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Abstract - Cloud Computing provides the advantage of flexibility, elasticity, scaling, and customization to the HPC community 

as it attracts users that cannot afford to use the dedicated HPC infrastructure. HPC infrastructure is proven costly, as it requires 

upfront investment despite the advantage of processing the complex task. Interconnection of HPC and cloud environment creates 

the complex infrastructure for parallel computation and further creates a major issue in managing the makespan and energy 

performance trade-off. This research presents the PEAS (Performance and Energy-aware scheduling)-mechanism; PEAS is 

designed for parallel computation with task scheduling and optimal resource allocation at data centers. At first, a system model 

is designed for the parallel computing process; later, a novel and efficient scheduling algorithm is designed for task scheduling, 

and at last energy-aware mathematical model is designed for optimal energy utilization.  PEAS are evaluated considering the 

HPC aware scientific workflow like cyber shake and montage workflow considering the evaluation parameter as Make span, 

Energy consumption, and Power utilization.  Moreover, PEAS is proven to be more efficient than any other existing model 

available to date. 

Keywords  -  Cloud Computing, HPC, Scientific Workflow, HPC Cloud. 

 

1. Introduction  
Over the years, a computer has been used to improve 

performance due to the demand for high development in 

Information Technology (IT) for both industries and 

academics. The systems used for computation have data 

storage ability and strong computing efficiency. This is used 

widely in industries for support and workflow scientifically. 

Conversely, there is a vast improvement in the system's 

performance and power consumption.The improvised energy 

consumption leads to ecologically, extreme economic and 

technical escalations. Lately, Cloud Computing has been 

developed for equipping resources effectively and efficiently. 

The cloud's infrastructure management is centralized, leading 

to the users' on-demand access to the resources. These  are 

also  paid  in a  “pay as you go”      way [1-2]. 

 

Moreover, due to these advantages cloud has become an 

alternating computer for a traditional cluster to execute the 

HPC applications. HPC(High-Performance Computing) 

cloud utilizes virtualization technologies to improvise server 

management and resource utilization; moreover, 

virtualization technology enables the various application to 

process isolated through VMs and makes it possible to 

combine several VMs to a particular PM (Physical Machine). 

Moreover, virtualization technologies provide various aspects 

of energy management.  

 

Considering the infrastructure of the cloud is elastic, the 

growing count of users chooses the application to be 

organized, including business and scientific applications in 

the cloud. Many applications in the scientific domain are 

exhibited using the workflows of various other domains, 

including astronomy, increasing energy of physics, 

astrophysics, bioinformatics, etc. Cloud computing is made 

up of a computing model based on service and infrastructure, 

giving the user the demanding abilities of computation. 

Considering the modern model of virtualization used for job 

and resource allocation in dynamic. The cloud platform users 

are required to only provide a request to their system. Based 

on the user requests, the system automatically provides the 

necessary resources so that the user manages the cloud 

platform and emphasizes the focus mainly on the cloud 

application. For the cloud service provider, the main concern 

lies in the correct allocation of applications for scheduling and 

infrastructure of hardware such that the processing 

expenditure is decreased. The cloud computing system has a 

cast on a bigger scale, which leads to energy consumption at 

various levels of resource computation [3].  

https://www.internationaljournalssrg.org/
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Huge scientific dataset analysis, massive 

communication-intensive firmly activities, and high-

throughput computation have become key parts of HPC 

workloads in recent years. HPC clouds are rapidly expanding 

the application user base and platform options for running 

HPC workloads, ranging from in-house committed powerful 

computers to resource clusters with and without HPC-

optimized interconnects and operating systems to resources 

with variable levels of virtualization to hybrid combinations 

that outsource segments of the task to the cloud. HPC users 

and cloud service providers face the difficult task of selecting 

the best framework based on a limited understanding of all 

shows, platform functionality, and target performance 

measures such as cost. As a result of this trend, there may be 

a discrepancy between the HPC application's necessary and 

available capabilities. One unfavorable scenario could arise in 

a part of the construction being overburdened while another 

is idle, resulting in long waits and lower total throughput. The 

existing HPC set of inputs isn't built to handle these problems. 

To operate well in a circumstance, fresh schedulers and 

strategies must be investigated [4]. 

 

However, scientific workflows are used for a higher scale 

in the infrastructures of the cloud. Normally, these workflows 

consist of thousands of tasks; hence, a higher count of 

computational resources is required during the execution 

period. These computational resources are provided for the 

cloud computing infrastructure. Although, the tasks in the 

workflow of scientific domain are inter dependent and have 

communication between them, which differs from the 

unwanted tasks. Hence, the cloud management system needs 

the resources to be assigned for the workflow relating to the 

executions. The resources that are used in the computation 

process are as virtual machines that are within the cloud 

platform [3]. These virtual machines are used in various 

applications for measuring different parameters for 

configuration, which have memories, the capacity of the disk, 

and many cores of the CPU. The scientific execution 

workflow in the cloud has a higher energy consumption; the 

virtual machines must be deployed in a manner that makes it 

energy efficient. Hence, energy consumption in the cloud 

platform has attained attention globally. The cloud's data 

center has enormous energy consumed for running monitors, 

servers, cooling systems, cooling fans, consoles, processors, 

network extensions, and other resources[4]. However, the 

energy consumption in the data centers causes pollution 

globally by emitting CO2 in enormous amounts which is the 

reason for greenhouse gases. Data centers cause 2 percent of 

the entire CO2 emission globally. As a result, execution 

deployment is done significantly for workflow in a scientific 

domain for energy awareness in the platform.  

 

A technique for decreasing the consumption of power for 

any model of computation is more effectively used for the 

mechanism for power awareness. A widely used and 

renowned technique, DVFS (dynamic voltage frequency 

scaling), is used for dynamically trading off the energy's 

delays. Considering the applications of cloud computing, the 

most important aim is the efficient allocation of resources for 

growing performance for cloud information centers. Hence, 

performance enhancement and dealing with these constraints 

over time use various methodologies. The techniques used 

over the years include CEFT, called Earliest Constrained 

(Finish Time), Reliable hierarchy has driven scheduling, and 

dynamic voltage frequency scaling. Also, it has been 

observed that DVFS has achieved effective task load 

scheduling.  It is a highly effective optimization technique for 

energy consumption deployed for the cloud system. This 

optimization of energy is attained by dynamic voltage scaling 

down. It also helps attain higher Quality of internet service by 

decreasing the energy consumption in the devices [5][6].  

 

Although, these pre-existing methodologies have a 

definitive prototype and the cost for communication of the 

processors is extremely high during the use of these 

methodologies. In the paper [5], a scheme for optimizing 

runtime and energy is initiated for energy reduction by 

different task loads being scheduled for different embedded 

systems. Considering paper [6], different techniques for 

energy efficiency are debated, and the embedded systems 

need to enhance the computation's performance.  
 

1.1. Motivation and contribution of Proposed Work 

HPC applications executed on cloud infrastructures 

include workflow applications like scientific workflow. 

Cloud computing is an integrated paradigm for the entire on-

demand virtualization, and future users consume the platform, 

infrastructure, and software service. However, the dynamic 

computing services are backed up using the data centers used 

by the virtual machine environments for isolation and 

integration purposes. Also, performance has an essential part 

that is considered. Therefore, in this proposed paper, we 

include the mechanism for performance awareness 

considering parallel computation. This assists the 

performance improvement. Additionally, the contribution of 

the proposed research work has been stated below: 
 

• We develop a technique for the optimal allocation of 

resources and HPC cluster scheduling of tasks, including 

the proposed method based on performance. We focus on 

the time and energy as a challenge, and the process is 

optimized using multiple processors.  

• An algorithm is developed based on scheduling priority 

because constraint on priority analysis is burdensome. 

After which, this algorithm is used for task scheduling.  

• Considering the parallel task, we design a mechanism for 

task scheduling used for the parallel task scheduling task. 

This is simultaneously accompanied by execution; 

further, more is coded for executing tasks.  
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• In parallel computation, the parameter constraints are 

considered time and energy, and makespan optimization 

is performed. Therefore, this improves performance.  

• Furthermore, an evaluation is performed on PEAS 

considering the cyber shake workflow of the scientific 

domain along with four variations. This evaluation is 

performed by a virtual machine variation and a 

comparative analysis of the already existing models.  

• The proposed model is used to optimize the allocation of 

resources considering constraints in the data centers. 

Similarly, the optimization of PEAS is used for task 

scheduling and is further used for attenuating energy 

consumption.  

 

This specific work has been organized like other 

research, and the initial section emphasized parallel 

computation and the requirement of parallel computation, 

including the relating steps for optimization of makespan. 

Furthermore, the initial section has a subsection that focuses 

on the contribution of the research. The next section 

emphasizes the different methodologies and techniques that 

already exist and are utilized for enhancing performance, 

including the drawbacks that are present. Section three 

introduces the mechanism of PEAS, including the 

optimization model makespan with the allocation of resources 

and scheduling mechanism for tasks. Also, section four 

evaluates the proposed PEAS mechanism.   

2. Related Work 
HPC cluster performance is enhanced through designing 

an efficient task scheduling mechanism; hence this section 

mainly focuses on the different scheduling schemes to 

enhance the performance of cloud computing 

 

The processor core consists of performance and power 

states, which are managed using an operating system and a 

hypervisor with an advanced configuration and a power 

interface. Considering ACPI for industries, the management 

interface is based on standard power [7]. Performance states 

are normally expressed in voltage and frequency pairs used 

for energy consumption, whereas the workloads operate in the 

core. PS combined with an improvised performance level is 

termed P0; this indicates a large voltage and a large frequency 

which leads to high power consumption. Increase 

Performance states lead to a low-performance level, which 

indicates that a decrease in voltage and a decrease in 

frequency lead to lower power consumption. A transfer in the 

processor core is from one to another PS within the DVFS. 

Although the transfer in the performance states sustains 

latency, this is normally on the scale of microseconds and is 

negligible, whereas the comparative analysis of execution 

duration for applications and on a scale of hours as well as 

minutes [8]. To help the power states for conserving energy, 

whereas idle class is where the core is present. The core has 

an active state that is represented by C0, where the 

performance is done by the instructions that are given at the 

level of performance that is specific to a power state that is 

used. 

 

Conversely, C1 is the initial performance state in the idle 

state. When C1 is the core mode, it can be converted to C0, 

avoiding latency. After that, power consumption is reduced 

compared to being in an active mode, specifically C0. In high 

power states, the core is set to an inactive state. The method 

of conservation used is an aggressive power, indicating the 

combination of a clock and power. However, the core of the 

power states is increased compared to a specific value which 

causes a delay to return to CO. The tasks started in the system 

for real-time settings and are dynamic in the requirement to 

meet the deadlines, after which the return to performance 

states is more than the observation at C1, which could lead to 

attenuated performance [9]. 

 

In [10], periodic scheduling is used by heuristics for 

homogeneous multiprocessing and is independent of the tasks 

performed in real-time. Considering this method, the main 

priority is assigned to these tasks for the process of execution 

in comparison to various other tasks. However, the necessary 

parts and the smallest deadline process are assigned high 

priority. The technique used here has slack time. This happens 

during the starting completion of parts required for task 

scheduling that is optional at low processor speed by using 

DVFS. Although the method used here is not suitable for 

various applications considering workflow, this is assumed 

for independent tasks. Paper [11] is similar, considering the 

methods that are introduced. Using a target system, the 

homogenous multiprocessor is given as a starting approach. 

Although this application is assumed with the approach with 

the component tasks that are given, the precedence constraints 

and data independence are used for the tasks. Considering 

these two approaches, the heterogeneous processor using the 

core of DVFS is introduced. 

 

However, the normal challenge of scheduling a platform 

that could be shared in the cloud has more pressing issues 

concerning mapping application sets based on tasks to fix the 

resources used for computation that finishes tasks within 

specified constraints. Also, it is essential to finish the given 

task considering the deadline. Therefore, reducing 

delinquency in the tasks and the response time of the 

consumed power of the given resources introduces some 

scheduling methodologies [12]. However, a challenge is 

faced while scheduling a Complete-NP. Many researchers in 

this field have focused on scheduling, considering energy 

efficiency (EE) heuristics [13] [14]. This method has used 

DVFS. In the paper [15], considering non-critical jobs, the 

execution time has been improvised using slack time as well 

as reduced consumption of energy in DVFS using a 

homogenous cluster, with no maximization of the time for 

execution of complete tasks. However, the jobs are 
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considered precedence constraints among the specified tasks 

while no deadlines are assumed. Although implementing a 

technique for aware scheduling for load and thermal in the 

cloud was introduced, the servers could be overloaded. Also, 

the DVFS is utilized to manage power for physical machines 

and the host-based on a single core [16].  

 

In paper [17], a new technique is used for the workflow 

based on real-time, considering the applications used for cloud 

scheduling. This is used in the scheduling gaps with an 

approximate formulation and the underlying computations for 

the resources used in computing during the heterogeneous 

time. Although their mechanisms have considered the effect 

of input error on the tasks defined in a component application, 

there is no use of an energy-aware DVFS or heuristic 

approach.  

 

On the contrary, the author of the paper [18 - 20] has 

initiated the technique for scheduling in which the DVFS is 

leveraged considering the system core with help from the 

processors that are heterogeneous, resulting in a balance in 

performance and energy consumption. The two methods used 

for scheduling are assumed to be in a batch and online mode. 

The online mode has differing computations along with tasks, 

and the constraints on time and arrival time exist together. In 

considering batch mode, the tasks that are performed happen 

in batches even via every core, the heterogeneous processors 

and DVFS are assumed, and the workload has simple, 

independent tasks. Further, a computation that is inappropriate 

is utilized. 

3. Proposed Methodology 

In the HPC Cloud environment, the data center 

encounters many parallel task execution requests as HPC-

aware application requires efficient task scheduling to obtain 

maximum performance.  Moreover, the performance of HPC 

clusters depends on the efficient scheduling of jobs. 

3.1. Preliminary analysis and designing of Initial Model 

This section focuses on the preliminaries of the proposed 

model that involve the model related to task, models of 

resource, and models concerning power. The dissipation of 

power is given mathematically using the following equation, 

wherein consumption of power is expressed as 𝓅, 
 

𝓅 = 𝕒𝑓𝐶𝑆2 

 

(1) 

Considering equation (1), the activity factor is denoted as 

𝕒, and load capacitance is denoted as𝐶, the voltage supply is 

expressed as 𝑆. The frequency of the clock is given as 𝑓. 

However, when the voltage supplies, as well as the frequency 

of the clock, are in an ideal state, they are expressed as 𝑆. 

Also, the supply voltage and frequency are related to each 

other such that 𝑆 ∝ 𝑓𝛼where 𝛼 is the given constant. 

However, the speed of execution is assumed to be 

proportional to the frequency of the given clock, which is 

expressed as 𝑅. We further assume, 𝑆 = 𝑏𝑓𝛽and 𝑅 = 𝑐𝑓. 

The consumption of power is mathematically expressed using 

the following equation, 

 

𝓅 = ℵ𝑅𝑎 

 

 (2) 

This equation is expressed with the help of equation 1, which 

is expressed using equations 3 and 4. 

 

ℵ = (𝑐2𝛿+1)−1𝑎𝑏2𝐵𝐶 

 

(3) 

𝑎 = 2𝛿 + 1  

  (4) 

Considering the parallel task 𝑛, we take any graph 𝐺 =
(𝑆, 𝐸) in which the set of tasks is expressed as 𝑈 and 

expressed as 𝑆 = {1,2,3, … , 𝑛}. In this, the constraints on 

priority are denoted as 𝐸. Furthermore, the relation of 

𝑎𝑟𝑐(𝑥, 𝑦) form 𝑥𝑡𝑜𝑦 shows that the task 𝑦 has not been 

started until the task 𝑥 is completed. The count of processors 

that has been requested 𝑥 is expressed as 𝒫𝑥 a parallel task 

that is specified using 𝒫𝑥 as well as 𝑠𝑥 task work. However, 

the data center has 𝑝 some identical processors. For the 

execution of any task 𝑥, for any 𝒫𝑥 having 𝑝 processors 

within the data center that could be allocated. Therefore, 

stating that parallel computation occurs.  

 

Considering a scheduling application that is parallel 𝑢 

which is represented using a task graph 𝐼1,𝐼2,….., 𝐼𝑣 for a 

given processor 𝑙 in a data center. However, many task graphs 

are assumed to be single-task graphs. Also, the power applied 

to the task is expressed as 𝐻 given in the equation stated 

below, which 𝑅𝑥 = 𝓅𝑥
1

𝑎 is used to indicate the speed of 

execution of the task 𝑥. Furthermore, it has been observed 

that 𝓅𝑥 = 𝜑𝑅𝑥
𝑎. The time of execution for the given task 

using the equation stated below. The processor 𝒫𝑥 has the 

same speed of execution 𝑡𝑥. 

𝑡𝑥 = (
𝑡𝑥
𝑃𝑖
⁄ )

𝑎−1

 
(5) 

 

The energy that is necessary for the execution of the task 

is given using the equation stated below, which 𝑊𝑥 denoted 

the work that has been done for the performance of the task 𝑥 

given by the equation below 
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𝐸𝑥 = 𝑅𝑥
𝑎−1𝑊𝑥 (6) 

However, it should be observed in a processor that is real. 

The speed of execution and the frequency of the clock only 

assumes very discrete values, 𝑊𝑥 which is the earlier work 

that has been computed.  
 

3.2. Designing Problem statement  

For the analysis of huge cluster datasets in machines that 

have been utilized for executing tasks, there are various tasks 

for the clusters considering parallel computing. Furthermore, 

these tasks must have a resource that is efficient and heavy. 

Assuming such situations, we emphasize developing a 

mechanism to allocate resources. After the resource is 

allocated, the task scheduling has to be optimal; this is for 

achieving a design algorithm for task scheduling [21 -24]. 

After which, an optimization model of makespan is 

developed. Therefore, to achieve this, we assume that the 

number 𝑛 of parallel tasks has 𝜌 constraints and the task has 

a size of 𝒫1, 𝒫2, … . , 𝒫𝑛 having the necessity for execution 

of task as 𝑟1, 𝑟2, … , 𝑟𝑛 for 𝑚 processors in such situations 

that the length for scheduling is reduced. The consumption of 

energy does not exceed 𝐸. Therefore, the proposed work 

emphasizes resulting in energy efficiency that is optimized. 

 

3.3. Mathematical modeling for parallel computing in an 

HPC environment 

Considering a parameter 𝑊 that is used to indicate the 

performed work for parallel tasks 𝑛 is given by the equation 

stated below 

 

𝑊 = 𝑤1 +𝑤2 +⋯+𝑤𝑛 = 𝒫1𝑟1 + 𝒫1𝑟2 +⋯+
𝒫𝑛𝑟𝑛                                                                               (7) 

7 

Furthermore, the optimal length is denoted as 𝑇′ , and the 

bare minimum energy needed is denoted as 𝐺′ for scheduling 

optimally. However, the computation for the lower bound is 

proposed using the equation stated below by makespan  being 

minimum along with energy consumption as a constraint.  

 

𝑇 ′ ≥ (
𝑚

�̃�
(
𝑊

𝑚
)
𝑎

)

1/(𝑎−1)

 

 

(8) 

We also compute the lower bound using the equation stated 

below by the length of the schedule being considered a 

constraint.  

 

𝐺 ′ ≥ 𝑚(
𝑊

𝑚
)
𝑎

(�̃�𝑎−1)
−1

 

 

(9) 

 3.4. ERAHPC-Cloud (Efficient resource allocation in HPC 

cloud environment) 

This section emphasizes the development of a general 

optimization model considering four distinct resources: disk, 

CPU, the bandwidth of the network, and memory. In this case, 

the allocation occurs over machines and time. We propose a 

model for allocating resources for the parallel task that is non-

dependent in which every task is assigned the same amount 

of power and speed. However, this technique is used to 

connect task scheduling. In this case, the resource is denoted 

as 𝕋the capacity of resource on the machine, which is given 

as 𝕖𝕋
𝕜

. Similarly, the task 𝕜demands the resources that are 

denoted as 𝕗𝕝
𝕋

. The task schedule encoding variable needs to 

be defined, and the allocation of resources.  

Considering 𝔸𝑘𝑙
𝔱

 which is the variable indicator and if 

the allocation of the task to 𝕜 a machine at a set time duration, 

the variable indicator is set to 1. Furthermore, the task 𝕝 

allocates ℤ𝕜𝕝
𝕥,𝕧

 units for a machine 𝕜and the type of resource 

𝕥 at 𝕧 the time. Also, consider the task 𝕝 for the machine 𝕜. 

The allocation of the resources should be able to satisfy all 

four cases.  

 

In the first case, the capacity of the machine 𝕜 cannot be 

exceeded by the resources, as stated below 

∑ℤ𝕜𝕝
𝕥,𝕧 ≤ 𝕔𝕜

𝕥

𝕝

∀𝕜, 𝕧, 𝕥 

  

(10) 

 

In the second case, inactive tasks do not permit the 

allocation of resources 

 

𝕢 ≤ ℤ𝕜𝕝
𝕥,𝕧 ≤ 𝕗𝕜

𝕥
 

For all 𝕜, 𝕧, 𝕥, 𝕝 

 

(11) 

 

The third case is performed to avoid cost; the allocation of 

resources occurs until the completion of tasks.  

 

∑ ℤ𝕜𝕝
𝕥,𝕧

𝐼𝑛𝑖𝑡 𝕝+𝑡𝑒𝑛𝑢

𝕧=𝐼𝑛𝑖𝑡𝕝

= { 𝑜𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑐ℎ𝑖𝑛𝑒

𝑡𝑒𝑛𝑢𝑘𝕜=  𝕜𝕝
∗

 

 

     (12) 

The fourth case is performed such that the task's duration 

is dependent on the allocation of resources and placement of 

tasks.  
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𝑡𝑒𝑛𝑢𝑘 = 𝑚𝑎𝑥

(

 
 
 
 
 
 

𝕙𝕜
𝑐𝑝𝑢

∑ ℤ
 k𝑙
∗𝕝

𝑐𝑝𝑢
𝕧

,
𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝕪,𝕧
𝕧

𝑓𝑜𝑟𝑎𝑙𝑙
𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝑦,𝑣
𝕧

𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝑦,𝑣
𝕧 )

 
 
 
 
 
 

 

 

 

 

(13) 

Equation 13 indicates that the numerator has the entire 

resource requirement wherein the denominator gives the rate 

of the resource. Furthermore, the CPU cycle shows the 

resource requirement, and the rate indicates the cycle or 

bandwidth. However, the allocation of the cores and the 

memory is done only if a task of input is present for the 

machine. The local disk receives the output, and the 

bandwidth is always provided. It has also been assumed that 

the task allocation is done by peak (memory size) because the 

task's runtime would become worst in case a memory size that 

is less is provided. Considering the mechanism mentioned 

above, resources including disk, networks, memory, and CPU 

are scheduled [25-27]. Whereas the availability of the 

machine dynamically requires to be specified and known. 

Therefore, a resource monitor is developed where resource 

use is observed. The demand for resources is also developed 

as follows: 

 Before execution, it is essential to know the input's size 

and the task's location. Further, a recurrent job, updating the 

software or checking, occurs by statistical measuring. 

Furthermore, it can be observed that tasks in the form of 

phases perform the same computation for different data 

partitions of similar resource usability. Therefore, a few 

demanded tasks could be applied to other tasks. Later, If the 

above steps and the methodologies do not match, the task, in 

this case, is overestimated. Due to cost underestimation, the 

process could become slow. Although, overestimation results 

are expensive. Therefore, resource monitors are used where 

the resources that are not used are monitored. However, 

considering randomness, allocation is not standardized. In 

this case, allocation is enforced, where tokens are used.  

 

3.5. ETSHPC-Cloud (Efficient task scheduling concerning 

HPC Cloud) 

An algorithm for task scheduling is developed, and an 

optimization model makespan is designed while considering 

time and energy constraints. This algorithm assists in parallel 

execution for the reduction of makespan. Here, scientific 

workflows are assumed as the algorithm’s input. Utilization 

of energy, cost execution, makespan as well as utilization of 

resources is constantly monitored and utilized for analysis in 

the future.   

PEAS Algorithm 

Step1: Start 

Step2: Considering the 𝑃𝑡ℎtask list 𝑁 = 𝑉1, 𝑉2, … . . 𝑉𝑝 

with a time duration of [𝑃, 𝑃𝐸𝐴𝑆(𝑁)] 
Step3: A task is given and 𝑉 is split into (M+1) groups as 

𝐼1 = [𝑉1, 𝑉2, … . . 𝑉𝑘1] 
𝐼2 = [𝑉𝑘1+1, 𝑉𝑘2+1, … . . 𝑉𝑝] 

𝐼𝑚 = [𝑉𝑘𝑚+1 + 1, 𝑉𝑘𝑚+1, … . . 𝑉𝑝] 
Step4: 𝑉𝑙1 , 𝑉𝑙1 , …… . 𝑈𝑙𝑚 is the sequence of tasks in the 

schedule that are complete. Furthermore, the task 

𝑉𝑙𝑏 is finished at a given time 𝑠𝑢𝑏𝑏 and 

simultaneous schedule 𝐼𝑏+1 for the remaining task 

execution. 

Step5: Time duration [𝑃, 𝑃𝐸𝐴𝑆] is split into different 

smaller intervals as stated below 

[𝑠𝑢𝑏𝑜, 𝑠𝑢𝑏1 ]……… [𝑠𝑢𝑏𝑚−1, 𝑠𝑢𝑏𝑚], 

[𝑠𝑢𝑏𝑚, 𝑠𝑢𝑏𝑚+1] where 𝑠𝑢𝑏𝑝=0 

Step6: The task that is active in above mentioned small 

intervals is 𝐼1𝑉𝐼2𝐼𝑉𝑚+1 −
{𝑉𝑙1 , 𝑉𝑙1 , …… . 𝑉𝑙𝑚}. 

Step7: The initial time stated is 𝑝the task 𝐼1 is scheduled 

for execution in which the count of resources is 

utilized 𝑟1. Therefore, the resources that are 

utilized (ℚ) in the smaller intervals [𝑠𝑢𝑏𝑜, 𝑠𝑢𝑏1] 

: 

𝑟1 = ℚ1 +ℚ2 +⋯ .+ℚ𝑘1 ≤ 𝑜 

This indicated that many tasks are scheduled at the 

same time for execution 

Step8: During the completion of a task 𝑉𝑙𝑚, the execution 

𝐼𝑚+1 is scheduled. Here, the value 𝑚 is small so 

that the completion of the task 𝑉𝑙𝑚 does not have 

to be scheduled. Therefore, the count of tasks 

𝑠𝑢𝑏𝑚 is as follows: 

The resources utilized 𝑠𝑢𝑏𝑚 are  

𝑟𝑑+1 = 𝑟𝑚 +ℚ𝑙𝑚 +ℚ𝑙𝑚+1 … .+ℚ𝑝 

Step9: Therefore, the count of resources that are utilized 

is diminished. This decreases the further energy 

consumption, and the improvised scheduling and 

allocation of resources decrease the time for 

execution. 

Step10: End 

 

Therefore, the count of resources is diminished with 

completing the tasks [28]. Once the scheduling of tasks is 

completed, we develop the optimized model makespan by 

considering the constraints of time and energy [29]. 

 

 



Sharavana. K et al. / IJETT, 70(7), 238-249, 2022 

 

244 

3.6. EHPC-CLOUD (Energy modeling on HPC Cloud 

Environment) 

To resolve the scheduling of tasks considering the 

constraint of energy, we propose the equation 

 

�̃� = ℚ1𝑡1𝑟
1−
1
𝑐 +ℚ2𝑡2𝑟

1−
1
𝑐 +⋯

+ℚ𝑝𝑡𝑝𝑟
1−
1
𝑐  

= 𝑌𝑟1−
1
𝑐  

 

 

        (14) 

The entire work performed is denoted as𝑌the supply of 

power 𝑟. Using the equation 14, the consumption of power is 

computed, which is formulated by equation 15 

 

𝑟 = (
�̃�

𝑌
)

𝑐/(𝑐−1)

 

 

       (15) 

We also compute the speed of execution for the task, 

which is stated in equation 16 

 

𝑈 = (
�̃�

𝑌
)

𝑐/(𝑐−1)

 

 

       (16) 

The time of execution for the task 𝑘 is calculated using 

the equation 17 

 

𝑣𝑘 = 𝑡𝑘 (
𝑌

�̃�
)
1/(𝑐−1)

 

 

      (17) 

In the equation given above, we assumed 𝑜 the number 

of tasks with the time of execution as {𝑣𝑘 =
𝑣1, 𝑣2, … . , 𝑣𝑝}, the resource allocation of these tasks is for 

parallel tasks. Considering task list 1 to P, task 1  is scheduled, 

implying that various tasks can be scheduled for execution 

simultaneously. Furthermore, the task after 𝑙 + 1 is not 

considered though these are small tasks after the task 𝑙is 

finished. 𝑙 + 1, 𝑙 + 2… .𝑚 Are the resources that are 

allocated, in which ℚ− ℚ𝑙 +ℚ𝑙+1 +ℚ𝑙+2 +
⋯ .+ℚ𝑚+1 > 𝑜.  

 

Therefore, the allocation of tasks is executed at the same 

time. Although, the tasks are not considered after 𝑙 + 1. 

However, energy consumption is a constraint, and resource 

allocation is optimized. Considering the length of resource 

allocation as C((𝑡1, 𝑡2, … . . , 𝑡𝑝,) for the task 𝑜 with the 

execution time. Furthermore, the length of the resource is 

computed 

𝑉 = 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
𝑌

�̃�
)
1/(𝑐−1)

 

 

(18) 

We also compute the ratio of performance which is stated 

in equation 19 

 

𝛼 ≤
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜
 

 

 (19) 

 

 
 

However, we see ∀𝑧 ≥ 0when 𝑣𝑘 = 𝑧𝑡𝑘  then 

C(𝑣1, 𝑣2, … . . , 𝑣𝑝) = 𝑧C (𝑡1, 𝑡2, … . . , 𝑡𝑝, ). Therefore, 

we formulate the equation 20 

 

𝑉 = 𝐶(𝑣1, 𝑣2, … . , 𝑣𝑝)

= 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
�̃�

𝑌
)

𝑐/(𝑐−1)

 

 

      

    (20) 

Further, based on the lower bound, it results in the 

optimized allocation of resources based on energy given in 

equation 21 
 

𝛼 =
𝑉

𝑉∗
≤
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜
 

 
      

   (21) 

 

For the optimization of makespan, the constraint of time 

has to be considered; initially, the technique mentioned above 

is implemented to schedule the task along with the execution 

time, and the power consumption is stated as 𝑣𝑘 =

𝑡𝑘𝑌
1/(𝑐−1) and 𝑟 =

1

𝑌𝑐(𝑐−1)
respectively. 

However, when 𝑉′ is denoted for the length of the allocation 

of resources and 𝑉′ is scaled for the consumption of energy 

considering the factor 
1

𝐺1/(𝑎−1)
. Therefore, equation 22 is used 

for the computation of allocation 

 

�̃� =
𝑉 ′

𝐺1/(𝑐−1)
 

 

 (22) 

This is further expressed as: 

 

𝐺 = (
𝑉 ′

�̃�
)

𝑐−1

 

 

  (23) 

 

Furthermore, the ratio for performance is required to be 

defined to resolve the energy consumption using the 

allocation length [30]. The problem relating to energy and the 

constraint on the resource length for many processors has 

been considered here. Furthermore, the consumption of 

energy is computed using the equation 24 
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𝐺 = (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑜)

�̃�
)

𝑐−1

𝑌 

 

     (24) 

The ratio of the performance is given by the equation 25 

 

𝛼 ≤ (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑜)

𝑌/𝑜
)

𝑐−1

 

 

 (25) 

It has been observed that 𝑉 ′ = 𝐶(𝑣1, 𝑣2, … . , 𝑣𝑝)where it 

is also assumed as 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
𝑌

�̃�
)
1/(𝑐−1)

. 

Therefore, the consumption of energy is derived and 

expressed using the following equation 26 

 

𝐺 = (
𝑉 ′

�̃�
)

𝑏−1

= (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

�̃�
)

𝑐−1

𝑌 

 

 

 

 (26) 

 

Therefore, using the lower bound situation, the ratio of 

performance is derived in equation 27 

 

𝛼 =
𝐺

𝐺∗
≤ (

𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜
)

𝑐−1

 

 

  

 (27) 

Furthermore, consumption of power is given as  

 

 

𝑟 = (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

�̃�
)

𝑐

 

 

  

 (28) 

4. Performance Evaluation 
The demand for resources in cloud computing has been 

increasing rapidly over the years because of its flexibility, 

cost efficiency, and various uses. It can be accessed easily at 

any given time and place.  Further, using the HPC cluster 

plays an important role with the cloud to perform HPC-aware 

applications. However, cluster performance directly depends 

on the workload and task scheduling. Hence, these devices 

must have a higher performance considering the rapidly 

increasing demand [31]. Consumption of energy is high in 

these devices of computation which hinders performance. 
 

Furthermore, an essential constraint in this is makespan. 

Therefore, for the optimization of these objectives, it is 

necessary to introduce heterogeneous PEAS computing 

devices for the efficient reduction in energy consumption and 

also give a higher performance. Moreover, PEAS is 

considered a simulator [19][21]. This is modified and adapted 

for the HPC cloud environment. 

 

4.1. Dataset Details for HPC application evaluation 

The runtime evaluation is performed at various instances 

at 25, 50, 100, and 1000. The results are graphically 

represented by considering the time of execution, count of 

tasks, and energy consumption. The total consumption of 

power, as well as run time, is evaluated by the use of various 

parameters that are explained and evaluated in the section 

expressed below. The proposed PEAS model is evaluated on 

the cybershake and montage scientific dataset [17]. The 

various parameters that are considered include the total time 

of simulation, the sum of power, the average power, and 

energy consumption [32-36]. These different parameters are 

evaluated at various cybershake instances and montage 

instances.  
 

 

4.2. Designing Instances for HPC Cloud evaluation 

For cybershake, every instance has a varying value of 

cybershake and montage value. Instance A is defined when 

the cybershake is 30, and the virtual machine is 25. The 

cybershake being 50 and the virtual machine at 50 is the 

instance B. Instance C is defined as the cybershake at 100 and 

the virtual machine at 100. The cybershake and virtual 

machine both have values of 1000 at the instance D. 

Considering the evaluation of montage, these different 

parameters are evaluated for the same montage instances. In 

the montage, instance A is defined when the montage value is 

25 and the value of the virtual machine is 25. When the values 

of both montage and the virtual machine are at 50, it is at 

instance B. Instance C is given as the value of montage and 

virtual machine as 100. The montage value at 1000 and the 

virtual machine at 100 is at the instance D. 

 

5. Results and Analysis 
This graphical evaluation section is performed by 

comparing various parameters at different instances for both 

cybershake and montage. The various parameters include the 

total time of simulation, the sum of power, the average power, 

and energy consumption. 
 

 5.1. Makespan evaluation 

The graph below shows the simulation time at various 

instances with a comparative analysis. A table is also given 

showing the values of the models at various instances. It has 

been observed that the simulation time increases with an 

increase in the workload. The model proposed is stable.  
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Fig. 1 Makespan comparison for cybershake workflow 

 
Fig. 2 Makespan comparison for montage workflow 

5.2. Average Power 

The tables and graphs below show the values and the 

comparative analysis at various instances. This comparative 

study is performed for cybershake as well as a montage. The 

proposed model results in being more efficient.  

 

 
Fig. 3 Power comparison of cybershake workflow 

 
Fig. 4 Power Comparison of montage workflow 

5.3. Energy utilization comparison 

The graphs given below show a comparative analysis of the 

energy consumption parameter. In comparison, the table lists 

the detailed values of the models. The consumption is seen to 

vary largely in comparison to the two models.  
 

 
 

Fig. 5 Energy utilization evaluation through consumption comparison 

on cybershake workflow 
 

 
Fig. 6 Energy utilization in terms of consumption of energy on montage 

workflow 
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5.4 Improvisation over the existing model 

This section discusses the improvisation over the existing 

model in terms of Energy utilization, Average Power, and 

makespan; table 1 presents the improvisation of the existing 

model with different instances. Table 1 presents the 

improvisation of PEAS over the existing model for 

cybershake workflow. In the case of Energy utilization, for 

instance, A and B PEAS improvise their model by 96.02% 

and91.06 %, respectively. Similarly, for instance, in C and D, 

PEAS observes 87.83 and 88.70 % improvisation, 

respectively.  In the case of Average Power, PEAS observes 

nearly 18% improvisation over the existing model. 

Furthermore, in the case of makespan, instances A and B 

observe improvisation of 93.63 and 90.20, respectively. 

Similarly, C and D PEAS observe improvisation of  88.48% 

and 55.58%, respectively.  
 

Table 1.  Improvisation of PEAS over existing model considering 

cybershake workflow 

HPC 

aware 

application 

Energy 

utilization 

(in 

percentage) 

Average 

Power(in 

percentage) 

Makespan(in 

percentage) 

Instance A 96.02111549 18.61438 93.63633 

Instance B 91.06874 18.61436 90.20219 

Instance C 87.8325 18.61433 88.48776 

Instance D 88.70662 18.61412 55.58233 

 

 
Fig. 7 Graphical improvisation  on cybershake workflow 

Table 2 presents the improvisation of the proposed PEAS 

over the existing model considering montage workflow.  For 

instance, in A and instance B, PEAS observes improvisation 

of 30.37% and 26.95%; similarly, in C and D, PEAS observes 

improvisation of 23.64 %and 17.56 %, respectively. Further, 

in the case of all instances, PEAS observes improvisation of 

nearly 18%. Considering the makespan as a parameter, PEAS 

observes improvisation of 19.12 % and 16.32 % for instances 

A and B. Further, for Instance C and Instance D, PEAS 

observes improvisation of  18.40 % and 13.72%, respectively.  

Table 2. Improvisation of PEAS over the existing model 

HPC aware 

application 

Energy 

utilization 

(in 

percentage) 

Average 

power (in 

percentage) 

Makespan 

(in 

percentage) 

Instance A 30.37861 18.61515 19.12682 

Instance B 26.95522 18.61467 16.3259 

Instance C 23.64363 18.61456 18.40231 

Instance D 17.56556 18.61412 13.72573 

 
Fig. 8 Improvisation of PEAS over the existing model in montage 

workflow 

6. Conclusion 

In the past few years, commercial HPC users have moved 

on to clouds due to cost and alternatives to the dedicated 

clusters; the performance of HPC clusters highly depends on 

task scheduling, and recent schedulers lack optimal resource 

utilization. Hence, this research proposes a PEAS mechanism 

that helps optimal task scheduling and resource utilization. 

PEAS aims at optimizing the makespan and energy 

consumption. PEAS are evaluated considering the HPC-aware 

scientific workflow cybershake and montage considering the 

energy consumption, makespan, and Average Power. Further, 

a comparative analysis is carried out by designing four 

instances, i.e., instance A, instance B, instance C and Instance 

D. These instances comprise a certain number of VM and host. 

Comparative analysis indicates that PEAS observes marginal 

improvisation of up to 96% for all instances in terms of energy 

utilization, up to 19% improvisation in average power 

consumption, and up to 93% improvisation in makespan 

cybershake workflow. Similarly, for montage workflow, 

PEAS observes improvisation of up to 30% in terms of energy 

utilization, up to 19% improvisation in Average Power, and 

up to 19% improvisation in terms of makespan. 

 

Although PEAS observes marginal improvisation for task 

scheduling which enhances the performance of HPC Clusters, 

other parameters need to be considered. Hence future work 

lies in cost optimization with a fault-tolerant approach. 

Chart Title

Energy utilization Average Power Makespan

Chart Title

Energy utilization Average Power Makespan
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