value of the 

greenery class is 99.33%, water body class is 99.64%, bare 

land is 99.67%, and the building class is 99.42%, 

respectively. The attained recall performance is improved 

than the existing ResNet50 framework. Moreover, the 

performance comparison on recall (Kollam) is depicted in 

figure 14.  

 
Fig. 14 Comparison of Recall (Kollam) 

 

Figure 14 illustrates the recall comparison of the Kollam 

image. The attained recall of greenery class is 99.67%, water 

body class is 98.99%, bare land class is 99.59%, and the 

building class is 99.82%. It proved that the attained recall 

value of the presented methodology is much higher than the 

existing ResNet50 framework. Furthermore, the comparison 

of recall for Trivandrum is depicted in figure 15.   

 
Fig. 15 Comparison of Recall (Trivandrum) 

 

Figure 15 displays the recall comparison of the 

Trivandrum RS image. Here, the presented approach 

performance is compared with the existing ResNet50 

framework. The attained recall of the greenery class is 

98.93%, the water body class is 99.61%, the bare land class 

is 99.96%, and the building class is 99.59%. Figure 15 

displays the attained recall value of the presented 

methodology, which is much higher than the existing 

ResNet50 framework. Similarly, the precision comparison 

with the Trivandrum image is depicted in figure 16. 
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Fig. 16 Comparison of precision (Trivandrum) 

 

In figure 16, the precision comparison for different scene 

types is demonstrated. Here, the presented approach 

performance is compared with the traditional ResNet50 

framework. The obtained F-measure of the greenery region is 

100%, the water body region is 99.96%, the bare land region 

is 100%, and the building is 95.66%. Figure 16 displays the 

precision value of the presented approach is much higher 

than the existing ResNet50 framework. Furthermore, the 

comparison of precision for Kovalam is depicted in figure 

17.   

 
Fig. 17 Comparison of precision (Kovalam)  

 

Figure 17 illustrates the precision comparison of the 

Kovalam image. The obtained F-measure of greenery class is 

99.78%, water body class is 98.31%, bare land class is 100%, 

and the building class is 100%. It proved that the attained F-

measure value of the presented methodology is much higher 

than the existing ResNet50 framework. Similarly, the 

precision comparison with the Kollam image is depicted in 

figure 18. 

 
Fig. 18 Comparison of precision (Kollam) 

 

In figure 18, the precision comparison for different scene 

types is demonstrated. The obtained F-measure of the 

greenery region is 100%, the water body region is 99.96%, 

the bare land region is 100%, and the building is 95.66%. It 

demonstrates that the precision value of the presented 

approach is much higher than the existing ResNet50 

framework.  

 

5. Conclusion 
This paper accurately detected a scene in remote sensing 

images using optimal feature learning and classification. The 

detected scenes are greenery, water body, land, and building 

regions in the Kollam, Kovalam, and Trivandrum region 

images. The result achieved by the proposed approach during 

experimentation is compared with various existing 

approaches. The performance metrics and values achieved by 

the proposed method are accuracy (99.75%), precision 

(99.16%), recall (99.523%), F-measure (99.34%), and kappa 

measure (0.99) and processing time (10.67 seconds). The 

proposed deep learning framework outperforms the different 

compared techniques. The effectiveness of the proposed 

approach is validated with the private remote sensing images 

collected from Kollam, Kovalam, and Trivandrum regions.  
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