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Abstract - To meet the needs of Internet of Things (IoT) devices, fog computing has emerged as a new paradigm. Offloading 

computation tasks is one of the most crucial issues in a fog environment. Computation offloading is the process by which 

devices send computation-intensive tasks to servers for processing. Because of network constraints, not all computation tasks 

can be delegated to servers. As a result, it is critical to determine how many tasks should be run on servers and how many 

should be run locally. Furthermore, due to the uncertainty in the requirements,  finding the server to execute the offloaded task 

in a vibrant environment is difficult. To address this issue, a dynamic computation offloading framework has been proposed. 

Here clustering is used to locate the decision engine, and fuzzy logic is used for offloading decisions. The major objective of 

the paper is to determine whether to offload or not depending on  CPU usage, delay sensitivity, residual energy, and task size 

and bandwidth. Our algorithm makes dynamic decisions by sending time-sensitive tasks to local devices or fog nodes for 

processing and resource-intensive tasks to the cloud. According to simulation results, the proposed algorithm is more efficient 

than the Energy-aware offloading clustering approach (EAOCA) and the Fuzzy-based offloading algorithm regarding task 

successful execution, CPU utilization, and average delay. It improves the rate of successfully executed tasks by 5.92% over 

EAOCA and 4.72% over Fuzzy based approach. It reduces delay by 11.73% over EAOCA and 8.74 % over the Fuzzy 

approach. 

Keywords - Fog computing, Clustering, Offloading, Delay, Fuzzy logic. 

1. Introduction 
The number of IoT appliances(e.g., smart home 

appliances, unmanned surface vehicles (USVs), intelligent 

automobiles, smart sensors) has increased significantly with 

the rapid development of various IoT fields, such as smart 

cities and intelligent transport systems, smart homes, and 

smart manufacturing.[1] According to Cisco, approximately 

500 billion connected devices will be used by 2025.[2] IoT 

devices are often compact, battery-powered, and outfitted 

with sensors, and they have the limited battery, 

computational power, and storage capacity.[3] Moreover, 

these devices use wireless technology for communication.[4]  

Consequently, many latency-sensitive real-time computing 

activities, such as video surveillance, face recognition,  and 

augmented reality (AR)[5], have difficulty delivering a real-

time experience to customers when run on local devices. 

These computation-intensive tasks are typically sent to the 

remote cloud.[6] It is at a multi-hop distance from the client 

and centralized too, which incurs additional expenditures in 

terms of time and computing power to maintain the long-

distance connection. However, because long-distance 

communication between IoT devices and distant clouds 

requires a lot of bandwidth, transferring all locally created 

tasks to remote clouds for processing would cause significant 

issues, including excessive latency and network congestion. 

 

 

One of the successful techniques for addressing these 

issues nowadays is offloading all resource-intensive tasks 

from the local device to nearby fog servers.[7] The fog 

servers can be a gateway, router, access point, switches, hub, 

etc. [8], are closer to the local devices in terms of location, 

and have cheap communication costs and quick reaction 

times.[9] It ensures that latency-sensitive operations are 

completed in real-time and minimizes battery-powered 

devices' energy consumption. However, efficient offloading 

in a cloud-fog-end computing system remains difficult due to 

resource heterogeneity, variety of user needs, network 

complexity, and task interdependence. Offloading is an np 

hard optimization problem[10] because we must deal with 

many questions like what, where,  how, and why offloading. 

Partially and completely offloaded tasks are the two types of 

offloading techniques that deal with what to offload. A 

partially offloading[11], [12] task allows users to offload 

parts of or all of their work at once, while a complete 

offloading task will enable users only to handle all of their 

tasks locally or in fog devices.[13] On the other hand, due to 

several uncertainties of the system and network, such as 

network traffic, limited bandwidth, and end device remaining 

battery, the decision engine should decide when the 

computation is offloaded to higher layers to meet the desired 

quality of service(QoS). Another dimension of the decision is 

where to offload.[14], [15] The decision engine should 
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decide where to offload the computation based on several 

parameters such as latency, resource availability, and the 

computation capacity required for completing the task. Some 

researchers have attempted to overcome this issue by 

optimally offloading tasks to more competent computer 

resources. 

 

Information about the current scenario is required to 

design a practical offloading framework, like remaining 

energy, remaining computation power, communication 

overhead, available bandwidth, etc. The data transmission 

speed between offloading decision engines and other devices 

should be carefully designed to avoid communication 

overhead. So the location of the decision engine has become 

an essential design issue. It can be located on any three-level, 

i.e., cloud, fog, and local devices. In this paper, the clustering 

technique is used to find a suitable location for the decision 

engine and avoid communication overhead compared to 

distributed and centralized techniques; then, fuzzy logic is 

used to find the best offloading destination based on multiple 

criteria. 
 

So the main contribution of this work is summarized as 

follows : 

• To enable the IoT devices to execute computation-

intensive tasks that they can not accomplish due to 

limited resource availability. 

• To find the best location for the decision engine 

deployment by clustering fog nodes based on weight 

parameters. 

• To make the dynamic offloading decision using fuzzy 

logic to find the best destination for offloading. 

The remaining paper is as follows: Section 2 describes 

the related work. Section 3 presented system architecture and 

proposed work. Section 4 presents simulation results, and 

Section 5 concludes the findings and the future research 

direction in this area. 

2. Related Work 
Several approaches have been proposed in the literature 

with the intent of efficient computation offloading in fog 

computing. Nowadays, fog computing has become the 

appropriate framework for IoT applications. Using 

computation offloading, we can improve the performance of 

IoT devices.[16], [17] However, computation offloading 

needs to consider various aspects, like network condition, 

server capability, task size, etc.[18] Various decision edges 

must be considered to recognize the benefit of computation 

offloading, like what, when, how, where, and why to 

offload.[19] 

What to offload emphasizes finding the resource-

intensive part of the problem. In full offloading, the whole 

application can be offloaded to a remote server, while in 

partial offloading, the application is divided for offloading. 

When to offload is about finding the right time for offloading 

a task to the cloud or fog node. Where to offload is about 

finding a destination for offloading. Authors in [16], [20] 

applied optimization techniques to find the best destination 

for offloading. Offload deals with application characteristics 

like energy consumption, response time, service time, etc. 

Computation offloading is a complex problem because we 

need to consider various aspects. Most current research 

focuses on static offloading choice algorithms, assuming that 

mobile fog-cloud environments remain constant.[21]–[23] 

During the application development phase, these algorithms 

build offloading methods via programme analysis, and the 

offloading strategies are fixed when the application 

development is completed. There is little research on 

dynamic adaptive offloading decision algorithms that 

generate offloading methods in real-time and often update 

them to adapt to dynamic mobile fog cloud settings. Many 

researchers focused on one or two parameters for offloading. 

The decision engine plays a significant role in offloading 

because it decides where to offload, as shown in Table 1. 

Moreover, transmission speed between remote servers and 

IoT devices should be efficiently allocated not to cause 

communication overhead. Therefore the location of the 

decision engine becomes an important design issue. Only 

a few authors have focused on the decision engine's location 

to take an offloading decision. It is therefore challenging to 

determine the location of the decision engine for offloading. 

The second most important concern in offloading is deciding 

to offload in a dynamic and uncertain environment. Fuzzy 

logic is one of the best techniques for rapidly changing 

uncertain scenarios. Few authors focused on fuzzy logic for 

solving such problems, as shown in Table 2. So a fuzzy-

based decision engine is proposed in the fog computing 

simulator.
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Table 1. Comparative analysis of different offloading algorithms based on the location of the decision engine 

Reference Location of 

decision engine 

Objective Tool Remarks 

[24] Centralized Workload 

orchestration 

Open stack Single point of failure 

[25] Centralized at 

cloud 

Service 

orchestration 

Matlab Single point of failure 

[26] Distributed at fog 

nodes 

Application 

placement 

ifogsim Fix devices used for application 

deployment 

[27] Clustering of fog 

nodes 

Resource 

allocation 

- Clustering used for resource allocation 

[28] Clustering of the 

fog node 

offloading Matlab Only the energy parameter is 

considered for clustering fog nodes 

[29] Clustering of cells 

under fog node 

Prediction of fog 

node location 

Numerically 

proved 

Proved significance of clustering  in 

fog computing 

[30] Clustering of fog 

nodes 

Offloading Matlab Only the energy parameter is 

considered for clustering fog nodes 

 

Table 2. Comparison of fuzzy-based decision engine 

Reference Algorithm Parameters Tool Remarks 

[31] Fuzzy logic-based decision 

engine 

Bandwidth,  

memory, data 

size 

Real 

devices 

The decision engine had been 

deployed centrally. Sending 

every request to a single 

device for decision-making 

can overload the device. 

[32] fuzzy multi-criteria decision 

making 

RAM, uploading 

speed, 

downloading 

speed, task size 

Raspberry 

pi 

(Real IoT 

devices) 

The two-tier architecture is 

considered for offloading, i.e., 

IoT and cloud layer only. 

[33] A fuzzy evolutionary scheduler 

for multi-objective resource 

allocation in fog computing 

Computation 

processing time 

and input/output 

overhead 

- Clustering and fuzzy 

algorithm are used for 

resource allocation 

 

3. System Architecture 
A generic fog computing architecture[34] consists of 

three main layers. Layer 1 is the cloud layer, composed of 

high computing resources located at a considerable distance. 

Layer 2 is called the fog layer, and this layer consists of 

distributed fog nodes that are deployed near the end-user. 

The fog nodes have less computing power as compared to the 

cloud. These can be deployed either by cloud data centres or 

service providers. The third layer is the user layer, consisting 

of mobile devices or IoT devices that may or may not have 

the processing power. IoT is the next step toward the 

pervasive and global interconnection of objects and human 

beings.[35] Our proposed framework has four main modules: 

task generator, decision engine, network manager, and 

resource manager, as shown in Figure1. The first module is 

the task generator which is accountable for task generation. 

Three types of applications: intelligent transport systems, 

smart buildings, and health care, are deployed on end devices 

to support scalability and heterogeneity. CPU utilization, 

delay and file size, and application characteristics are 

specified. The second or main module is the decision engine, 

responsible for task offloading decisions. It decides whether 

it is beneficial to offload the task or not if it is, and then finds 

the destination for offloading, either at the fog node or cloud.  

The third module is network manager; it accumulates 

real-time network information. It is responsible for 

monitoring available bandwidth and network traffic. 

Allocated bandwidth also varies depending on congestion in 

the network. The fourth module is resource manager, which 

keeps track of available resources with virtual machines like 

energy, memory, and computing capacity. 
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 Fig. 1 System architecture 

 

 

Fig. 2 Execution dataflow 
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It maintains a list of available resources in fog nodes 

and cloud virtual machines (VM). The decision engine 

selects the destination for the offloaded task from the 

available resources. Each device communicates its 

metadata to the resource manager when connecting with 

the network. IoT sensors have limited or negligible 

processing capacity. They must delegate the processing of 

their work to someone else. 

For this reason, the decision engine will issue a 

computation offloading request. The request includes 

details about the device's condition and needs, such as the 

application ID (also known as the container ID), data to be 

processed, and task latency sensitivity and memory 

requirements, all of which are required to determine the 

appropriate offloading destination. The decision engine 

collects the information from the resource manager about 

available resources. Then decision engine decides where to 

offload the task. Finally, the device receives a decision 

indicating the location to execute the task. Then the task is 

offloaded to that particular resource, and results are 

collected and communicated to the end device. But the 

location of the decision engine plays a key role in this 

scenario. If we deploy it centrally on the cloud, it may 

result in bottlenecks, and the decision engine plays a role 

in the single source of failure. 

Further, cloud deployment of decision engines causes 

excessive latencies and uses backhaul resources. We have 

proposed a cluster-based deployment strategy for the 

decision engine to overcome this issue. The following 

subsection will explain the cluster-based deployment 

strategy: 

3.1. Cluster-Based Deployment Strategy  

In every clustering algorithm, we need to follow two 

steps, i.e., cluster formation and cluster head selection. In 

fog computing, clusters can be made at end devices and the 

fog layer. This paper focuses on the fog layer, i.e., fog 

devices will make clusters, and one cluster head is 

selected. The cluster head is responsible for further 

communication with the end device layer or cloud. Here a 

weight parameter is associated with each device. The 

weight parameter consists of the computational capacity of 

fog nodes, residual energy, and distance between devices. 

The device with the highest weight is considered a cluster 

head. The fuzzy decision-making algorithm is deployed on 

the cluster head that decides the destination for offloading 

the data, i.e., at the fog or cloud layer. In this work, we 

have considered M fog nodes  identified by the set 𝑁 =
{𝑛1, 𝑛2, 𝑛3, … … . 𝑛𝑚} randomly scattered in the (X, Y) 

dimension area. All fog nodes have computation capacity 

higher than end devices and lower than a cloud server.  

𝑊(𝑡) = 𝛼1. 𝑁𝐶𝐶 + 𝛼2. 𝐸 + 𝛼3. 𝐷  (1) 

Where 𝑊(𝑡) represents the weight of the node. 𝛼1, 𝛼2, 

and 𝛼3 are the weighted parameters, and the value of these 

parameters depends on the priority of the factors where E  

is the residual energy, Ncc represents the computation 

capacity of a node, and D represents distance.  

                       𝑊𝑡
𝑐 = 𝑊𝑡

𝑝
∗ 𝑏 𝑤ℎ𝑒𝑟𝑒 0 < 𝑏 < 1  (2) 

Here Wt
c is the weight of the cluster member, and b is 

the hop cost from the cluster member to its cluster head. 

Wt
P is the weight of the cluster head. Here is the weight 

parameter to determine the role of each fog node.  The fog 

nodes can be dynamically split according to their weight. 

A threshold value(𝜃𝑤) is employed to divide the fog nodes 

into two groups. 

• 𝑁𝑤
ℎ(t), the fog node having a higher weight than a 

given threshold  selected as the cluster head 

• 𝑁𝑤
𝑙 (t), the fog node having a lower weight than a 

given threshold  selected as a cluster member 

To be specific, we can define two sets as follows 

                        𝑁𝑤
ℎ(t) = {𝑛𝑖 ∈ 𝑁𝑤

ℎ(t)|𝑊(𝑡) ≥ 𝜃𝑤}  (3) 

                           𝑁𝑤
𝑙 (t) = {𝑛𝑖 ∈ 𝑁𝑤

𝑙 (t)|𝑊(𝑡) ≤ 𝜃𝑤}  (4) 

At any time, each fog node belongs to a set S={0,1} in 

which 1 represents cluster head and 0 represents cluster 

member. Several cluster members and a cluster head make 

up each cluster. The cluster head is selected from the 

higher weight node-set and cluster members from the 

lower weight node-set.  
 

Algorithm 1: Clustering Scheme 

1. Input: M fog nodes 

2. Output 𝐶𝑖∀𝑖 
3. Each node Calculate its weight factor 𝑊(t) using 

the equation (1) 

4. For all 𝑛𝑖 ∈ 𝑁 𝑑𝑜 

5.    if  𝑊(𝑡) ≥ 𝜃𝑤  then  

6.    𝑁𝑤
ℎ(t) ←  𝑛𝑖 

7.     Else 

8.    𝑁𝑤
𝑙 (t) ←  𝑛𝑖 

9.  End if 

10. End for 

11. While 𝑁𝑤
ℎ ≠ ∅ do 

12.  Select 𝑛𝑖 ∈ 𝑁𝑤
ℎ | 𝑚𝑎𝑥𝑛𝑖

{𝑊(𝑡)} 

13. 𝐶𝑖  ← 𝑛𝑖 

14. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑗 ∈  𝑁𝑤
𝑙 (t) do 

15.      𝑖𝑓 𝑑(𝑛𝑖 , 𝑛𝑗) ≤ 𝑅 then 

16. 𝐶̃𝑖 ← 𝑛𝑗 

17. 𝑒𝑛𝑑 𝑖𝑓  
18. End for 

19. 𝑤ℎ𝑖𝑙𝑒 |𝐶𝑖 < 𝑀| 𝑑𝑜 

20. 𝐶𝑖 ← 𝑛𝑗| 𝑚𝑖𝑛𝑛𝑗
{𝑊(𝑡)}  ∀𝑛𝑗 ∈ 𝐶̃𝑖 

21. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑗  𝑓𝑟𝑜𝑚 𝑁𝑤
𝑙  𝑎𝑛𝑑 𝐶̃𝑖 

22. End while 

23. Remove 𝑛𝑖 𝑓𝑟𝑜𝑚 𝑁𝑤
ℎ 

24. 𝑖𝑓 𝑁𝑤
𝑙  ≠ ∅ then 

25. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑗 ∈  𝑁𝑤
𝑙  do 

26. 𝐶𝑗 ← 𝑛𝑗 

27. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑗  𝑓𝑟𝑜𝑚 𝑁𝑤
𝑙  

28. 𝑒𝑛𝑑 𝑓𝑜𝑟 

29.  End if  

30. Then devices update weight using equation(2) 

31. Update cluster head and cluster formation 

32. end  
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Algorithm 1 depicts the clustering method's pseudo-

code; initially, all nodes' weights are considered zero. Then 

the weight of each node is calculated(lines 1-5). Then, 

among the fog nodes, a threshold weight is considered so 

that fog nodes with a higher weight than the threshold 

weight are added in 𝑁𝑤
ℎ(t) otherwise, they are added in 

𝑁𝑤
𝑙 (t) (lines 6-12). Then starting from the ith fog node 

having the highest weight, the ith cluster Ci is created with 

the ith fog node as the cluster head(lines 13-15). All the fog 

nodes having a lower weight set are considered, and those 

with a distance for cluster head lower than the coverage 

range are selected and added to the temporary cluster 𝐶̃𝑖 

Composed by the candidate's cluster members of the ith 

cluster head(lines 16-20). Among cluster members, the fog 

nodes with the lowest weight are added to the cluster 𝐶𝑖 

and removed from both 𝑁𝑤
𝑙  𝑎𝑛𝑑 𝐶̃𝑖. The bound M has been 

introduced to limit the cluster size (lines 21-25). In the last, 

the remaining  fog nodes in 𝑁𝑤
𝑙  are considered as isolated 

nodes(lines 26-31). Then the weight is updated to update 

the cluster. 

After cluster formation, the decision engine is 

deployed over the cluster head. Then decision engine will 

decide where to offload data. Here fuzzy rules are used to 

specify the actions of the decision engine to determine 

where to execute the task based on different parameters. It 

determines the destination device for an offloaded request 

by considering CPU utilization, delay sensitivity, residual 

energy, task size, and bandwidth. 

3.2. Offloading Algorithm 

The IoT environment frequently changes with time. 

The offloading algorithm is expected to adopt such 

changes to meet the quality of service (QoS). To guarantee 

this, we have proposed offloading algorithm based on 

fuzzy rules to find the best offloading destination. Fuzzy 

logic deals with uncertain or decision-making problems 

based on specific criteria and helps reduce the problem's 

complexity.[36] Fuzzy-based decision engines act as a 

coordinator that collects info from the resource manager 

and decides the offloading destination based on fuzzy 

rules. Three linguistic variables are defined for each 

offloading objective. Fuzzifier converts each input to the 

linguistic variable based on the membership function.[37] 

Here membership functions are defined according to each 

criterion to represent the role of the parameter in decision 

making. In the knowledge base, we store knowledge about 

all input-output fuzzy relationships. Fuzzy inference 

determines the performance of the system by using if-then 

rules. These conditional statements approve the position of 

a particular variable. 

The fuzzy logic-based decision engine operates on 

four variables  

𝐹𝑙 = (𝑝, 𝑞, 𝑟, 𝑠, 𝑡)            (5) 

  

Where 𝑝 represents delay sensitivity, 𝑞 represents task 

size, 𝑟 represents CPU utilization, 𝑠 represents residual 

energy, and t represents bandwidth. 

3.3. Fuzzy Inference System 

Here we have used three linguistic variables, i.e., low, 

medium, and high, for all parameters. In a Fuzzy logic 

system, membership functions quantify the linguistic 

variables. Here we have used the triangular membership 

function because of its simplicity. We associate linguistic 

terms with the crisp values using the membership function 

during fuzzification. The following equation represents 

fuzzy classes for each identifier. 

𝐹𝑝(𝑥) = [𝜇𝑝
𝐿(𝑥), 𝜇𝑝

𝑀(𝑥), 𝜇𝑝
𝐻(𝑥)] 

𝐹𝑞(𝑥) = [𝜇𝑞
𝐿(𝑥), 𝜇𝑞

𝑀(𝑥), 𝜇𝑞
𝐻(𝑥)] 

𝐹𝑟(𝑥) = [𝜇𝑟
𝐿(𝑥), 𝜇𝑟

𝑀(𝑥), 𝜇𝑟
𝐻(𝑥)] 

𝐹𝑠(𝑥) = [𝜇𝑠
𝐿(𝑥), 𝜇𝑠

𝑀(𝑥), 𝜇𝑠
𝐻(𝑥)] 

𝐹𝑡(𝑥) = [𝜇𝑡
𝐿(𝑥), 𝜇𝑡

𝑀(𝑥), 𝜇𝑡
𝐻(𝑥)] 

In the inference step, we evaluate fuzzy rules from the 

knowledge base. The input and output in an inference 

system are fuzzy variables. These fuzzy variables are used 

for the defuzzification step. The fuzzy rule is an expression 

with condition and output. These are represented in if-then 

form. 

Table 3. Fuzzy rules 

Decision  

Index 

p q r s t Decision 

D1 H L L H H Fog 

D2 H L L L L Local 

D3 M M L M M Fog 

D4 L L L L H Cloud 

 

Defining fuzzy rules is very complex and critical 

because the performance of FLS depends on fuzzy rules. 

In inference for aggregation step, maximum and minimum 

functions are used after that evaluated result of 𝑖𝑓 part is 

applied to 𝑡ℎ𝑒𝑛 part using activation method. Finally, in 

the accumulation step, we used the maximum function to 

combine the results of multiple rules using Equation 6. 

𝜇𝑓𝑜𝑔 = max {𝜇𝑓𝑜𝑔
𝐷1 , 𝜇𝑓𝑜𝑔

𝐷2 … … . 𝜇𝑓𝑜𝑔
𝐷𝑛 }     (6) 

The last step of FLS is defuzzification which converts 

the fuzzy output to real values. For defuzzification, various 

methods are used as the mean of maximum, modified 

height, maximum, centroid method, etc. 

We have used a centroid defuzzifier in this step. The 

centre of gravity(CoG) value is evaluated using Equation 

7. 

      𝑋∗ =
∫ 𝑥𝜇(𝑥)𝑑𝑥

∫ 𝜇(𝑥)𝑑𝑥
        (7) 
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After the centroid defuzzifier, output X* becomes a 

crisp value between 0 to 100. The algorithm selects the 

local device, fog node, and cloud node based on the CoG 

value.  

 
Fig. 3 Membership function for delay 

 

Fig. 4 Membership function for task size 

 

Fig. 5 Membership function for CPU utilization 

 

Fig. 6 Membership function for residual energy 

 

 

Fig. 7 Membership function for network bandwidth 

 

Fig. 8 Output membership function 
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Algorithm 2: Offloading Algorithm 

OD: offloading decision 

RC: Required capacity 

EC: Existing Capacity 

Input:  Incoming task T, Read value of parameters(Delay 

sensitivity, task length. CPU utilization, residual energy, 

bandwidth) 

Output: Offloading Decision 

1. Initialize X*=0 

2. Read incoming task profile 

3. Calculate crisp value X* using equation (5)(After 

defuzzification value of X* lies between 0 to 100) 

4. { 

5. If(X*<=30) then 

6.     If(RC<EC) 

7.       OD=Local 

8.   else 

9.       OD=Remote 

10.    end 

11. else 

12.     if (30<X*<=60) 

13.       OD=Fog 

14.     else 

15.        OD=Cloud 

16. } 

17.    Return OD 

4. Results and Discussion 
By verifying the performance of the proposed 

algorithm, various scenarios are simulated using the 

PureEdgeSim simulator. This simulator expands the 

CloudSim toolkit by adding a mobility manager, network 

manager,  simulation manager, and task generator to 

simulate the real physical fog environment. The simulator 

operates on a system with an Intel® coreTM i58250U 

CPU @ 1.60GHz processor, 8GB RAM, and a 64-bit 

operating system configuration. To justify the performance 

of the new framework, it is compared with the clustering 

technique EAOCA[28] and the fuzzy-based decision 

technique.[36] The task offloading request generates a 

different network and processing load on the remote 

server. For example, a high computational task needs a 

large amount of CPU processing capability; however, a 

data storage application needs low computational 

capability. However, data backup requires large network 

bandwidth, whereas computation-intensive tasks may 

require less bandwidth. Three applications were used to 

simulate a real-world scenario: an intelligent transport 

system, a smart building, and a health system to support 

heterogeneity. These applications were deployed on end 

devices. The number of end devices raise from 100 to 500 

with the counter step of 100. In this study, the exponential 

growth of tasks is considered based on interval time. Delay 

sensitivity represents whether task is delay tolerant or not. 

If the value of delay sensitivity is low , the related 

application is delay tolerant. The tasks were generated   

randomly according to Table 4. Various parameters need 

to be set for the fog  simulation environment. The major 

parameters of the simulation are shown in Table 5. 

Numerous metrics have been gathered from simulation 

results. Here, we will only pay attention to the number of 

tasks that were successfully completed, the average delay, 

and the average CPU utilisation at each level of the fog 

computing environment. 

Table 4. Applications specification 

Application App1 App2 App3 

Percentage of 

devices(%) 

40 30 30 

Task 

interval(sec) 

2 8 4 

Task Size(GI) 9 20 3 

Delay 

Sensitivity 

0.8 0.5 0.3 

CPU Utilization 

(%)  

5 15 2 

Figure 9 shows the number of tasks executed at each 

level in fog computing architecture. 

Table 5. Simulation parameters[38] 

Parameters Value 

Minimum Devices(No.) 100 

Maximum Devices(No.) 500 

Simulation Duration 30(min) 

Counter step 100 

Number of the fog server 18 

 VM per fog server 2 

VM in cloud  6 

Simulation Area 500*500(meter) 

Architecture Fog and Cloud 

 

It demonstrates that more tasks are being completed at 

the fog node than at the local device or cloud. Figure 10 

shows the percentage of the number of tasks successfully 

executed. The simulation results show that most tasks can 

be completed successfully when the server has few tasks. 

However, the success rate decreased as the number of 

devices increased. The performance improvement rate of 

the proposed mechanism over the existing algorithm is 

calculated using Equation 8.[39] Suppose the proposed 

algorithm is ith and existing is the jth algorithm. 

𝑃𝐼𝑅(%) = (
(∑ 𝑃

𝑖𝑡ℎ −∑ 𝑃
𝑗𝑡ℎ

∑ 𝑃
𝑗𝑡ℎ

) ∗ 100            (8) 
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Where P represents the parameter value, PIR (%) is 

calculated based on the percentage of tasks successfully 

executed. The increase in the percentage of tasks 

successfully executed is 5.92% over EAOCA and 4.72% 

over fuzzy logic. 

 

Fig. 9 Number of tasks executed at each level 

 

 

Fig. 10 Number of tasks executed successfully 

The average CPU utilization of VMs executing on fog 

and cloud is depicted in Figure 11. Consistently low CPU 

utilization is not a preferred result compared to efficient 

utilization of resources. Because the CPU utilization is 

minimum with limited resources is much more efficient 

than minimum CPU utilization with high availability of 

resources. The CPU utilization is calculated using 

Equation 9. 

CPU Utilization=∑ 𝐶𝑃𝑈𝑖
𝑗−1
𝑖=0     (9) 

Where j is the number of CPUs and CPU is the utilization 

of ith CPU. Our algorithm's average CPU utilization 

results represent that the dynamic fuzzy-clustering-based 

algorithm uses better resources than the EAOCA algorithm 

and fuzzy logic-based offloading framework.  

 

Fig. 11 The average CPU utilization 

One of the key challenges in offloading is to minimize the 

average delay. It is the average time taken for transmitting, 

waiting, computing, and receiving back results. In Figure 

12, a comparative analysis of the average delay is shown. 

The proposed framework has reduced delay by 

approximately 8.74% compared to fuzzy logic and 11.73% 

compared to the EAOCA algorithm because of more tasks 

executed at the fog layer than at the cloud layer. The above 

analysis shows that the proposed algorithm outperforms 

other algorithms regarding CPU utilization, delay, and 

percentage of successfully executed tasks. 

 

Fig. 12 The average delay 
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5. Conclusion 
Nowadays, a significant number of IoT devices are 

used in different environments. These devices have limited 

resources. However, they generate a significant amount of 

data in a short duration. Cloud computing may be viable, 

but the inherent latency renders it unviable. Fog computing 

is a potentially useful solution located near the users. For 

resource-constrained IoT devices, it provides low latency, 

high bandwidth, sharp responsiveness, and dependability. 

As a result, we suggested a three-tier fog-cloud integration 

architecture in this article. We used the clustering 

technique to find offloading decision engine deployment 

location, and fuzzy logic was used to find the best 

offloading destination. The results show that the dynamic 

computation offloading framework outperforms the 

EAOCA and fuzzy logic-based offloading algorithms 

regarding the number of tasks successfully executed, CPU 

Utilization, and average delay. Optimization approaches 

could be employed to improve the decision engine's 

performance in the future. 
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