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Abstract - Greywater reuse has been a time-honored tradition for decades and benefits most regions facing tremendous water 

scarcity. Greywater has a large-scale potential for reuse and a wide area of application. The water quality index (WQI) 

determines the system of reuse and area of application for greywater. Various models can be found in earlier literature to 

predict WQI, namely the values of TSS, TDS, TS, pH, COD, and BOD based on ANN, DNN, SVM, KNN, and other 

approaches. Recently, some researchers have also proposed Water quality monitoring techniques based on IoT. This study's 

objective is to establish an indirect way of estimating the major wastewater quality parameters constructed on machine 

learning techniques. SVR, a version of SVM, was used to implement the model based on the kernel trick in PYTHON. The 

mean squared error function is prepared to analyze the model's overall effectiveness, which was observed to be 0.514. It was 

also observed that the mean squared error resulted from the cost of error (C). As the value of C increases, the hyperplane 

becomes much smoother, thereby improving the model's performance. 

Keywords - BOD, Error function, Greywater, Hyperplane, SVR. 

1. Introduction 
Greywater can be considered as any wastewater 

emerging from household use except toilet wastewater 

(Casanova et al. 2001, Ledin et al. 2001, Ottoson 2003) 

[1][2][3]. Greywater may be seen as high quantity and low 

strength wastewater with a large-scale potential for reuse and 

wide application, including window and car washing, 

gardening, agriculture, and other non-potable uses. The 

physical and chemical properties of greywater are never 

fixed. It varies from region to region and is mostly affected 

by lifestyle and climatic conditions (Abedin 2013, do Couto 

et al. 2013, Katukiza et al. 2014) [4][5][6]. Greywater 

recycling has been around for decades and is proven useful in 

most places of the world experiencing severe water scarcity. 

e.g., Parts of Africa, Australia, India, etc. Some countries 

still do not have the practice of greywater reuse, or the laws 

for the same are so stringent that people avoid practicing 

them. If necessary attention is given to this practice, 

greywater reuse can help mankind to reduce their 

dependency on freshwater requirements. 

 

Proper wastewater treatment can save the environment 

and reduce water pollution from untreated wastewater 

discharged into waterways. Greywater can be an additional 

water source in serious water shortage areas and regions with 

dry climates. Studies performed by Hernandez Leal et 

al. (2010) [7] claim that up to 75% of the water produced 

from households is greywater, and its volume can increase if 

dry toilets are utilized, up to 90%. Jamrah et al. (2011) [8] 

estimated that greywater contributes to nearly 69% of 

household water consumption. As most of the domestic 

wastewater originates from the bathroom or kitchen sink, it 

shows higher values of total suspended solids (TSS) due to 

washing clothes, showers, utensils, oils, etc. Wastewater may 

contain particles of sand, hairs, soap, detergents, oil, and 

other materials that increase the value of TSS. The pH value 

of greywater largely rests on the alkalinity/acidity based on 

the water supply. In addition, it is normally in the values 

between 5–9. The pH of greywater generally increases 

because of the alkaline material in soaps and detergents used 

in the laundry and utensils. Other important wastewater 

parameters are Chemical Oxygen Demand (COD) also 

Biochemical Oxygen Demand (BOD), where we usually 

witness a preponderance of COD over BOD. BOD/COD 

ratio determines the biodegradability of greywater. It 

indicates the degree to which microorganisms can 

decompose the organic stuff in greywater. The water quality 

index (WQI) of greywater determines its reuse and area of 

application. 

 

Many pieces of literature exist where researchers have 

treated greywater using different conventional treatment 

techniques and recycled them for other non-potable uses. 

Researchers have also proposed machine learning and 

artificial intelligence algorithms to predict water quality 

indexes and classes. Various models can also be found in 

earlier literature to predict WQI, namely the values of TSS, 

https://www.internationaljournalssrg.org/
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TDS, TS, pH, COD, and BOD based on the SVM, KNN, 

ANN, DNN, and others. Recently, some researchers have 

also proposed water quality monitoring solutions based on 

the IoT. 

 

Abyaneh et al. (2015) [9] estimated two significant 

WQI, i.e., BOD and COD using four other water quality 

constraints such as; a temperature of water (T), alkalinity of 

water (pH), total solids (TS) also total suspended solids 

(TSS). Parameters were gathered from a wastewater 

treatment plant. Researchers developed two different 

representations based on multivariate linear regression 

(MLR) also Artificial neural network (ANN) techniques. The 

performance of these dual models is assessed built on the 

value of Root Mean Square Error (RMSE), also Coefficient 

of Correlation (r). The ANN model outperformed the MLR 

model, according to the results. 

 

Chou et al. (2018) [10] used the techniques of Artificial 

Intelligence to determine the Carlson Trophic State Index 

(CTSI), a statistic aimed at water purity. The researchers 

applied models based on ANN, SVM, LR, and CART 

methods. Four different techniques were applied for each 

model based on balloting, sacking, stacking, and tiering. In 

terms of MAE, MAPE, and RMSE, the ANN model based on 

tiering approach performed the best, with 3.941, 3.131, and 

6.786 percent, respectively. 

 

Mohammadpour et al. (2015) [11] used SVM along with 

FFBP (feedforward backpropagation) also RBF for 

predicting WQI in a constructed wetland. The researchers 

collected information based on 11 water quality factors over 

14 months. Out of 11 parameters, the researchers used 6 

important factors such as; pH, DO, COD, BOD, TS, and AN 

to put the models through their paces, approve them, and 

train them. The findings demonstrate that FFBP and 

SVM models can be useful in forecasting the quality of 

greywater in a built wetland. 

 

Muharemi et al. (2018) [12] used a nine-model order 

calculation approach to estimate the water quality location 

model. The F1 score is adapted to equate the performance of 

various representations. The model established on the 

Logistic regression approach showed the highest 

approximation, about 0.58, is an F1 score, whereas SVM, in 

addition to NN models, failed in performance. Researchers 

also concluded that the number of false negatives besides 

false positive predictions is highly decreased in the case of 

the logistic regression approach. 

 

Shafi et al. (2018) [13] proposed an IoT-based machine 

learning approach to gradually forecasting water quality. An 

adaptable application was used to examine water quality 

metrics in the suggested framework remotely. For estimating 

water quality, four Artificial Intelligence approaches were 

used: Support Vector Machine (SVM), Artificial Neural 

Network (ANN), k Nearest Neighbor (kNN), and Deep 

Neural Network (DNN). Performance of t. According to the 

results, the DNN model is better, with a precision of 93%. 

 

Xiang et al. (2009) [14] employed an LSSVM-PSO 

representation to estimate water quality in the Liuxi River in 

Guangzhou. LSSVM (Least Square Support Vector 

Machine) may solve the MLP model's limitations, and PSO 

(Particle Swarm Optimization) can improve the LS-bounds. 

SVM's in terms of accuracy, the PSO-SVM representation 

outperformed both the BPNN and the ARIMA 

representation.  

2. Theory of Support Vector Machine 
2.1. The Error Function 

Assume we have a collection of data for training (x1, y1) 

with an uncertain distribution of probabilities, P (x, y), 

besides the loss function 𝑉(𝑦, 𝑓(𝑥))That computes the error 

created after f(x) is "predicted" as a substitute for the 

dependent variable's real value "y" for a given value of 

independent data "x." The task's goal, in this case, is to 

discover an error function "f," which minimizes the predicted 

error in forecasting fresh data. Accordingly, the error 

function "f" may be as written: 

𝑓 =  ∫ 𝑉(𝑦, 𝑓(𝑥)) 𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦              

Since probability distribution, i.e., when 𝑃 (𝑥, 𝑦) is 

unknown, apply some sort of induction principle which can 

generate the empirical error function from single available 

training examples with minimum expected error. Under such 

a condition, the principle of ERM, i.e., Empirical Risk 

Minimization, can be applied. Formally the empirical error 

function “f” may be written as:  

𝑓 =  
1

𝑙
∑ 𝑉(𝑥𝑖 , 𝑓(𝑥𝑖))

𝑙

𝑖=1

 

With "𝑓" limited to the hypothesis space - H, for 

example. An essential query is how near the solution's 

empirical error is to the predicted error's minimal value. In 

1971, Vapnik and Chervonenkis (Theorem 1) [15] proposed 

a theorem that defined the circumstances under which the 

two mistakes will be near each other, as well as the 

probability limitations on the distance between the two 

errors. The hypothesis space H is used to express these 

constraints: as H becomes more complicated, the probability 

gap between the two mistakes widens. 

 

The first theorem (Vapnik and Chervonenkis, 1971) [15] 

states: According to the theory, if V is a hypothesis space's 

VC dimension and H is a hypothesis space, and likelihood is 

1, then the least anticipated error (L) the minimal empirical 

error, note Lemp, must meet the following limitation:  
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𝐿𝑒𝑚𝑝 − 4√2 √
𝑉(1+log(

2𝑙

𝑉     
))−log(

η

4
 )

𝑙
 ≤ 𝐿 ≤ 𝐿𝑒𝑚𝑝 + 4√2 

√
𝑉(1+log(

2𝑙

𝑉     
))−log(

η

4
 )

𝑙
 

The first theorem holds regardless of the data P's 

probability distribution (x, y).  

 

When ERM is applied to a series of 

hierarchical hypothesis spaces, such as H1, H2, and H3, …. 

Structural Risk Minimization (SRM) is the term for it 

(Vapnik, 1998) [16]. Evaluating the "complexity" of such a 

hierarchical hypothesis space to identify the best solution to 

such a learning issue is an important question that emerges 

from Statistical Learning Theory. Vayatis and Azencott [17] 

emphasized the study of complicated parameters connected 

to hypothesis space in 1999.  

 

The distribution P (x, y) is considered as well in 

(Vayatis and Azencott) [17]. Also, the gap between 

empirical and predicted error is confined using a "complex" 

measure. The proposed constraints are tighter than theorem 

one, but they need an understanding of the distribution-

dependent complex variable. To summarize, (Vayatis and 

Azencott, 1999) [17] discussed the elementary conceptual 

structure in which SVM and other learning machines are 

initially established also; their findings point to potential 

research avenues that might lead to advances in the theories, 

and hence advancements in SVM (i.e., the concept could just 

select SVM variables like the kernel, in addition, the 

regularization parameter C). 

2.2. Formulation of SVM 

The principles given in the previous section are used to 

formulate SVM. To understand SVM, two things now have 

to be understood: first, the hypothesis space that SVM works 

with, then second, the loss function. Support Vector Machine 

has the advantage of finding an "optimal" possible answer to 

the learning problem, hyperplane. The linear solution, in 

which the answer to the learning problem falls on input 

vector X's space, is the simplest formulation of SVM. Under 

such circumstances, as a subset of all hyperplanes, the 

hypothesis space is considered and may be written as:  

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 

The universal explanation of SVM is that it seeks to 

locate a hyperplane that falls in the spotlight caused in the 

kernel K rather than the hyperplane that merely sits given the 

input vector X's space. (Wahba, 1990) [18]. The hypothesis 

space may alternatively be regarded by way of a collection of 

related actions during a Reproducing Kernel Hilbert Space 

(RKHS) expressed as means of K (Wahba, 1990) [18], 

thanks to the feature space caused by the kernel K. (Vapnik, 

1998) [16]. Based on these observations, we may conclude 

that SVM's hypothesis space seems to be a subgroup of the 

hyperplanes' set sometimes described in space an RKHS, 

which is technically expressed by employing   

{𝑓: ||𝑓||𝑘
2 < ∞}  

Where in K is the kernel that determines the RKHS in 

addition ||𝑓||
𝑘
2 is the function's RKHS norm (Wahba, 1990) 

While in the case of linear SVM, which has the form 𝑓(𝑥) =
𝑤. 𝑥 + 𝑏, such functions' RKHS norm is the norm of w, 

explicitly ||𝑓||𝑘
2= ||𝑤||

2
. In the case of a linear relationship, 

SVM considers subsets with this space that are of the type  
 

{𝑓: ||𝑓||𝑘
2 < 𝐴2} 

For a constant A,  

The constant A remains utilized to determine the 

construction of the hypothesis space in a Statistical Linear 

Training problem; the bigger the value of A, the more 

complicated the hypothesis space. SVM's goal is to discover 

the answer for the "optimal" RKHS norm, i.e., the ideal value 

of A. Instead of searching a large number of hypothesis 

spaces in sequence using the ERM principle for the choice of 

A individually, SVM searches for the optimum value of A in 

a dissimilar way, this has received a lot of attention 

throughout the studies presented by (Bartlett and Shawe-

Taylor, 1998) [19], (Burges, 1998) [20], and (Evgeniou et al., 

1999) [21]. 
 

After SVM has determined the hypothesis space, the 

next decision is regarding the loss function. To do so, we 

must first distinguish between SVM regressor and SVM 

classifiers. The loss function arises owing to 

misclassification in classification issues, and this mistake 

must be reduced; hence, in classification problems, a loss 

function of the type 𝑠𝑖𝑔𝑛 (−𝑦𝑓(𝑥)) must be utilized. In 

classification problems, y has binary values of 1; also, the 

sign of the function f(x) is used to classify things. Though, 

owing to expansion (Vapnik, 1998) [16], for SVM 

classification, the actual loss function is defined as |1-yf(x)|, 

commonly known as the "soft margin" loss function due to 

its traditional "margin" meaning. 

Regarding SVM classification, the margin is a crucial 

geometric quantity.  

The loss function utilized for regression problems is the 

epsilon insensitive loss function,  

 

|𝑦 − 𝑓(𝑥)|𝜀 =|𝑦 − 𝑓(𝑥) − 𝜀 𝑖𝑓 |𝑦 − 𝑓(𝑥)| > 𝜀, and 0 or 

else. 

To summarise, SVMs are learning machines that 

evaluate the "complexity" space for hypotheses created via 

minimizing the RKHS norm of a result ||𝑓||𝑘
2. Along with 

reality, SVM minimizes the trade-off between experimental 

error with hypothesis space difficulty. It  is accomplished 

informally through complex minimization problem 

execution: 
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SVM classifier: 

 min ||𝑓||
𝑘
2 + C ∑ | 1 − 𝑦𝑖 𝑓(𝑥𝑖)|𝑙

𝑖=1  

SVM regressor: 

min ||𝑓||
𝑘
2 + C ∑ | 𝑦𝑖 − 𝑓(𝑥𝑖)|𝑙

𝑖=1  

Here C means a "regularization parameter" that 

regulates the balance among logical errors in addition to the 

complication of the hypothesis space (Trafalis, 1999) [22], 

(Evgeniou, Theodoros, 2001) [23]. 

 

2.3. Implementation of SVM 

Assume we have a set of training samples that may be 

classified into two groups, i.e., two Classes (circle as well as 

a square), as shown in Fig. 1. We need to develop a binary 

SVM classifier that remains accomplished to classify the test 

data samples into each of two categories to categorize the 

test dataset into two categories. To develop the classifier, 

we'll require a training data set wherein the samples are 

represented as p-dimensional vectors. We aim to discover a 

(p1) dimensional hyperplane that effectively divides the 

dataset into two categories. We can have a huge number of 

hyperplanes, as illustrated in Fig. 1, to divide the dataset into 

two groups. We can observe from H1 that the hyperplane 

leads to misclassification. The distance between the 

hyperplane and the samples closest to it is insufficient for 

H2. H3, a suitable hyperplane, signifies the greatest 

separation or margin among the two groups. In the other 

sense, the average distance between each category's closest 

data point and the selected hyperplane is maximized. When 

SVM categorizes a dataset, it seeks the hyperplane with the 

highest margin. (Burges, 1998) [20]. 

 
Fig. 1 Hyperplanes: All courses are not separated in H1. H2 has a little 

advantage, then only by a short margin. H3 splits them by the widest 

possible margin. 

A nonlinear problem remains defined as the 

categorization of data into two groups. Nevertheless, the 

linear SVM approach may also be used for a nonlinear 

variant, which effectively classifies nonlinear datasets using 

the kernel trick. The dataset's training samples are first 

recorded using the kernel function in a high dimensional 

space to model SVM. Then the Support Vector Machine 

chooses the best hyperplane to categorize these illustrations 

into distinct categories. We initially examine linear and 

nonlinear SVM before discussing multiclass classification 

using SVM. 

 

2.3.1. Linear SVM 

Assume we have a group with M training samples: 

𝑥𝑖 (𝑖 = 1, 2, … ,  𝑀). Consider the following scenario: the 

training dataset comprises two classes labelled as positive 

and negative for ease of separation. In this case, the positive 

class's anticipated output is yi = 1, and the negative class's 

expected output is 𝑦𝑖 =  −1. As a result, finding a 

hyperplane 𝑓(𝑥)  =  0 that correctly classifies the supplied 

dataset is our goal for error-free classification. The 

hyperplane in linear SVM can be written as follows: 

 

𝑓(𝑥)  =  𝑤𝑇𝑥 +  𝑏 =  0 

𝐻𝑒𝑛𝑐𝑒;  𝑓(𝑥)  =  ∑ 𝑤𝑗𝑥𝑗 + 𝑏

𝑀

𝑗=1

 =  0 

w is an M-dimensional vector, and b is a scalar; they also 

define the hyperplane. 

Suppose we can linearly divide these labelled data 

samples (positive and negative class data). In that case, we 

will receive two additional there will be no points between 

the samples since they will be separated by hyperplanes (Fig 

2). Separating hyperplanes are extra is generated in this way 

also the region delimited because of them is termed 

"margin." SVM's goal is to increase this margin to enhance 

classification accuracy. The following equations can be used 

to characterize these two hyperplanes: 

𝑓(𝑥𝑖)  = 1   𝑖𝑓   𝑦𝑖  =  1, 

𝑓(𝑥𝑖)  =  −1   𝑖𝑓   𝑦𝑖  =  −1 

Alternatively, the equation may be written as: 

𝑦
𝑖
𝑓 (𝑥𝑖)  =  𝑦

𝑖
 (𝑤𝑇𝑥𝑖  +  𝑏)  ≥ 1   𝑓𝑜𝑟   𝑖 =  1,2, ⋯ 𝑀. 

As a result, the best hyperplane is the one that generates 

the most margin.  

 
Fig. 2 SVM is being used to classify two classes. 
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Fig 2 depicts many samples with two distinct labels: 

circles for the positive class and squares for the negative 

class. SVM works by determining a hypothesis plane, 

maximizing the gap between the two hyperplanes between 

the two classes to separate them further (marked as a dotted 

line). Support vectors, shown by grey circles and squares, 

are samples that lie on or near these two dotted hyperplanes. 

The remaining samples aren't as crucial once the support 

vectors have been chosen because they include the 

information needed to define the classifier. 

 

According to the previous discussion, the region 

enclosed by the dotted hyperplane is the margin equal to ||w||-

2. As a result, by resolving the optimization problem below, 

the best separation hyperplane may be found:  

minimize  
1

2
  ||w||−2 

depending on   yi (wTxi + b) ≥1, for  i = 1, 2, ⋯M 

The issue as mentioned above can be transformed into a 

Lagrangian double problem using Karush–Kuhn–Tucker 

(KKT) precondition. As a result, its double quadratic 

optimization problem may be written as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿(𝑎) = ∑ 𝑎𝑖
𝑀
𝑖=1 − 

1

2
  ∑   𝑎𝑖𝑎𝑗𝑦𝑖

𝑦
𝑗
𝑥𝑖T ⋅ 𝑥𝑗

𝑀
𝑖,𝑗=0  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜   𝑎𝑖 ≥  0, 𝑓𝑜𝑟 𝑖 = 1, 2, ⋯ 𝑀.   ∑ 𝑎𝑖𝑦𝑖
𝑀
𝑖=1   =0. 

The coefficients of ai are found by solving the preceding 

problem, giving the decision function as: 

𝑓(𝑥)  =  𝑠𝑖𝑔𝑛 ( ∑ 𝑎𝑖𝑦𝑖
𝑥𝑖T ⋅ 𝑥𝑗 + b )𝑀

𝑖,𝑗=1  

2.3.2. Soft margin 

Consider an issue in which we can't discover a 

hyperplane that can readily divide the two classes owing to 

noisy data; in this case, the linear SVM will not be able to 

discover an optimum solution in the direction of the problem. 

The soft margin method is employed to fix the issue in this 

situation. The soft margin method works by presenting 

positive slack variables i resulting in the following original 

optimization problem: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   
1

2
  ||w||−2 + C  ∑ ξi𝑀

𝑖=1  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  {
y

𝑖
 (wT𝑥𝑖 +  b) ≥  1 − ξ

𝑖
 ,   for i = 1,2, ⋯ M

ξ
𝑖

≥ 0,   for i = 1, 2, ⋯ M
} 

2.3.3. Nonlinear classification 

When data collection is not linearly separable, SVM 

may be used to handle nonlinear classification issues. 

Nonlinear samples are transferred by employing a 

high dimensional feature space, the kernel trick, permitting 

linear classification. A kernel function k (x, y) is the inner 

product of the samples, where k (x, y) = (ø(x), ø(y)). Kernel 

functions that are valid and essential meet Mercer's 

requirements, which state that k (y, x) is essentially equal to 

k (x, y). 

 

The kernel trick may be used to create a nonlinear 

version of SVM, then the dual form of the optimization issue 

can be written as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐿(𝑎)  =   ∑ 𝑎𝑖
𝑀
𝑖=1  − 

1

2
   ∑ 𝑎𝑖𝑎𝑗𝑦𝑖

𝑦
𝑗
k (𝑥𝑖, 𝑥𝑗)

𝑀
𝑖,𝑗=0  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜:{
0 ≤  𝑎𝑖  ≤ C,    for  i = 1,2, ⋯ M 

∑ 𝑎𝑖𝑦𝑖
𝑀
𝑖=1 =  0

} 

The nonlinear SVM's decision function may be stated as 

follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛( ∑ 𝑎𝑖𝑦𝑖
k(𝑥𝑖, 𝑥𝑗) + b )𝑀

𝑖,𝑗=1  

 

To conclude, samples whose coefficients ai are not equal 

to zero are those that lie on the separating hyperplane or are 

very near to the separate hyperplanes. Support vectors are the 

names given to these samples. The information required to 

generate the ideal hyperplane is included in support vectors, 

but other samples do not influence the development of the 

optimal hyperplane. This is why SVM may be utilized even 

when data samples are small compared to other classification 

algorithms. 

 

For nonlinear situations, SVM may use various kernel 

functions, including linear, polynomial, and Gaussian RBF. 

Since the kernel specifies the high-dimensional space where 

the samples will be categorized, selecting the right kernel 

function is crucial to SVM performance. In intelligent fault 

diagnostics cases, Gaussian RBF is among the utmost usually 

employed kernel functions (Yaguo Lei 2017) [24]. 

3. Implementing The SVM Model 
Several academics have previously sought to solve 

diverse water engineering difficulties with Regression Trees 

(RT) and Support Vector Regression (SVR). Support Vector 

Regression (SVR) is a two-layer machine-learning algorithm 

Support Vector Machine (SVM) differs in this way. This 

approach comprises two layers:  kernel outputs weighted 

sum and kernel function weighting on the input data 

sequence. The wastewater quality metrics Chemical Oxygen 

Demand (COD), Biochemical Oxygen Demand (BOD), 

Total Suspended Solids (TSS), Total Dissolved Solids 

(TDS), and alkalinity (pH) reflect the principal pollutants 

present in greywater. 

Algorithm: 

1. Import SVM. (SVR) 

2. Input Sample data (Xij, Yi) ([[X11, X21…Xn1], [X12, 

X22…. Xn2] … [X1n, X2n…Xnn]]), ([[Y1], [Y2] … 

[Yn]]) 
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3. Separate the samples interested in training and 

testing data. (Xtrain, Xtest, Ytrain, Ytest) 

4. Create the model (fit.model()) 

5. Train the model (Kernel trick) 

6. Test the model. (Ytest) 

7. Determine model accuracy. (predict 

model_accuracy)  

In the case of nonlinear SVM, the optimization goal 

should be to discover the smoothest function in the kernel's 

feature space rather than the input data space. Mercer's 

condition must be met in this case, which states that k (x, y) 

should be equivalent to k (y, x) in some feature space, which 

is a dot product. This investigation employs a radial basis 

function (RBF) as the kernel. The RBF is in the following 

format: 

k (𝑥𝑖, 𝑥𝑗) = exp (−γ||𝑥𝑖 − 𝑥𝑗||
2), γ > 0 

In the PYTHON environment, a Support Vector 

Regression technique was built. A test and error iteration 

method is often used to detect the model's greatest structure 

and constraints. The epsilon (ε) parameter was used to 

manage the difference between the predicted and goal values. 

Finally, the value of ε is set near 0.01, with the cost of a C 

error, which influences the function's flatness, set near 1500. 

The model's performance was assessed using the mean 

squared error (MSE), which was determined to be 0.5147, as 

shown in Fig. 3. Calculated MSE using target output and 

predicted output represented in Table 1.  

 

 
Fig. 3 Calculation of MSE 

 

Table 1. Calculation of MSE using target output and predicted output 

Target Output Predicted Output Squared Error 

124 124.86272076 0.86272076 

411 411.22046781 0.22046781 

169 168.08428697 0.91571303 

319 318.77858364 0.22141636 

191 190.39192241 0.60807759 

258 256.98108032 1.01891968 

MSE = 0.51473406 

Fig. 4 compares targeted output and predicted output of 

BOD values. The results show a minimum error between the 

target and the predicted value of BOD. 

 
Fig. 4 Target Output vs. Predicted Output 

 

 

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

Target Output Predicted Output



Samir Sadik Shaikh & Rekha Shahapurkar  / IJETT, 70(7), 140-146, 2022 

 

146 

4. Conclusion 
Support vector machines are machine learning 

algorithms based on kernel tricks. SVR, a version of SVM, 

was used to implement the model based on the kernel trick. 

During trial and error, linear and polynomial kernels were 

used to implement the model, but the results were not as 

promising. Lastly, the Radial basis function (RBF) is also 

employed by the kernel, and using the trial and error method, 

the value of C (cost of error) gradually increased from 1.0 to 

1500. The results show a minimum error between the target 

and the predicted value of BOD. The mean squared error 

function is used for analyzing the model's performance, 

which was observed to be 0.5147. It was also observed that 

the mean squared error is a function of the cost of error (C). 

As the value of C increases, the hyperplane becomes much 

smoother, thereby improving the model's performance in 

terms of predictability. 
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