
International Journal of Engineering Trends and Technology Volume 70 Issue 7, 32-42, July 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I7P204 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Dynamic Offloading Framework in Fog Computing

Jyoti Yadav1, Suman Sangwan2

1,2Deenbandhu Chhotu Ram University of Science and Technology, Haryana, India

1 jyoti89.cse@gmail.com

Received: 20 May 2022 Revised: 19 June 2022 Accepted: 23 June 2022 Published: 18 July 2022

Abstract - To meet the needs of Internet of Things (IoT) devices, fog computing has emerged as a new paradigm. Offloading

computation tasks is one of the most crucial issues in a fog environment. Computation offloading is the process by which

devices send computation-intensive tasks to servers for processing. Because of network constraints, not all computation tasks

can be delegated to servers. As a result, it is critical to determine how many tasks should be run on servers and how many

should be run locally. Furthermore, due to the uncertainty in the requirements, finding the server to execute the offloaded task

in a vibrant environment is difficult. To address this issue, a dynamic computation offloading framework has been proposed.

Here clustering is used to locate the decision engine, and fuzzy logic is used for offloading decisions. The major objective of

the paper is to determine whether to offload or not depending on CPU usage, delay sensitivity, residual energy, and task size

and bandwidth. Our algorithm makes dynamic decisions by sending time-sensitive tasks to local devices or fog nodes for

processing and resource-intensive tasks to the cloud. According to simulation results, the proposed algorithm is more efficient

than the Energy-aware offloading clustering approach (EAOCA) and the Fuzzy-based offloading algorithm regarding task

successful execution, CPU utilization, and average delay. It improves the rate of successfully executed tasks by 5.92% over

EAOCA and 4.72% over Fuzzy based approach. It reduces delay by 11.73% over EAOCA and 8.74 % over the Fuzzy

approach.

Keywords - Fog computing, Clustering, Offloading, Delay, Fuzzy logic.

1. Introduction
The number of IoT appliances(e.g., smart home

appliances, unmanned surface vehicles (USVs), intelligent

automobiles, smart sensors) has increased significantly with

the rapid development of various IoT fields, such as smart

cities and intelligent transport systems, smart homes, and

smart manufacturing.[1] According to Cisco, approximately

500 billion connected devices will be used by 2025.[2] IoT

devices are often compact, battery-powered, and outfitted

with sensors, and they have the limited battery,

computational power, and storage capacity.[3] Moreover,

these devices use wireless technology for communication.[4]

Consequently, many latency-sensitive real-time computing

activities, such as video surveillance, face recognition, and

augmented reality (AR)[5], have difficulty delivering a real-

time experience to customers when run on local devices.

These computation-intensive tasks are typically sent to the

remote cloud.[6] It is at a multi-hop distance from the client

and centralized too, which incurs additional expenditures in

terms of time and computing power to maintain the long-

distance connection. However, because long-distance

communication between IoT devices and distant clouds

requires a lot of bandwidth, transferring all locally created

tasks to remote clouds for processing would cause significant

issues, including excessive latency and network congestion.

One of the successful techniques for addressing these

issues nowadays is offloading all resource-intensive tasks

from the local device to nearby fog servers.[7] The fog

servers can be a gateway, router, access point, switches, hub,

etc. [8], are closer to the local devices in terms of location,

and have cheap communication costs and quick reaction

times.[9] It ensures that latency-sensitive operations are

completed in real-time and minimizes battery-powered

devices' energy consumption. However, efficient offloading

in a cloud-fog-end computing system remains difficult due to

resource heterogeneity, variety of user needs, network

complexity, and task interdependence. Offloading is an np

hard optimization problem[10] because we must deal with

many questions like what, where, how, and why offloading.

Partially and completely offloaded tasks are the two types of

offloading techniques that deal with what to offload. A

partially offloading[11], [12] task allows users to offload

parts of or all of their work at once, while a complete

offloading task will enable users only to handle all of their

tasks locally or in fog devices.[13] On the other hand, due to

several uncertainties of the system and network, such as

network traffic, limited bandwidth, and end device remaining

battery, the decision engine should decide when the

computation is offloaded to higher layers to meet the desired

quality of service(QoS). Another dimension of the decision is

where to offload.[14], [15] The decision engine should

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

33

decide where to offload the computation based on several

parameters such as latency, resource availability, and the

computation capacity required for completing the task. Some

researchers have attempted to overcome this issue by

optimally offloading tasks to more competent computer

resources.

Information about the current scenario is required to

design a practical offloading framework, like remaining

energy, remaining computation power, communication

overhead, available bandwidth, etc. The data transmission

speed between offloading decision engines and other devices

should be carefully designed to avoid communication

overhead. So the location of the decision engine has become

an essential design issue. It can be located on any three-level,

i.e., cloud, fog, and local devices. In this paper, the clustering

technique is used to find a suitable location for the decision

engine and avoid communication overhead compared to

distributed and centralized techniques; then, fuzzy logic is

used to find the best offloading destination based on multiple

criteria.

So the main contribution of this work is summarized as

follows :

• To enable the IoT devices to execute computation-

intensive tasks that they can not accomplish due to

limited resource availability.

• To find the best location for the decision engine

deployment by clustering fog nodes based on weight

parameters.

• To make the dynamic offloading decision using fuzzy

logic to find the best destination for offloading.

The remaining paper is as follows: Section 2 describes

the related work. Section 3 presented system architecture and

proposed work. Section 4 presents simulation results, and

Section 5 concludes the findings and the future research

direction in this area.

2. Related Work
Several approaches have been proposed in the literature

with the intent of efficient computation offloading in fog

computing. Nowadays, fog computing has become the

appropriate framework for IoT applications. Using

computation offloading, we can improve the performance of

IoT devices.[16], [17] However, computation offloading

needs to consider various aspects, like network condition,

server capability, task size, etc.[18] Various decision edges

must be considered to recognize the benefit of computation

offloading, like what, when, how, where, and why to

offload.[19]

What to offload emphasizes finding the resource-

intensive part of the problem. In full offloading, the whole

application can be offloaded to a remote server, while in

partial offloading, the application is divided for offloading.

When to offload is about finding the right time for offloading

a task to the cloud or fog node. Where to offload is about

finding a destination for offloading. Authors in [16], [20]

applied optimization techniques to find the best destination

for offloading. Offload deals with application characteristics

like energy consumption, response time, service time, etc.

Computation offloading is a complex problem because we

need to consider various aspects. Most current research

focuses on static offloading choice algorithms, assuming that

mobile fog-cloud environments remain constant.[21]–[23]

During the application development phase, these algorithms

build offloading methods via programme analysis, and the

offloading strategies are fixed when the application

development is completed. There is little research on

dynamic adaptive offloading decision algorithms that

generate offloading methods in real-time and often update

them to adapt to dynamic mobile fog cloud settings. Many

researchers focused on one or two parameters for offloading.

The decision engine plays a significant role in offloading

because it decides where to offload, as shown in Table 1.

Moreover, transmission speed between remote servers and

IoT devices should be efficiently allocated not to cause

communication overhead. Therefore the location of the

decision engine becomes an important design issue. Only

a few authors have focused on the decision engine's location

to take an offloading decision. It is therefore challenging to

determine the location of the decision engine for offloading.

The second most important concern in offloading is deciding

to offload in a dynamic and uncertain environment. Fuzzy

logic is one of the best techniques for rapidly changing

uncertain scenarios. Few authors focused on fuzzy logic for

solving such problems, as shown in Table 2. So a fuzzy-

based decision engine is proposed in the fog computing

simulator.

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

34

Table 1. Comparative analysis of different offloading algorithms based on the location of the decision engine

Reference Location of

decision engine

Objective Tool Remarks

[24] Centralized Workload

orchestration

Open stack Single point of failure

[25] Centralized at

cloud

Service

orchestration

Matlab Single point of failure

[26] Distributed at fog

nodes

Application

placement

ifogsim Fix devices used for application

deployment

[27] Clustering of fog

nodes

Resource

allocation

- Clustering used for resource allocation

[28] Clustering of the

fog node

offloading Matlab Only the energy parameter is

considered for clustering fog nodes

[29] Clustering of cells

under fog node

Prediction of fog

node location

Numerically

proved

Proved significance of clustering in

fog computing

[30] Clustering of fog

nodes

Offloading Matlab Only the energy parameter is

considered for clustering fog nodes

Table 2. Comparison of fuzzy-based decision engine

Reference Algorithm Parameters Tool Remarks

[31] Fuzzy logic-based decision

engine

Bandwidth,

memory, data

size

Real

devices

The decision engine had been

deployed centrally. Sending

every request to a single

device for decision-making

can overload the device.

[32] fuzzy multi-criteria decision

making

RAM, uploading

speed,

downloading

speed, task size

Raspberry

pi

(Real IoT

devices)

The two-tier architecture is

considered for offloading, i.e.,

IoT and cloud layer only.

[33] A fuzzy evolutionary scheduler

for multi-objective resource

allocation in fog computing

Computation

processing time

and input/output

overhead

- Clustering and fuzzy

algorithm are used for

resource allocation

3. System Architecture
A generic fog computing architecture[34] consists of

three main layers. Layer 1 is the cloud layer, composed of

high computing resources located at a considerable distance.

Layer 2 is called the fog layer, and this layer consists of

distributed fog nodes that are deployed near the end-user.

The fog nodes have less computing power as compared to the

cloud. These can be deployed either by cloud data centres or

service providers. The third layer is the user layer, consisting

of mobile devices or IoT devices that may or may not have

the processing power. IoT is the next step toward the

pervasive and global interconnection of objects and human

beings.[35] Our proposed framework has four main modules:

task generator, decision engine, network manager, and

resource manager, as shown in Figure1. The first module is

the task generator which is accountable for task generation.

Three types of applications: intelligent transport systems,

smart buildings, and health care, are deployed on end devices

to support scalability and heterogeneity. CPU utilization,

delay and file size, and application characteristics are

specified. The second or main module is the decision engine,

responsible for task offloading decisions. It decides whether

it is beneficial to offload the task or not if it is, and then finds

the destination for offloading, either at the fog node or cloud.

The third module is network manager; it accumulates

real-time network information. It is responsible for

monitoring available bandwidth and network traffic.

Allocated bandwidth also varies depending on congestion in

the network. The fourth module is resource manager, which

keeps track of available resources with virtual machines like

energy, memory, and computing capacity.

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

35

 Fig. 1 System architecture

Fig. 2 Execution dataflow

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

36

It maintains a list of available resources in fog nodes

and cloud virtual machines (VM). The decision engine

selects the destination for the offloaded task from the

available resources. Each device communicates its

metadata to the resource manager when connecting with

the network. IoT sensors have limited or negligible

processing capacity. They must delegate the processing of

their work to someone else.

For this reason, the decision engine will issue a

computation offloading request. The request includes

details about the device's condition and needs, such as the

application ID (also known as the container ID), data to be

processed, and task latency sensitivity and memory

requirements, all of which are required to determine the

appropriate offloading destination. The decision engine

collects the information from the resource manager about

available resources. Then decision engine decides where to

offload the task. Finally, the device receives a decision

indicating the location to execute the task. Then the task is

offloaded to that particular resource, and results are

collected and communicated to the end device. But the

location of the decision engine plays a key role in this

scenario. If we deploy it centrally on the cloud, it may

result in bottlenecks, and the decision engine plays a role

in the single source of failure.

Further, cloud deployment of decision engines causes

excessive latencies and uses backhaul resources. We have

proposed a cluster-based deployment strategy for the

decision engine to overcome this issue. The following

subsection will explain the cluster-based deployment

strategy:

3.1. Cluster-Based Deployment Strategy

In every clustering algorithm, we need to follow two

steps, i.e., cluster formation and cluster head selection. In

fog computing, clusters can be made at end devices and the

fog layer. This paper focuses on the fog layer, i.e., fog

devices will make clusters, and one cluster head is

selected. The cluster head is responsible for further

communication with the end device layer or cloud. Here a

weight parameter is associated with each device. The

weight parameter consists of the computational capacity of

fog nodes, residual energy, and distance between devices.

The device with the highest weight is considered a cluster

head. The fuzzy decision-making algorithm is deployed on

the cluster head that decides the destination for offloading

the data, i.e., at the fog or cloud layer. In this work, we

have considered M fog nodes identified by the set 𝑁 =
{𝑛1, 𝑛2, 𝑛3, … … . 𝑛𝑚} randomly scattered in the (X, Y)

dimension area. All fog nodes have computation capacity

higher than end devices and lower than a cloud server.

𝑊(𝑡) = 𝛼1. 𝑁𝐶𝐶 + 𝛼2. 𝐸 + 𝛼3. 𝐷 (1)

Where 𝑊(𝑡) represents the weight of the node. 𝛼1, 𝛼2,

and 𝛼3 are the weighted parameters, and the value of these

parameters depends on the priority of the factors where E

is the residual energy, Ncc represents the computation

capacity of a node, and D represents distance.

 𝑊𝑡
𝑐 = 𝑊𝑡

𝑝
∗ 𝑏 𝑤ℎ𝑒𝑟𝑒 0 < 𝑏 < 1 (2)

Here Wt
c is the weight of the cluster member, and b is

the hop cost from the cluster member to its cluster head.

Wt
P is the weight of the cluster head. Here is the weight

parameter to determine the role of each fog node. The fog

nodes can be dynamically split according to their weight.

A threshold value(𝜃𝑤) is employed to divide the fog nodes

into two groups.

• 𝑁𝑤
ℎ(t), the fog node having a higher weight than a

given threshold selected as the cluster head

• 𝑁𝑤
𝑙 (t), the fog node having a lower weight than a

given threshold selected as a cluster member

To be specific, we can define two sets as follows

 𝑁𝑤
ℎ(t) = {𝑛𝑖 ∈ 𝑁𝑤

ℎ(t)|𝑊(𝑡) ≥ 𝜃𝑤} (3)

 𝑁𝑤
𝑙 (t) = {𝑛𝑖 ∈ 𝑁𝑤

𝑙 (t)|𝑊(𝑡) ≤ 𝜃𝑤} (4)

At any time, each fog node belongs to a set S={0,1} in

which 1 represents cluster head and 0 represents cluster

member. Several cluster members and a cluster head make

up each cluster. The cluster head is selected from the

higher weight node-set and cluster members from the

lower weight node-set.

Algorithm 1: Clustering Scheme

1. Input: M fog nodes

2. Output 𝐶𝑖∀𝑖
3. Each node Calculate its weight factor 𝑊(t) using

the equation (1)

4. For all 𝑛𝑖 ∈ 𝑁 𝑑𝑜

5. if 𝑊(𝑡) ≥ 𝜃𝑤 then

6. 𝑁𝑤
ℎ(t) ← 𝑛𝑖

7. Else

8. 𝑁𝑤
𝑙 (t) ← 𝑛𝑖

9. End if

10. End for

11. While 𝑁𝑤
ℎ ≠ ∅ do

12. Select 𝑛𝑖 ∈ 𝑁𝑤
ℎ | 𝑚𝑎𝑥𝑛𝑖

{𝑊(𝑡)}

13. 𝐶𝑖 ← 𝑛𝑖

14. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑗 ∈ 𝑁𝑤
𝑙 (t) do

15. 𝑖𝑓 𝑑(𝑛𝑖 , 𝑛𝑗) ≤ 𝑅 then

16. 𝐶̃𝑖 ← 𝑛𝑗

17. 𝑒𝑛𝑑 𝑖𝑓
18. End for

19. 𝑤ℎ𝑖𝑙𝑒 |𝐶𝑖 < 𝑀| 𝑑𝑜

20. 𝐶𝑖 ← 𝑛𝑗| 𝑚𝑖𝑛𝑛𝑗
{𝑊(𝑡)} ∀𝑛𝑗 ∈ 𝐶̃𝑖

21. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑗 𝑓𝑟𝑜𝑚 𝑁𝑤
𝑙 𝑎𝑛𝑑 𝐶̃𝑖

22. End while

23. Remove 𝑛𝑖 𝑓𝑟𝑜𝑚 𝑁𝑤
ℎ

24. 𝑖𝑓 𝑁𝑤
𝑙 ≠ ∅ then

25. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑗 ∈ 𝑁𝑤
𝑙 do

26. 𝐶𝑗 ← 𝑛𝑗

27. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑗 𝑓𝑟𝑜𝑚 𝑁𝑤
𝑙

28. 𝑒𝑛𝑑 𝑓𝑜𝑟

29. End if

30. Then devices update weight using equation(2)

31. Update cluster head and cluster formation

32. end

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

37

Algorithm 1 depicts the clustering method's pseudo-

code; initially, all nodes' weights are considered zero. Then

the weight of each node is calculated(lines 1-5). Then,

among the fog nodes, a threshold weight is considered so

that fog nodes with a higher weight than the threshold

weight are added in 𝑁𝑤
ℎ(t) otherwise, they are added in

𝑁𝑤
𝑙 (t) (lines 6-12). Then starting from the ith fog node

having the highest weight, the ith cluster Ci is created with

the ith fog node as the cluster head(lines 13-15). All the fog

nodes having a lower weight set are considered, and those

with a distance for cluster head lower than the coverage

range are selected and added to the temporary cluster 𝐶̃𝑖

Composed by the candidate's cluster members of the ith

cluster head(lines 16-20). Among cluster members, the fog

nodes with the lowest weight are added to the cluster 𝐶𝑖

and removed from both 𝑁𝑤
𝑙 𝑎𝑛𝑑 𝐶̃𝑖. The bound M has been

introduced to limit the cluster size (lines 21-25). In the last,

the remaining fog nodes in 𝑁𝑤
𝑙 are considered as isolated

nodes(lines 26-31). Then the weight is updated to update

the cluster.

After cluster formation, the decision engine is

deployed over the cluster head. Then decision engine will

decide where to offload data. Here fuzzy rules are used to

specify the actions of the decision engine to determine

where to execute the task based on different parameters. It

determines the destination device for an offloaded request

by considering CPU utilization, delay sensitivity, residual

energy, task size, and bandwidth.

3.2. Offloading Algorithm

The IoT environment frequently changes with time.

The offloading algorithm is expected to adopt such

changes to meet the quality of service (QoS). To guarantee

this, we have proposed offloading algorithm based on

fuzzy rules to find the best offloading destination. Fuzzy

logic deals with uncertain or decision-making problems

based on specific criteria and helps reduce the problem's

complexity.[36] Fuzzy-based decision engines act as a

coordinator that collects info from the resource manager

and decides the offloading destination based on fuzzy

rules. Three linguistic variables are defined for each

offloading objective. Fuzzifier converts each input to the

linguistic variable based on the membership function.[37]

Here membership functions are defined according to each

criterion to represent the role of the parameter in decision

making. In the knowledge base, we store knowledge about

all input-output fuzzy relationships. Fuzzy inference

determines the performance of the system by using if-then

rules. These conditional statements approve the position of

a particular variable.

The fuzzy logic-based decision engine operates on

four variables

𝐹𝑙 = (𝑝, 𝑞, 𝑟, 𝑠, 𝑡) (5)

Where 𝑝 represents delay sensitivity, 𝑞 represents task

size, 𝑟 represents CPU utilization, 𝑠 represents residual

energy, and t represents bandwidth.

3.3. Fuzzy Inference System

Here we have used three linguistic variables, i.e., low,

medium, and high, for all parameters. In a Fuzzy logic

system, membership functions quantify the linguistic

variables. Here we have used the triangular membership

function because of its simplicity. We associate linguistic

terms with the crisp values using the membership function

during fuzzification. The following equation represents

fuzzy classes for each identifier.

𝐹𝑝(𝑥) = [𝜇𝑝
𝐿(𝑥), 𝜇𝑝

𝑀(𝑥), 𝜇𝑝
𝐻(𝑥)]

𝐹𝑞(𝑥) = [𝜇𝑞
𝐿(𝑥), 𝜇𝑞

𝑀(𝑥), 𝜇𝑞
𝐻(𝑥)]

𝐹𝑟(𝑥) = [𝜇𝑟
𝐿(𝑥), 𝜇𝑟

𝑀(𝑥), 𝜇𝑟
𝐻(𝑥)]

𝐹𝑠(𝑥) = [𝜇𝑠
𝐿(𝑥), 𝜇𝑠

𝑀(𝑥), 𝜇𝑠
𝐻(𝑥)]

𝐹𝑡(𝑥) = [𝜇𝑡
𝐿(𝑥), 𝜇𝑡

𝑀(𝑥), 𝜇𝑡
𝐻(𝑥)]

In the inference step, we evaluate fuzzy rules from the

knowledge base. The input and output in an inference

system are fuzzy variables. These fuzzy variables are used

for the defuzzification step. The fuzzy rule is an expression

with condition and output. These are represented in if-then

form.

Table 3. Fuzzy rules

Decision

Index

p q r s t Decision

D1 H L L H H Fog

D2 H L L L L Local

D3 M M L M M Fog

D4 L L L L H Cloud

Defining fuzzy rules is very complex and critical

because the performance of FLS depends on fuzzy rules.

In inference for aggregation step, maximum and minimum

functions are used after that evaluated result of 𝑖𝑓 part is

applied to 𝑡ℎ𝑒𝑛 part using activation method. Finally, in

the accumulation step, we used the maximum function to

combine the results of multiple rules using Equation 6.

𝜇𝑓𝑜𝑔 = max {𝜇𝑓𝑜𝑔
𝐷1 , 𝜇𝑓𝑜𝑔

𝐷2 … … . 𝜇𝑓𝑜𝑔
𝐷𝑛 } (6)

The last step of FLS is defuzzification which converts

the fuzzy output to real values. For defuzzification, various

methods are used as the mean of maximum, modified

height, maximum, centroid method, etc.

We have used a centroid defuzzifier in this step. The

centre of gravity(CoG) value is evaluated using Equation

7.

 𝑋∗ =
∫ 𝑥𝜇(𝑥)𝑑𝑥

∫ 𝜇(𝑥)𝑑𝑥
 (7)

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

38

After the centroid defuzzifier, output X* becomes a

crisp value between 0 to 100. The algorithm selects the

local device, fog node, and cloud node based on the CoG

value.

Fig. 3 Membership function for delay

Fig. 4 Membership function for task size

Fig. 5 Membership function for CPU utilization

Fig. 6 Membership function for residual energy

Fig. 7 Membership function for network bandwidth

Fig. 8 Output membership function

μp
L

μp
M

μp
H

0

1

0 0.2 0.4 0.6 0.8 1

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

Delay sensitivity

μq
L μq

M
μq

H

0

1

0 4 8 12 16 20

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

Task Size(GI)

μr
L

μr
M

μr
H

0

1

0 50 100

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

CPU Utilization(%)

μs
L

μs
M

μs
H

0

1

0 50 100

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

Residual Energy(%)

μt
L

μt
M μt

H

0

1

0 2 4 6 8 10

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

Network Bandwidth

μFog μcloud

0

1

0 20 40 60 80 100

D
e

gr
e

e
 o

f
M

e
m

b
e

rs
h

ip

Offloading Decision

μLocal

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

39

Algorithm 2: Offloading Algorithm

OD: offloading decision

RC: Required capacity

EC: Existing Capacity

Input: Incoming task T, Read value of parameters(Delay

sensitivity, task length. CPU utilization, residual energy,

bandwidth)

Output: Offloading Decision

1. Initialize X*=0

2. Read incoming task profile

3. Calculate crisp value X* using equation (5)(After

defuzzification value of X* lies between 0 to 100)

4. {

5. If(X*<=30) then

6. If(RC<EC)

7. OD=Local

8. else

9. OD=Remote

10. end

11. else

12. if (30<X*<=60)

13. OD=Fog

14. else

15. OD=Cloud

16. }

17. Return OD

4. Results and Discussion
By verifying the performance of the proposed

algorithm, various scenarios are simulated using the

PureEdgeSim simulator. This simulator expands the

CloudSim toolkit by adding a mobility manager, network

manager, simulation manager, and task generator to

simulate the real physical fog environment. The simulator

operates on a system with an Intel® coreTM i58250U

CPU @ 1.60GHz processor, 8GB RAM, and a 64-bit

operating system configuration. To justify the performance

of the new framework, it is compared with the clustering

technique EAOCA[28] and the fuzzy-based decision

technique.[36] The task offloading request generates a

different network and processing load on the remote

server. For example, a high computational task needs a

large amount of CPU processing capability; however, a

data storage application needs low computational

capability. However, data backup requires large network

bandwidth, whereas computation-intensive tasks may

require less bandwidth. Three applications were used to

simulate a real-world scenario: an intelligent transport

system, a smart building, and a health system to support

heterogeneity. These applications were deployed on end

devices. The number of end devices raise from 100 to 500

with the counter step of 100. In this study, the exponential

growth of tasks is considered based on interval time. Delay

sensitivity represents whether task is delay tolerant or not.

If the value of delay sensitivity is low , the related

application is delay tolerant. The tasks were generated

randomly according to Table 4. Various parameters need

to be set for the fog simulation environment. The major

parameters of the simulation are shown in Table 5.

Numerous metrics have been gathered from simulation

results. Here, we will only pay attention to the number of

tasks that were successfully completed, the average delay,

and the average CPU utilisation at each level of the fog

computing environment.

Table 4. Applications specification

Application App1 App2 App3

Percentage of

devices(%)

40 30 30

Task

interval(sec)

2 8 4

Task Size(GI) 9 20 3

Delay

Sensitivity

0.8 0.5 0.3

CPU Utilization

(%)

5 15 2

Figure 9 shows the number of tasks executed at each

level in fog computing architecture.

Table 5. Simulation parameters[38]

Parameters Value

Minimum Devices(No.) 100

Maximum Devices(No.) 500

Simulation Duration 30(min)

Counter step 100

Number of the fog server 18

 VM per fog server 2

VM in cloud 6

Simulation Area 500*500(meter)

Architecture Fog and Cloud

It demonstrates that more tasks are being completed at

the fog node than at the local device or cloud. Figure 10

shows the percentage of the number of tasks successfully

executed. The simulation results show that most tasks can

be completed successfully when the server has few tasks.

However, the success rate decreased as the number of

devices increased. The performance improvement rate of

the proposed mechanism over the existing algorithm is

calculated using Equation 8.[39] Suppose the proposed

algorithm is ith and existing is the jth algorithm.

𝑃𝐼𝑅(%) = (
(∑ 𝑃

𝑖𝑡ℎ −∑ 𝑃
𝑗𝑡ℎ

∑ 𝑃
𝑗𝑡ℎ

) ∗ 100 (8)

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

40

Where P represents the parameter value, PIR (%) is

calculated based on the percentage of tasks successfully

executed. The increase in the percentage of tasks

successfully executed is 5.92% over EAOCA and 4.72%

over fuzzy logic.

Fig. 9 Number of tasks executed at each level

Fig. 10 Number of tasks executed successfully

The average CPU utilization of VMs executing on fog

and cloud is depicted in Figure 11. Consistently low CPU

utilization is not a preferred result compared to efficient

utilization of resources. Because the CPU utilization is

minimum with limited resources is much more efficient

than minimum CPU utilization with high availability of

resources. The CPU utilization is calculated using

Equation 9.

CPU Utilization=∑ 𝐶𝑃𝑈𝑖
𝑗−1
𝑖=0 (9)

Where j is the number of CPUs and CPU is the utilization

of ith CPU. Our algorithm's average CPU utilization

results represent that the dynamic fuzzy-clustering-based

algorithm uses better resources than the EAOCA algorithm

and fuzzy logic-based offloading framework.

Fig. 11 The average CPU utilization

One of the key challenges in offloading is to minimize the

average delay. It is the average time taken for transmitting,

waiting, computing, and receiving back results. In Figure

12, a comparative analysis of the average delay is shown.

The proposed framework has reduced delay by

approximately 8.74% compared to fuzzy logic and 11.73%

compared to the EAOCA algorithm because of more tasks

executed at the fog layer than at the cloud layer. The above

analysis shows that the proposed algorithm outperforms

other algorithms regarding CPU utilization, delay, and

percentage of successfully executed tasks.

Fig. 12 The average delay

0

1000

2000

3000

4000

5000

6000

100 200 300 400 500N
u

m
b

e
r

o
f

Ta
sk

 E
xe

cu
te

d
 a

t
d

if
fe

re
n

t
le

ve
l

Number of Devices Generating Tasks

Cloud Fog Local

78

80

82

84

86

88

90

92

94

96

98

100 200 300 400 500

Ta
sk

 S
u

cc
e

ss
fu

lly
 E

xe
cu

te
d

(%
)

Number of Devices Generating Tasks

EAOCA Proposed Fuzzy Logic

0

10

20

30

40

50

60

70

80

300 600 900 1200 1500
A

ve
ra

ge
 C

P
U

 u
ti

liz
at

io
n

(%
)

Number of Devices

EAOCA Proposed Fuzzy Logic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200 300 400 500

A
ve

ra
ge

 D
e

la
y(

se
c)

Number of Devices Generating Task

EAOCA Proposed Fuzzy Logic

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

41

5. Conclusion
Nowadays, a significant number of IoT devices are

used in different environments. These devices have limited

resources. However, they generate a significant amount of

data in a short duration. Cloud computing may be viable,

but the inherent latency renders it unviable. Fog computing

is a potentially useful solution located near the users. For

resource-constrained IoT devices, it provides low latency,

high bandwidth, sharp responsiveness, and dependability.

As a result, we suggested a three-tier fog-cloud integration

architecture in this article. We used the clustering

technique to find offloading decision engine deployment

location, and fuzzy logic was used to find the best

offloading destination. The results show that the dynamic

computation offloading framework outperforms the

EAOCA and fuzzy logic-based offloading algorithms

regarding the number of tasks successfully executed, CPU

Utilization, and average delay. Optimization approaches

could be employed to improve the decision engine's

performance in the future.

References
[1] A. Y. Joshi and P. S. Khanvilkar, "An Energy Efficient Workload Offloading in Fog Computing," pp. 5640–5645, 2020.

[2] W. Paper, "Prepare to succeed with the Internet of Things," pp. 1–9, 2017.

[3] Anu and A. Singhrova, "Optimal Healthcare Resource Allocation in Covid Scenario Using Firefly Algorithm," International

Journal of Engineering Trends and Technology, vol. 70, no. 5, pp. 240–250, 2022.

[4] J. de J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso, "A technical review of wireless security for the internet of things: Software

defined radio perspective," Journal of King Saud University - Computer and Information Sciences, no. xxxx, 2021.

[5] S. Shahhosseini et al., "Exploring computation offloading in IoT systems," Information Systems, no. xxxx, p. 101860, 2021.

[6] L. Zhang, Y. Liu, and S. Shen, "Construction of performance monitoring model for cloud computing service platform based on

label technology," International Journal of Information and Communication Technology, vol. 17, no. 2, pp. 178–193, 2020.

[7] G. R. kumar, N. Saikiran, and A. Sathish, "FOG: A Novel Approach for Adapting IoT/IoE in Cloud Environment," International

Journal of Engineering Trends and Technology, vol. 42, no. 4, pp. 189–192, 2016.

[8] D. Rahbari and M. Nickray, "Task offloading in mobile fog computing by classification and regression tree," Peer-to-Peer

Networking and Applications, 2019.

[9] V. Meena, M. Gorripatti, and T. Suriya Praba, "Trust Enforced Computational Offloading for Health Care Applications in Fog

Computing," Wireless Personal Communications, no. 0123456789, 2021.

[10] M. M. Hussain and M. M. S. Beg, "CODE-V: Multi-hop computation offloading in Vehicular Fog Computing," Future Sciences,

no. 40, 2021.

[11] F. Yu, H. Chen, and J. Xu, "DMPO: Dynamic Mobility-Aware Partial Offloading in Mobile Edge Computing," Future Generation

Computer Systems, vol. 89, pp. 722–735, 2018.

[12] Z. Ning, P. Dong, X. Kong, and F. Xia, "A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing

Enabled Internet of Things," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4804–4814, 2019.

[13] Z. Li and Q. Zhu, "Genetic Algorithm-Based Optimization of Offloading and Resource Allocation in Mobile-Edge Computing,"

Information (Switzerland), vol. 11, no. 2, pp. 1–13, 2020.

[14] M. Babar, M. S. Khan, A. Din, F. Ali, U. Habib, and K. S. Kwak, "Intelligent Computation Offloading for IoT Applications in

Scalable Edge Computing Using Artificial Bee Colony Optimization," Complexity, vol. 2021, pp. 1–12, 2021

[15] M. Keshavarznejad, "Delay-Aware Optimization of Energy Consumption for Task Offloading in Fog Environments Using

Metaheuristic Algorithms," Cluster Computing, vol. 0123456789, 2021.

[16] S. Feng, Y. Chen, Q. Zhai, M. Huang, and F. Shu, "Optimizing Computation Offloading Strategy in Mobile Edge Computing Based

on Swarm Intelligence Algorithms," Eurasip Journal on Advances in Signal Processing, vol. 2021, no. 1, 2021.

[17] H. Mahini and A. Masoud, "An Evolutionary Game Approach to Iot Task Offloading in Fog ‑ Cloud Computing," The Journal of

Supercomputing, no. 0123456789, 2020.

[18] M. Adhikari, S. N. Srirama, and T. Amgoth, "Application Offloading Strategy for Hierarchical Fog Environment Through Swarm

Optimization," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4317–4328, 2020.

[19] F. Sufyan and A. Banerjee, "Computation Offloading for Smart Devices in Fog-Cloud Queuing System," IETE Journal of

Research, 2021.

[20] M. Adhikari and H. Gianey, "Energy Efficient Offloading Strategy in Fog-Cloud Environment for Iot Applications," Internet of

Things, vol. 6, pp. 100053, 2019.

[21] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, "On Reducing IoT Service Delay via Fog Offloading," IEEE Internet of Things

Journal, vol. 5, no. 2, pp. 998–1010, 2018.

[22] M. G. R. Alam, M. M. Hassan, M. Zi. Uddin, A. Almogren, and G. Fortino, "Autonomic Computation Offloading in Mobile Edge

for Iot Applications," Future Generation Computer Systems, vol. 90, pp. 149–157, 2019.

[23] N. Shan, Y. Li, and X. Cui, "A Multilevel Optimization Framework for Computation Offloading in Mobile Edge

Computing,"Mathematical Problems in Engineering, vol. 2020, 2020.

[24] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, "Foggy: A Platform for Workload Orchestration in a Fog

Computing Environment," Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom,

vol. 2017, pp. 231–234, 2017.

Jyoti Yadav & Suman Sangwan / IJETT, 70(7), 32-42, 2022

42

[25] N. Morkevicius, A. Venčkauskas, N. Šatkauskas, and J. Toldinas, “Method for Dynamic Service Orchestration in Fog Computing,”

Electronics (Switzerland), vol. 10, no. 15, pp. 1–22, 2021.

[26] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, "Quality of Experience (QoE)-Aware Placement of Applications in

Fog Computing Environments,"Journal of Parallel and Distributed Computing, vol. 132, pp. 190–203, 2019.

[27] H. Cheng, W. Xia, F. Yan, and L. Shen, "Balanced Clustering and Joint Resources Allocation in Cooperative Fog Computing

System," pp. 1–6, 2019.

[28] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, "An Energy-Aware Offloading Clustering Approach (EAOCA) in fog

computing," Proceedings of the International Symposium on Wireless Communication Systems, vol. 2017, no. 8, pp. 390–395,

2017.

[29] E. Balevi and R. D. Gitlin, "A Clustering Algorithm that Maximizes Throughput in 5G Heterogeneous F-RAN Networks," IEEE

International Conference on Communications, vol. 2018, 2018.

[30] A. Bozorgchenani, S. Disabato, D. Tarchi, and M. Roveri, "An energy Harvesting Solution for Computation Offloading in Fog

Computing," Computer Communications, vol. 160, no. 3, pp. 577–587, 2020.

[31] N. M. Dhanya, G. Kousalya, P. Balarksihnan, and P. Raj, "Fuzzy-Logic-Based Decision Engine for Offloading Iot Application

Using Fog Computing," Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science, no. 5, pp. 175–194,

2018.

[32] W. Wibisono, M. Widhi, P. Putu, T. Ahmad, and R. Anggoro, "An Adaptive Offloading Framework for Improving Performance of

Applications in IoT Devices Using Fuzzy Multi Criteria Decision Making," vol. 7, pp. 31–36, 2018.

[33] C. ge Wu, W. Li, L. Wang, and A. Y. Zomaya, "An Evolutionary Fuzzy Scheduler for Multi-Objective Resource Allocation in Fog

Computing," Future Generation Computer Systems, vol. 117, pp. 498–509, 2021.

[34] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia, "Fog Computing: A Comprehensive Architectural

Survey," IEEE Access, vol. 8, pp. 69105–69133, 2020.

[35] S. Trab, A. Zouinkhi, E. Bajic, M. N. Abdelkrim, and H. Chekir, "IoT-Based Risk Monitoring System for Safety Management in

Warehouses," International Journal of Information and Communication Technology, vol. 13, no. 4, pp. 424–438, 2018.

[36] K. Khalid and E. N. Madi, "A Review of Computation Offloading for Mobile Cloud Computing Based on Fuzzy Set Theory,"

International Journal of Engineering Trends and Technology, no. 1, pp. 56–63, 2020.

[37] A. Kesarwani and P. M. Khilar, "Development of Trust Based Access Control Models Using Fuzzy Logic In Cloud Computing,"

Journal of King Saud University - Computer and Information Sciences, no. 40, 2019.

[38] C. Mechalikh, H. Taktak, and F. Moussa, "Towards a Scalable and QoS-Aware Load Balancing Platform for Edge Computing

Environments," no. 7, 2019.

[39] M. Kumar and Suman, "Hybrid Cuckoo Search Algorithm for Scheduling in Cloud Computing," Computers, Materials and

Continua, vol. 71, no. 1, pp. 1641–1660, 2022.

