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Abstract - This research aims to develop models for classifying the sweetness of intact ripe mangoes using image-based deep 

learning fused with near-infrared spectral data. Each mango was measured for near-infrared spectral data at all 12 locations 

distributed across the fruit. These spectral data were enhanced by Baseline Linear Correction, Multiplicative Scatter 

Correction, Standard Normal Variate, and mixed methods. Next, the mango images are processed using the GrabCut method 

to eliminate background information and then adjusted with the Adaptive Mean-C Thresholding method. Finally, the mango 

fruit image was processed, and the enhanced spectral data were taken through feature extraction using a Convolutional 

Neural Network-based early fusion technique. The results showed that the model using the enhanced spectral data that applied 

the Multiplicative Scatter Correction combined with the Standard Normal Variate method provided the highest model 

efficiency. The training accuracy was 99.66%, and this model's validation accuracy was 94.20%. Therefore, enhanced near-

infrared spectroscopy, combined with image processing and model development deep learning-based, can improve the 

classification of the sweetness of ripe mangoes. 
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1. Introduction 
Mango (Mangifera indica L.) is a popular tropical fruit 

worldwide that can be eaten raw and ripe. Over one thousand 

varieties of mangoes are cultivated worldwide, and over one 

hundred seventy-two varieties are cultivated in Thailand [1]. 

It contains many nutrients, such as vitamins A, C, E, and B6 

[2]. It is also rich in potassium, folate, and beta-carotene [3], 

an antioxidant. Moreover, mango contains high dietary fiber 

[2] that helps lose weight [3]. Besides, mangoes also contain 

fructose, glucose, and sucrose. The amount of sucrose is 

higher than other sugars in mango. Over several days, the 

mango will begin to ripen and increase its sugar content [4]. 

However, eating ripe or overripe mangoes will cause the 

body to get more sugar than necessary. The excess amount of 

sugar accumulated in the body can harm the functioning of 

the body and can lead to diabetes. In this case, it usually 

occurs quickly in older people or those at risk of developing 

diabetes. Therefore, avoiding ripe or overripe mangoes is 

another approach for these at-risk individuals. 

 

The ripeness of mangoes requires expertise in observing 

the mangoes in many aspects, including smelling, 

plumpness, skin color, and wrinkles on the peel. Sometimes 

the plumpness or shape of the fruit is not a sure measure of 

the mango sweetness that has more sugar. Because some 

mango fruits may not have an extensive size, they are 

maturing or fully ripe. In addition, ripened mangoes are less 

sweet than those that are naturally ripe mangoes. Generally, 

each ripe mango variety and each fruit have a different 

amount of sugar. Thus, it may be more challenging to predict 

the sweetness or sugar content of ripe mangoes by 

observation. 
 

A wide variety of research has classified the quality of 

mangos by using near-infrared (NIR) spectroscopy [2], [5]–

[9] with wavelengths in the 1,000 to 2,500 nanometers (nm). 
This method will not damage the fruit. Raw NIR 

spectroscopy data may be classified directly with the 

Random Forest classifier [9] or other methods. For most 

research, raw NIR spectral data is obtained through noise or 

scatter methods [7], such as Standard Normal Variate (SNV), 

Multiplicative Scatter Correction (MSC), and Unit Vector 

Normalization (UVN) [8]. This approach makes the model 

more efficient in its classification when applied to the 

classifier. Some studies take NIR spectral data through a 

deep learning process using applications to classify coffee 

[10] and peach cultivars [11]. In addition, mango images are 
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subjected to image processing to classify sweetness [12], 

ripeness [13], and the quality of mangoes [14]. However, 

from the present research, most mangoes are classified by 

one of the abovementioned methods. There is significantly 

less research on how these techniques can be applied 

together. Therefore, this research aims to apply various 

techniques together to classify the sweetness of mangoes 

without damaging the fruit based on Convolutional Neural 

Network (CNN) with image processing fused with the 

enhanced NIR spectral data 

2. Methodology 
Improving the efficiency of classifying the sweetness of 

ripe mangos by methods that intact the fruit relies mainly on 

image processing and the spectrum data in the NIR region. 

The mango fruit data was then taken through a deep learning 

technique to predict how ripe the mango was and how much 

range of sugar it contained. The method of this work was 

described as the following processes. 

2.1. Data Collection 

This research selected popular ripe mangos that Thai 

people like to eat and can easily be bought in the fresh 

market. Thus, these favorite ripe mangoes include Okrong, 

Okrong Thong, Namdokmai, and Namdokmai Si-Thong. 

Consequently, eight hundred eighty mangoes were collected 

that were mixed from all four varieties of mangoes 

mentioned above. These mangoes consisted of one hundred 

thirteen unripe, four hundred eighty-nine ripe, and two 

hundred seventy-eight overripe, as shown in Table 1. 

Table 1. Amount of collected mangoes 

Mango varieties 
Number of mango fruits 

Total 
Unripe Ripe Overripe 

Okrong 27 115 69 211 

Okrong Thong 32 127 64 223 

Namdokmai 26 129 70 225 

Namdokmai Si-Thong 28 118 75 221 

Summary 113 489 278 880 
 

All mangoes collected will be recorded for each fruit 

specification in three steps. 

2.1.1. Mango images 

 Take a photo of the mango fruits in the top view on both 

the left and right sides of each mango. Thus, there will be 

one thousand seven hundred sixty images of mango fruit. All 

images were labeled with the running numbering of the 

sample. 

2.1.2. NIR spectral data 

 All mangoes were scanned with a NIR sensing device 

(PSD-FTNIR i16) in wavelengths between 1,000 nm and 

2,500 nm. The resolution windows were set to 0.02 nm with 

4x optical gain. Each mango side was scanned at six different 

locations: top-left, top-right, middle-left, middle-right, 

bottom-left, and bottom-right positions, as shown in Fig. 1. 

The absorbance spectrum output of NIR spectral data for 

both left and right sides of mango were collected in comma-

separated values (CSV) file formatted. 

2.1.3. Measuring sweetness 

 This process requires cutting or segmenting mango to 

measure the sweetness. One mango can be unevenly sweet, 

with the top part being sweeter than the bottom. Therefore, in 

this research, mango pulp was cut on both sides of the fruit 

and divided into six pieces: top-left, top-right, middle-left, 

middle-right, bottom-left, and bottom-right sections. Next, 

the authors applied the refractometer with automatic 

temperature compensation (ATC) that has a resolution 

between 0 and 32% Brix to measure the sweetness of all 

twelve pieces of mango pulp, as shown in Fig. 2. Last, all 

sweetness values for each side of the mango were average 

and then recorded to the previous CSV file. 

 
Fig. 2 Mango pulp segmentation and sweetness measuring 

This work categorized the mango sweetness into ten levels 

for classification, as shown in Table 2. 

Table 2. The mango sweetness levels 

Levels Sweetness (%Brix) 

A <= 8.0 

B 8.1 – 10.0 

C 10.1 – 12.0 

D 12.1 – 14.0 

E 14.1 – 16.0 

F 16.1 – 18.0 

G 18.1 – 20.0 

H 20.1 – 22.0 

I 22.1 – 24.0 

J > 24.0 

2.2. Image Preprocessing 

All images of mango fruit are processed to make the 

texture features on the mango peel surface more prominent. 

This research consists of 3 steps of image processing as 

follows. 

2.2.1. Image cropping and resizing 

 All images are cropped to a square shape and resized to 

224x224 pixels suitable for VGG16 [15] based deep learning 

processing. 
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2.2.2. Remove background information 

 The GrabCut [16] algorithm was applied to remove 

background data leaving only the mango image. The 

GrabCut algorithm is based on the graph technique by 

applying the border matting and foreground estimation. The 

example of image output is shown in Fig. 3. These mango 

images were kept to the first image dataset. 

 
Fig. 3 Example of the mango image output by GrabCut 

2.2.3. Image Thresholding 

 The image of the mango with the background removed 

is enhanced by image thresholding processing. Start by 

blurring the image with the median blur method. Then adjust 

thresholding using Adaptive Mean-C Thresholding where the 

constant value C was 3. Finally, use binary thresholding to 

adjust the image to reverse the image between white and 

black. The example of the final image output is shown in Fig. 

4. These mango images were kept to the second image 

dataset 

 
Fig. 4 Example of the mango image output by GrabCut 

Therefore, there are two mango image datasets, 

including the mango image without background information 

and the mango image in which image thresholding is 

processed. 

2.3. NIR Spectral Data Enhancement 

All raw NIR spectral data were transformed by applying 

the BLC, MSC, and SNV techniques. 
 

2.3.1. BLC 

The BLC method is used to eliminate the noise of 

spectral data [17] as in (1) [18]. 

 

 𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏 (𝑖 ∈ 𝑊) (1) 

Where: 

yi represents the fitting value of spectral data of 

wavelength i; 

a represents the first-order regression coefficients; 

xi represents the spectral data of wavelength i; 

b represents the first-order regression coefficients; 

W represents the set of wavelengths. 

 

2.3.2. MSC 

The MSC method compensates for additional and 

multiplicative effects that physical effects may cause in the 

spectral data [19] by eliminating irrelevant scattering [20] as 

in (2) [21]. 
 

 𝑍(𝑣) = 𝑎 + 𝑏 ⋅ 𝑍𝑟(𝑣) + 𝑒 (2) 

Where: 

Z(v) represents the model according to the reference 

spectrum; 

Zr(v) represents the reference spectrum data; 

a represents the additive baseline factor; 

b represents the multiplicative factor; 

e represents the remaining variable that was not modeled. 

2.3.3. SNV 

 This method does not require the model. It is a fast 

implementation for scatter correction [22]. The SNV can 

remove the slope variation of the raw spectral data and 

correct the scattered light effectively [20] as in (3) [23]. 

 

 𝑥𝑖,𝑗(𝑠𝑛𝑣) =
(𝑥𝑖,𝑗−�̄�𝑖)

√
∑ (𝑥𝑖,𝑗−�̄�𝑖)2𝑝

𝑗=1
𝑝−1

 (3) 

Where: 

xi,j(snv) represents the component of the transformed 

spectral data; 

xi,j represents the correspondence of the primary 

component of the spectral data i for the variable j; 

�̄�𝑖represents the average of spectral data i; 

p represents the number of wavelengths in the spectral 

data. 

2.3.4. MSC+BLC 

 The BLC and MSC were based on the linear correction. 

This work applied the BLC then MSC method for raw 

spectral data of mango. 

2.3.5. MSC+SNV 

 This method is the combination of MSC and SNV. First, 

the SNV is used to eliminate the slope variation then the 

MSC is used to eliminate the irrelevant scatter. 

2.4. Deep Learning Modeling 

The architecture of the models for classifying the mango 

sweetness is based on the VGG16 and 1D CNN architecture 

combined with the early fusion technique. 

2.4.1. VGG16 architecture 

 This architecture has five blocks of convolution layers of 

3x3 kernel size with one stride and Rectified Linear Unit 

(ReLU) activation function. The filters were incremented 
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from 64, 128, 256, and 512 for the convolution blocks. In 

total, there are thirteen convolution layers. The 2x2 max-

pooling was applied with two strides at the end of each 

convolution block. Last, there is one flatten layer to optimize 

the feature to 1-dimensional data of mango image datasets. 

2.4.2. 1D CNN architecture 

 All six NIR spectral data were set as 1-dimensional input 

data for 1D convolution layers. This architecture includes 

four convolution layers with a 20 filter size. The number of 

filters was incremented from 32, 64, 128, and 256, 

respectively. The ReLU activation function was applied for 

all convolution layers. There are four max-pooling which 

have the filter sizes were 2, 5, 5, and 5, respectively. The 

dropout was set to 0.1 at the end of the 1D CNN architecture, 

then flattened. 

2.4.3. Fusion and classifying 

 All flattened output from VGG16 and 1D CNN 

architecture were fused and then classified by applying the 

two dense (4,096), two dropouts (0.1), and softmax 

activation function for the last layers. The proposed model 

architecture is shown in Fig. 5. 

 
Fig. 5 The proposed model architecture 
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According to Fig. 5, the two datasets, including the 

mango image without background information and the 

thresholded mango image, were used to train and test with 

the designed VGG16 architecture for image feature 

extraction. Only the six NIR spectral data were applied for 

the 1D CNN architecture. Each dataset was split into 80% for 

the training set and 20% for the test set. During the model's 

training for 300 epochs, the early stopping was applied to 

monitor the accuracy with the patient was 7. This early 

stopping was used to eliminate the model overfitting. 

Moreover, the learning rate was 0.01, and the batch size was 

16. 

2.5. The Model Efficiency Evaluation 

After all six models were trained and tested, each model 

evaluated the efficacy by applying the accuracy, sensitivity, 

precision, specificity, and F-measure by formula (4), (5), (6), 

(7), and (8) [24]–[26], respectively. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (7) 

 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (8) 

Where: 

TP represents the output class is true while the actual class 

is true; 

TN represents the output class is false while the actual 

class is false; 

FP represents the output class is true while the actual class 

is false; 

FN represents the output class is false while the actual 

class is true. 

Moreover, the models were validated using the 10-Fold 

Cross-Validation to evaluate the efficiency of the model’s 

validation. Therefore, a model framework of all processes in 

this work is shown in Fig. 6. 

 

 
Fig. 6 The research model framework 
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3. Result 

3.1. The Result of Efficiency of Model’s Traning 

After the six models were trained with six datasets, 

including raw spectral data, BLC, MSC, SNV, MSC+BLC, 

and MSC+SNV, it was found that the model which is 

developed by using the MSC+SNV dataset has the highest 

efficiency. This model gave the accuracy (Acc) was 99.66%, 

the sensitivity (Sens) was 99.33%, the precision (Prec) was 

99.83%, the specificity (Spec) was 99.65%, and the F-

measure was 99.75%. The most efficient models for the 

remaining models with the efficiency of model training are 

MSC+BLC, SNV, MSC, BLC, and raw spectral data, 

respectively. The model training accuracy of these models 

was 99.20%, 98.75%, 98.07%, 97.39%, and 96.93%, 

respectively. The efficiency of the model’s training of all the 

six models is shown in Table 3. 

Table 3. The efficiency of the model’s training 

Models Acc Sens Prec Spec F-measure 

Raw 96.93 97.48 97.97 95.79 97.73 

BLC 97.39 97.82 98.31 96.49 98.06 

MSC 98.07 98.49 98.65 97.19 98.57 

SNV 98.75 98.99 99.16 98.25 99.07 

MSC+BLC 99.20 99.33 99.49 98.95 99.41 

MSC+SNV 99.66 99.66 99.83 99.65 99.75 

 

3.1.1. The Result of Efficiency of Model’s Validation 

The developed model with the MSC+SNV dataset has 

generated the highest efficacy compared to the other models 

in this work. The MSC+SNV model’s efficiency includes the 

accuracy of 94.20%, the sensitivity of 94.97%, the precision 

of 96.42%, the specificity of 92.61%, and the F-measure of 

95.69%. The model with the second model’s validation 

efficiency is the MSC+BLC model. It gave a validation 

accuracy was 93.52%. Next, the SNV model, MSC model, 

BLC model, and raw spectral data model with the validation 

accuracy were 92.61%, 92.16%, 91.70%, and 90.45%, 

respectively. 

In addition, the result of the efficiency of the model’s 

validation, such as the accuracy, sensitivity, precision, 

specificity, and F-measure values, was shown in Table 4. 

Table 4. The efficiency of the model’s validation 

Models Acc Sens Prec Spec F-measure 

Raw 90.45 91.04 94.82 89.17 92.89 

BLC 91.70 92.36 95.37 90.29 93.84 

MSC 92.16 92.85 95.55 90.68 94.18 

SNV 92.61 93.33 95.73 91.07 94.51 

MSC+BLC 93.52 94.15 96.24 92.20 95.18 

MSC+SNV 94.20 94.97 96.42 92.61 95.69 

 

All the model efficiency results were compared, as shown 

in Figure 7. 

 

 
Fig. 7 The comparison of the model efficiency results 
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4. Conclusion 
Mangoes are nutritious and versatile fruit when eaten 

during the proper ripening period. However, the amount of 

sugar found will vary according to the ripening period of the 

mango fruit. This research used data from 880 mangoes, 

consisting of mango species, Okrong, Okrong Thong, 

Namdokmai, and Namdokmai Si-Thong. These mangoes 

were photographed on both the left and right sides of the 

mango fruit. Then take all the mango fruit images by cutting 

out the background information using the GrabCut 

technique. Next, the mango images without background 

information were processed using Adaptive Mean-C 

Thresholding. This method makes essential features on the 

mango peel clearer, such as rough, wrinkled, or bruised skin. 

Then, each mango fruit was measured with the near-infrared 

spectral data of mango fruits at different locations of all 12 

positions. The near-infrared spectral data of each mango 

were enhanced by BLC, MSC, SNV, MSC+BLC, and 

MSC+SNV methods. In addition, the sweetness of each 

mango was also measured by a refractometer with ATC. The 

resulting sweetness value was used to compare the accuracy 

of sugar sweetness classification with the developed models. 

  

In this research, the sweetness of mango fruit was 

classified from the dataset using a deep learning approach 

with Convolutional Neural Networks based on the VGG16 

architecture for 2-dimensional and 1-dimensional 

convolution layers. Each output data from CNN architecture 

was fusion and then classified as mango sweetness. A total of 

six models were developed using a mango fruit image dataset 

without background data, an adaptive Mean-C Thresholding 

mango fruit image, and raw or enhanced spectral data. The 

result shows that the developed model using the 

Multiplicative Scatter Correction and Standard Normal 

Variate techniques is the highest efficiency for classifying 

the mango sweetness. Furthermore, the training accuracy of 

this model was 99.66%, and the validation accuracy was 

94.20%. Therefore, the model developed in this way can be 

used in further development as an application for classifying 

sweetness levels in Mango, Okrong, Okrong Thong, 

Namdokmai, and Namdokmai Si-Thong. 

 

In this research, mainly four varieties of mango were 

covered. However, there are hundreds of cultivars of 

mangoes. Therefore, if the proposed method is to be applied 

in conjunction with other mango cultivars, it can be done by 

applying the other mango fruit images and spectral data of 

the desired mango varieties for further training. This 

resulting model can be used as transfer learning to reduce the 

process and increase classification efficiency. 
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