
International Journal of Engineering Trends and Technology Volume 70 Issue 7, 238-249, July 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I7P224 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Empirical Approach of Performance and

Energy-Aware Scheduling [PEAS] Mechanism in

the HPC-Cloud Model

Sharavana. K1, Josephine Prem Kumar2, Shivamurthy3

1Department of Information Science and Engineering, HKBK College of Engineering, Bengaluru, India
2Department of Computer Science and Engineering, Cambridge Institute Of Technology, Bangalore, India

3Department of Computer Science and Engineering, VIAT, Muddenahalli, India

1sharatanuj@gmail.com

Received: 17 May 2022 Revised: 02 July 2022 Accepted: 16 July 2022 Published: 18 July 2022

Abstract - Cloud Computing provides the advantage of flexibility, elasticity, scaling, and customization to the HPC community

as it attracts users that cannot afford to use the dedicated HPC infrastructure. HPC infrastructure is proven costly, as it requires

upfront investment despite the advantage of processing the complex task. Interconnection of HPC and cloud environment creates

the complex infrastructure for parallel computation and further creates a major issue in managing the makespan and energy

performance trade-off. This research presents the PEAS (Performance and Energy-aware scheduling)-mechanism; PEAS is

designed for parallel computation with task scheduling and optimal resource allocation at data centers. At first, a system model

is designed for the parallel computing process; later, a novel and efficient scheduling algorithm is designed for task scheduling,

and at last energy-aware mathematical model is designed for optimal energy utilization. PEAS are evaluated considering the

HPC aware scientific workflow like cyber shake and montage workflow considering the evaluation parameter as Make span,

Energy consumption, and Power utilization. Moreover, PEAS is proven to be more efficient than any other existing model

available to date.

Keywords - Cloud Computing, HPC, Scientific Workflow, HPC Cloud.

1. Introduction
Over the years, a computer has been used to improve

performance due to the demand for high development in

Information Technology (IT) for both industries and

academics. The systems used for computation have data

storage ability and strong computing efficiency. This is used

widely in industries for support and workflow scientifically.

Conversely, there is a vast improvement in the system's

performance and power consumption.The improvised energy

consumption leads to ecologically, extreme economic and

technical escalations. Lately, Cloud Computing has been

developed for equipping resources effectively and efficiently.

The cloud's infrastructure management is centralized, leading

to the users' on-demand access to the resources. These are

also paid in a “pay as you go” way [1-2].

Moreover, due to these advantages cloud has become an

alternating computer for a traditional cluster to execute the

HPC applications. HPC(High-Performance Computing)

cloud utilizes virtualization technologies to improvise server

management and resource utilization; moreover,

virtualization technology enables the various application to

process isolated through VMs and makes it possible to

combine several VMs to a particular PM (Physical Machine).

Moreover, virtualization technologies provide various aspects

of energy management.

Considering the infrastructure of the cloud is elastic, the

growing count of users chooses the application to be

organized, including business and scientific applications in

the cloud. Many applications in the scientific domain are

exhibited using the workflows of various other domains,

including astronomy, increasing energy of physics,

astrophysics, bioinformatics, etc. Cloud computing is made

up of a computing model based on service and infrastructure,

giving the user the demanding abilities of computation.

Considering the modern model of virtualization used for job

and resource allocation in dynamic. The cloud platform users

are required to only provide a request to their system. Based

on the user requests, the system automatically provides the

necessary resources so that the user manages the cloud

platform and emphasizes the focus mainly on the cloud

application. For the cloud service provider, the main concern

lies in the correct allocation of applications for scheduling and

infrastructure of hardware such that the processing

expenditure is decreased. The cloud computing system has a

cast on a bigger scale, which leads to energy consumption at

various levels of resource computation [3].

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

239

Huge scientific dataset analysis, massive

communication-intensive firmly activities, and high-

throughput computation have become key parts of HPC

workloads in recent years. HPC clouds are rapidly expanding

the application user base and platform options for running

HPC workloads, ranging from in-house committed powerful

computers to resource clusters with and without HPC-

optimized interconnects and operating systems to resources

with variable levels of virtualization to hybrid combinations

that outsource segments of the task to the cloud. HPC users

and cloud service providers face the difficult task of selecting

the best framework based on a limited understanding of all

shows, platform functionality, and target performance

measures such as cost. As a result of this trend, there may be

a discrepancy between the HPC application's necessary and

available capabilities. One unfavorable scenario could arise in

a part of the construction being overburdened while another

is idle, resulting in long waits and lower total throughput. The

existing HPC set of inputs isn't built to handle these problems.

To operate well in a circumstance, fresh schedulers and

strategies must be investigated [4].

However, scientific workflows are used for a higher scale

in the infrastructures of the cloud. Normally, these workflows

consist of thousands of tasks; hence, a higher count of

computational resources is required during the execution

period. These computational resources are provided for the

cloud computing infrastructure. Although, the tasks in the

workflow of scientific domain are inter dependent and have

communication between them, which differs from the

unwanted tasks. Hence, the cloud management system needs

the resources to be assigned for the workflow relating to the

executions. The resources that are used in the computation

process are as virtual machines that are within the cloud

platform [3]. These virtual machines are used in various

applications for measuring different parameters for

configuration, which have memories, the capacity of the disk,

and many cores of the CPU. The scientific execution

workflow in the cloud has a higher energy consumption; the

virtual machines must be deployed in a manner that makes it

energy efficient. Hence, energy consumption in the cloud

platform has attained attention globally. The cloud's data

center has enormous energy consumed for running monitors,

servers, cooling systems, cooling fans, consoles, processors,

network extensions, and other resources[4]. However, the

energy consumption in the data centers causes pollution

globally by emitting CO2 in enormous amounts which is the

reason for greenhouse gases. Data centers cause 2 percent of

the entire CO2 emission globally. As a result, execution

deployment is done significantly for workflow in a scientific

domain for energy awareness in the platform.

A technique for decreasing the consumption of power for

any model of computation is more effectively used for the

mechanism for power awareness. A widely used and

renowned technique, DVFS (dynamic voltage frequency

scaling), is used for dynamically trading off the energy's

delays. Considering the applications of cloud computing, the

most important aim is the efficient allocation of resources for

growing performance for cloud information centers. Hence,

performance enhancement and dealing with these constraints

over time use various methodologies. The techniques used

over the years include CEFT, called Earliest Constrained

(Finish Time), Reliable hierarchy has driven scheduling, and

dynamic voltage frequency scaling. Also, it has been

observed that DVFS has achieved effective task load

scheduling. It is a highly effective optimization technique for

energy consumption deployed for the cloud system. This

optimization of energy is attained by dynamic voltage scaling

down. It also helps attain higher Quality of internet service by

decreasing the energy consumption in the devices [5][6].

Although, these pre-existing methodologies have a

definitive prototype and the cost for communication of the

processors is extremely high during the use of these

methodologies. In the paper [5], a scheme for optimizing

runtime and energy is initiated for energy reduction by

different task loads being scheduled for different embedded

systems. Considering paper [6], different techniques for

energy efficiency are debated, and the embedded systems

need to enhance the computation's performance.

1.1. Motivation and contribution of Proposed Work

HPC applications executed on cloud infrastructures

include workflow applications like scientific workflow.

Cloud computing is an integrated paradigm for the entire on-

demand virtualization, and future users consume the platform,

infrastructure, and software service. However, the dynamic

computing services are backed up using the data centers used

by the virtual machine environments for isolation and

integration purposes. Also, performance has an essential part

that is considered. Therefore, in this proposed paper, we

include the mechanism for performance awareness

considering parallel computation. This assists the

performance improvement. Additionally, the contribution of

the proposed research work has been stated below:

• We develop a technique for the optimal allocation of

resources and HPC cluster scheduling of tasks, including

the proposed method based on performance. We focus on

the time and energy as a challenge, and the process is

optimized using multiple processors.

• An algorithm is developed based on scheduling priority

because constraint on priority analysis is burdensome.

After which, this algorithm is used for task scheduling.

• Considering the parallel task, we design a mechanism for

task scheduling used for the parallel task scheduling task.

This is simultaneously accompanied by execution;

further, more is coded for executing tasks.

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

240

• In parallel computation, the parameter constraints are

considered time and energy, and makespan optimization

is performed. Therefore, this improves performance.

• Furthermore, an evaluation is performed on PEAS

considering the cyber shake workflow of the scientific

domain along with four variations. This evaluation is

performed by a virtual machine variation and a

comparative analysis of the already existing models.

• The proposed model is used to optimize the allocation of

resources considering constraints in the data centers.

Similarly, the optimization of PEAS is used for task

scheduling and is further used for attenuating energy

consumption.

This specific work has been organized like other

research, and the initial section emphasized parallel

computation and the requirement of parallel computation,

including the relating steps for optimization of makespan.

Furthermore, the initial section has a subsection that focuses

on the contribution of the research. The next section

emphasizes the different methodologies and techniques that

already exist and are utilized for enhancing performance,

including the drawbacks that are present. Section three

introduces the mechanism of PEAS, including the

optimization model makespan with the allocation of resources

and scheduling mechanism for tasks. Also, section four

evaluates the proposed PEAS mechanism.

2. Related Work
HPC cluster performance is enhanced through designing

an efficient task scheduling mechanism; hence this section

mainly focuses on the different scheduling schemes to

enhance the performance of cloud computing

The processor core consists of performance and power

states, which are managed using an operating system and a

hypervisor with an advanced configuration and a power

interface. Considering ACPI for industries, the management

interface is based on standard power [7]. Performance states

are normally expressed in voltage and frequency pairs used

for energy consumption, whereas the workloads operate in the

core. PS combined with an improvised performance level is

termed P0; this indicates a large voltage and a large frequency

which leads to high power consumption. Increase

Performance states lead to a low-performance level, which

indicates that a decrease in voltage and a decrease in

frequency lead to lower power consumption. A transfer in the

processor core is from one to another PS within the DVFS.

Although the transfer in the performance states sustains

latency, this is normally on the scale of microseconds and is

negligible, whereas the comparative analysis of execution

duration for applications and on a scale of hours as well as

minutes [8]. To help the power states for conserving energy,

whereas idle class is where the core is present. The core has

an active state that is represented by C0, where the

performance is done by the instructions that are given at the

level of performance that is specific to a power state that is

used.

Conversely, C1 is the initial performance state in the idle

state. When C1 is the core mode, it can be converted to C0,

avoiding latency. After that, power consumption is reduced

compared to being in an active mode, specifically C0. In high

power states, the core is set to an inactive state. The method

of conservation used is an aggressive power, indicating the

combination of a clock and power. However, the core of the

power states is increased compared to a specific value which

causes a delay to return to CO. The tasks started in the system

for real-time settings and are dynamic in the requirement to

meet the deadlines, after which the return to performance

states is more than the observation at C1, which could lead to

attenuated performance [9].

In [10], periodic scheduling is used by heuristics for

homogeneous multiprocessing and is independent of the tasks

performed in real-time. Considering this method, the main

priority is assigned to these tasks for the process of execution

in comparison to various other tasks. However, the necessary

parts and the smallest deadline process are assigned high

priority. The technique used here has slack time. This happens

during the starting completion of parts required for task

scheduling that is optional at low processor speed by using

DVFS. Although the method used here is not suitable for

various applications considering workflow, this is assumed

for independent tasks. Paper [11] is similar, considering the

methods that are introduced. Using a target system, the

homogenous multiprocessor is given as a starting approach.

Although this application is assumed with the approach with

the component tasks that are given, the precedence constraints

and data independence are used for the tasks. Considering

these two approaches, the heterogeneous processor using the

core of DVFS is introduced.

However, the normal challenge of scheduling a platform

that could be shared in the cloud has more pressing issues

concerning mapping application sets based on tasks to fix the

resources used for computation that finishes tasks within

specified constraints. Also, it is essential to finish the given

task considering the deadline. Therefore, reducing

delinquency in the tasks and the response time of the

consumed power of the given resources introduces some

scheduling methodologies [12]. However, a challenge is

faced while scheduling a Complete-NP. Many researchers in

this field have focused on scheduling, considering energy

efficiency (EE) heuristics [13] [14]. This method has used

DVFS. In the paper [15], considering non-critical jobs, the

execution time has been improvised using slack time as well

as reduced consumption of energy in DVFS using a

homogenous cluster, with no maximization of the time for

execution of complete tasks. However, the jobs are

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

241

considered precedence constraints among the specified tasks

while no deadlines are assumed. Although implementing a

technique for aware scheduling for load and thermal in the

cloud was introduced, the servers could be overloaded. Also,

the DVFS is utilized to manage power for physical machines

and the host-based on a single core [16].

In paper [17], a new technique is used for the workflow

based on real-time, considering the applications used for cloud

scheduling. This is used in the scheduling gaps with an

approximate formulation and the underlying computations for

the resources used in computing during the heterogeneous

time. Although their mechanisms have considered the effect

of input error on the tasks defined in a component application,

there is no use of an energy-aware DVFS or heuristic

approach.

On the contrary, the author of the paper [18 - 20] has

initiated the technique for scheduling in which the DVFS is

leveraged considering the system core with help from the

processors that are heterogeneous, resulting in a balance in

performance and energy consumption. The two methods used

for scheduling are assumed to be in a batch and online mode.

The online mode has differing computations along with tasks,

and the constraints on time and arrival time exist together. In

considering batch mode, the tasks that are performed happen

in batches even via every core, the heterogeneous processors

and DVFS are assumed, and the workload has simple,

independent tasks. Further, a computation that is inappropriate

is utilized.

3. Proposed Methodology

In the HPC Cloud environment, the data center

encounters many parallel task execution requests as HPC-

aware application requires efficient task scheduling to obtain

maximum performance. Moreover, the performance of HPC

clusters depends on the efficient scheduling of jobs.

3.1. Preliminary analysis and designing of Initial Model

This section focuses on the preliminaries of the proposed

model that involve the model related to task, models of

resource, and models concerning power. The dissipation of

power is given mathematically using the following equation,

wherein consumption of power is expressed as 𝓅,

𝓅 = 𝕒𝑓𝐶𝑆2

(1)

Considering equation (1), the activity factor is denoted as

𝕒, and load capacitance is denoted as𝐶, the voltage supply is

expressed as 𝑆. The frequency of the clock is given as 𝑓.

However, when the voltage supplies, as well as the frequency

of the clock, are in an ideal state, they are expressed as 𝑆.

Also, the supply voltage and frequency are related to each

other such that 𝑆 ∝ 𝑓𝛼where 𝛼 is the given constant.

However, the speed of execution is assumed to be

proportional to the frequency of the given clock, which is

expressed as 𝑅. We further assume, 𝑆 = 𝑏𝑓𝛽and 𝑅 = 𝑐𝑓.

The consumption of power is mathematically expressed using

the following equation,

𝓅 = ℵ𝑅𝑎

 (2)

This equation is expressed with the help of equation 1, which

is expressed using equations 3 and 4.

ℵ = (𝑐2𝛿+1)−1𝑎𝑏2𝐵𝐶

(3)

𝑎 = 2𝛿 + 1

 (4)

Considering the parallel task 𝑛, we take any graph 𝐺 =
(𝑆, 𝐸) in which the set of tasks is expressed as 𝑈 and

expressed as 𝑆 = {1,2,3, … , 𝑛}. In this, the constraints on

priority are denoted as 𝐸. Furthermore, the relation of

𝑎𝑟𝑐(𝑥, 𝑦) form 𝑥𝑡𝑜𝑦 shows that the task 𝑦 has not been

started until the task 𝑥 is completed. The count of processors

that has been requested 𝑥 is expressed as 𝒫𝑥 a parallel task

that is specified using 𝒫𝑥 as well as 𝑠𝑥 task work. However,

the data center has 𝑝 some identical processors. For the

execution of any task 𝑥, for any 𝒫𝑥 having 𝑝 processors

within the data center that could be allocated. Therefore,

stating that parallel computation occurs.

Considering a scheduling application that is parallel 𝑢

which is represented using a task graph 𝐼1,𝐼2,….., 𝐼𝑣 for a

given processor 𝑙 in a data center. However, many task graphs

are assumed to be single-task graphs. Also, the power applied

to the task is expressed as 𝐻 given in the equation stated

below, which 𝑅𝑥 = 𝓅𝑥
1

𝑎 is used to indicate the speed of

execution of the task 𝑥. Furthermore, it has been observed

that 𝓅𝑥 = 𝜑𝑅𝑥
𝑎. The time of execution for the given task

using the equation stated below. The processor 𝒫𝑥 has the

same speed of execution 𝑡𝑥.

𝑡𝑥 = (
𝑡𝑥
𝑃𝑖
⁄)

𝑎−1

(5)

The energy that is necessary for the execution of the task

is given using the equation stated below, which 𝑊𝑥 denoted

the work that has been done for the performance of the task 𝑥

given by the equation below

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

242

𝐸𝑥 = 𝑅𝑥
𝑎−1𝑊𝑥 (6)

However, it should be observed in a processor that is real.

The speed of execution and the frequency of the clock only

assumes very discrete values, 𝑊𝑥 which is the earlier work

that has been computed.

3.2. Designing Problem statement

For the analysis of huge cluster datasets in machines that

have been utilized for executing tasks, there are various tasks

for the clusters considering parallel computing. Furthermore,

these tasks must have a resource that is efficient and heavy.

Assuming such situations, we emphasize developing a

mechanism to allocate resources. After the resource is

allocated, the task scheduling has to be optimal; this is for

achieving a design algorithm for task scheduling [21 -24].

After which, an optimization model of makespan is

developed. Therefore, to achieve this, we assume that the

number 𝑛 of parallel tasks has 𝜌 constraints and the task has

a size of 𝒫1, 𝒫2, … . , 𝒫𝑛 having the necessity for execution

of task as 𝑟1, 𝑟2, … , 𝑟𝑛 for 𝑚 processors in such situations

that the length for scheduling is reduced. The consumption of

energy does not exceed 𝐸. Therefore, the proposed work

emphasizes resulting in energy efficiency that is optimized.

3.3. Mathematical modeling for parallel computing in an

HPC environment

Considering a parameter 𝑊 that is used to indicate the

performed work for parallel tasks 𝑛 is given by the equation

stated below

𝑊 = 𝑤1 +𝑤2 +⋯+𝑤𝑛 = 𝒫1𝑟1 + 𝒫1𝑟2 +⋯+
𝒫𝑛𝑟𝑛 (7)

7

Furthermore, the optimal length is denoted as 𝑇′ , and the

bare minimum energy needed is denoted as 𝐺′ for scheduling

optimally. However, the computation for the lower bound is

proposed using the equation stated below by makespan being

minimum along with energy consumption as a constraint.

𝑇 ′ ≥ (
𝑚

�̃�
(
𝑊

𝑚
)
𝑎

)

1/(𝑎−1)

(8)

We also compute the lower bound using the equation stated

below by the length of the schedule being considered a

constraint.

𝐺 ′ ≥ 𝑚(
𝑊

𝑚
)
𝑎

(�̃�𝑎−1)
−1

(9)

 3.4. ERAHPC-Cloud (Efficient resource allocation in HPC

cloud environment)

This section emphasizes the development of a general

optimization model considering four distinct resources: disk,

CPU, the bandwidth of the network, and memory. In this case,

the allocation occurs over machines and time. We propose a

model for allocating resources for the parallel task that is non-

dependent in which every task is assigned the same amount

of power and speed. However, this technique is used to

connect task scheduling. In this case, the resource is denoted

as 𝕋the capacity of resource on the machine, which is given

as 𝕖𝕋
𝕜

. Similarly, the task 𝕜demands the resources that are

denoted as 𝕗𝕝
𝕋

. The task schedule encoding variable needs to

be defined, and the allocation of resources.

Considering 𝔸𝑘𝑙
𝔱

 which is the variable indicator and if

the allocation of the task to 𝕜 a machine at a set time duration,

the variable indicator is set to 1. Furthermore, the task 𝕝

allocates ℤ𝕜𝕝
𝕥,𝕧

 units for a machine 𝕜and the type of resource

𝕥 at 𝕧 the time. Also, consider the task 𝕝 for the machine 𝕜.

The allocation of the resources should be able to satisfy all

four cases.

In the first case, the capacity of the machine 𝕜 cannot be

exceeded by the resources, as stated below

∑ℤ𝕜𝕝
𝕥,𝕧 ≤ 𝕔𝕜

𝕥

𝕝

∀𝕜, 𝕧, 𝕥

(10)

In the second case, inactive tasks do not permit the

allocation of resources

𝕢 ≤ ℤ𝕜𝕝
𝕥,𝕧 ≤ 𝕗𝕜

𝕥

For all 𝕜, 𝕧, 𝕥, 𝕝

(11)

The third case is performed to avoid cost; the allocation of

resources occurs until the completion of tasks.

∑ ℤ𝕜𝕝
𝕥,𝕧

𝐼𝑛𝑖𝑡 𝕝+𝑡𝑒𝑛𝑢

𝕧=𝐼𝑛𝑖𝑡𝕝

= { 𝑜𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑐ℎ𝑖𝑛𝑒

𝑡𝑒𝑛𝑢𝑘𝕜= 𝕜𝕝
∗

 (12)

The fourth case is performed such that the task's duration

is dependent on the allocation of resources and placement of

tasks.

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

243

𝑡𝑒𝑛𝑢𝑘 = 𝑚𝑎𝑥

(

𝕙𝕜
𝑐𝑝𝑢

∑ ℤ
 k𝑙
∗𝕝

𝑐𝑝𝑢
𝕧

,
𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝕪,𝕧
𝕧

𝑓𝑜𝑟𝑎𝑙𝑙
𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝑦,𝑣
𝕧

𝕙𝕜
𝑑𝑖𝑠𝑘

∑ ℤ
 k𝑙
∗𝕝

𝑑𝑖𝑠𝑘𝑦,𝑣
𝕧)

(13)

Equation 13 indicates that the numerator has the entire

resource requirement wherein the denominator gives the rate

of the resource. Furthermore, the CPU cycle shows the

resource requirement, and the rate indicates the cycle or

bandwidth. However, the allocation of the cores and the

memory is done only if a task of input is present for the

machine. The local disk receives the output, and the

bandwidth is always provided. It has also been assumed that

the task allocation is done by peak (memory size) because the

task's runtime would become worst in case a memory size that

is less is provided. Considering the mechanism mentioned

above, resources including disk, networks, memory, and CPU

are scheduled [25-27]. Whereas the availability of the

machine dynamically requires to be specified and known.

Therefore, a resource monitor is developed where resource

use is observed. The demand for resources is also developed

as follows:

 Before execution, it is essential to know the input's size

and the task's location. Further, a recurrent job, updating the

software or checking, occurs by statistical measuring.

Furthermore, it can be observed that tasks in the form of

phases perform the same computation for different data

partitions of similar resource usability. Therefore, a few

demanded tasks could be applied to other tasks. Later, If the

above steps and the methodologies do not match, the task, in

this case, is overestimated. Due to cost underestimation, the

process could become slow. Although, overestimation results

are expensive. Therefore, resource monitors are used where

the resources that are not used are monitored. However,

considering randomness, allocation is not standardized. In

this case, allocation is enforced, where tokens are used.

3.5. ETSHPC-Cloud (Efficient task scheduling concerning

HPC Cloud)

An algorithm for task scheduling is developed, and an

optimization model makespan is designed while considering

time and energy constraints. This algorithm assists in parallel

execution for the reduction of makespan. Here, scientific

workflows are assumed as the algorithm’s input. Utilization

of energy, cost execution, makespan as well as utilization of

resources is constantly monitored and utilized for analysis in

the future.

PEAS Algorithm

Step1: Start

Step2: Considering the 𝑃𝑡ℎtask list 𝑁 = 𝑉1, 𝑉2, … . . 𝑉𝑝

with a time duration of [𝑃, 𝑃𝐸𝐴𝑆(𝑁)]
Step3: A task is given and 𝑉 is split into (M+1) groups as

𝐼1 = [𝑉1, 𝑉2, … . . 𝑉𝑘1]
𝐼2 = [𝑉𝑘1+1, 𝑉𝑘2+1, … . . 𝑉𝑝]

𝐼𝑚 = [𝑉𝑘𝑚+1 + 1, 𝑉𝑘𝑚+1, … . . 𝑉𝑝]
Step4: 𝑉𝑙1 , 𝑉𝑙1 , …… . 𝑈𝑙𝑚 is the sequence of tasks in the

schedule that are complete. Furthermore, the task

𝑉𝑙𝑏 is finished at a given time 𝑠𝑢𝑏𝑏 and

simultaneous schedule 𝐼𝑏+1 for the remaining task

execution.

Step5: Time duration [𝑃, 𝑃𝐸𝐴𝑆] is split into different

smaller intervals as stated below

[𝑠𝑢𝑏𝑜, 𝑠𝑢𝑏1]……… [𝑠𝑢𝑏𝑚−1, 𝑠𝑢𝑏𝑚],

[𝑠𝑢𝑏𝑚, 𝑠𝑢𝑏𝑚+1] where 𝑠𝑢𝑏𝑝=0

Step6: The task that is active in above mentioned small

intervals is 𝐼1𝑉𝐼2𝐼𝑉𝑚+1 −
{𝑉𝑙1 , 𝑉𝑙1 , …… . 𝑉𝑙𝑚}.

Step7: The initial time stated is 𝑝the task 𝐼1 is scheduled

for execution in which the count of resources is

utilized 𝑟1. Therefore, the resources that are

utilized (ℚ) in the smaller intervals [𝑠𝑢𝑏𝑜, 𝑠𝑢𝑏1]

:

𝑟1 = ℚ1 +ℚ2 +⋯ .+ℚ𝑘1 ≤ 𝑜

This indicated that many tasks are scheduled at the

same time for execution

Step8: During the completion of a task 𝑉𝑙𝑚, the execution

𝐼𝑚+1 is scheduled. Here, the value 𝑚 is small so

that the completion of the task 𝑉𝑙𝑚 does not have

to be scheduled. Therefore, the count of tasks

𝑠𝑢𝑏𝑚 is as follows:

The resources utilized 𝑠𝑢𝑏𝑚 are

𝑟𝑑+1 = 𝑟𝑚 +ℚ𝑙𝑚 +ℚ𝑙𝑚+1 … .+ℚ𝑝

Step9: Therefore, the count of resources that are utilized

is diminished. This decreases the further energy

consumption, and the improvised scheduling and

allocation of resources decrease the time for

execution.

Step10: End

Therefore, the count of resources is diminished with

completing the tasks [28]. Once the scheduling of tasks is

completed, we develop the optimized model makespan by

considering the constraints of time and energy [29].

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

244

3.6. EHPC-CLOUD (Energy modeling on HPC Cloud

Environment)

To resolve the scheduling of tasks considering the

constraint of energy, we propose the equation

�̃� = ℚ1𝑡1𝑟
1−
1
𝑐 +ℚ2𝑡2𝑟

1−
1
𝑐 +⋯

+ℚ𝑝𝑡𝑝𝑟
1−
1
𝑐

= 𝑌𝑟1−
1
𝑐

 (14)

The entire work performed is denoted as𝑌the supply of

power 𝑟. Using the equation 14, the consumption of power is

computed, which is formulated by equation 15

𝑟 = (
�̃�

𝑌
)

𝑐/(𝑐−1)

 (15)

We also compute the speed of execution for the task,

which is stated in equation 16

𝑈 = (
�̃�

𝑌
)

𝑐/(𝑐−1)

 (16)

The time of execution for the task 𝑘 is calculated using

the equation 17

𝑣𝑘 = 𝑡𝑘 (
𝑌

�̃�
)
1/(𝑐−1)

 (17)

In the equation given above, we assumed 𝑜 the number

of tasks with the time of execution as {𝑣𝑘 =
𝑣1, 𝑣2, … . , 𝑣𝑝}, the resource allocation of these tasks is for

parallel tasks. Considering task list 1 to P, task 1 is scheduled,

implying that various tasks can be scheduled for execution

simultaneously. Furthermore, the task after 𝑙 + 1 is not

considered though these are small tasks after the task 𝑙is

finished. 𝑙 + 1, 𝑙 + 2… .𝑚 Are the resources that are

allocated, in which ℚ− ℚ𝑙 +ℚ𝑙+1 +ℚ𝑙+2 +
⋯ .+ℚ𝑚+1 > 𝑜.

Therefore, the allocation of tasks is executed at the same

time. Although, the tasks are not considered after 𝑙 + 1.

However, energy consumption is a constraint, and resource

allocation is optimized. Considering the length of resource

allocation as C((𝑡1, 𝑡2, … . . , 𝑡𝑝,) for the task 𝑜 with the

execution time. Furthermore, the length of the resource is

computed

𝑉 = 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
𝑌

�̃�
)
1/(𝑐−1)

(18)

We also compute the ratio of performance which is stated

in equation 19

𝛼 ≤
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜

 (19)

However, we see ∀𝑧 ≥ 0when 𝑣𝑘 = 𝑧𝑡𝑘 then

C(𝑣1, 𝑣2, … . . , 𝑣𝑝) = 𝑧C (𝑡1, 𝑡2, … . . , 𝑡𝑝,). Therefore,

we formulate the equation 20

𝑉 = 𝐶(𝑣1, 𝑣2, … . , 𝑣𝑝)

= 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
�̃�

𝑌
)

𝑐/(𝑐−1)

 (20)

Further, based on the lower bound, it results in the

optimized allocation of resources based on energy given in

equation 21

𝛼 =
𝑉

𝑉∗
≤
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜

 (21)

For the optimization of makespan, the constraint of time

has to be considered; initially, the technique mentioned above

is implemented to schedule the task along with the execution

time, and the power consumption is stated as 𝑣𝑘 =

𝑡𝑘𝑌
1/(𝑐−1) and 𝑟 =

1

𝑌𝑐(𝑐−1)
respectively.

However, when 𝑉′ is denoted for the length of the allocation

of resources and 𝑉′ is scaled for the consumption of energy

considering the factor
1

𝐺1/(𝑎−1)
. Therefore, equation 22 is used

for the computation of allocation

�̃� =
𝑉 ′

𝐺1/(𝑐−1)

 (22)

This is further expressed as:

𝐺 = (
𝑉 ′

�̃�
)

𝑐−1

 (23)

Furthermore, the ratio for performance is required to be

defined to resolve the energy consumption using the

allocation length [30]. The problem relating to energy and the

constraint on the resource length for many processors has

been considered here. Furthermore, the consumption of

energy is computed using the equation 24

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

245

𝐺 = (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑜)

�̃�
)

𝑐−1

𝑌

 (24)

The ratio of the performance is given by the equation 25

𝛼 ≤ (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑜)

𝑌/𝑜
)

𝑐−1

 (25)

It has been observed that 𝑉 ′ = 𝐶(𝑣1, 𝑣2, … . , 𝑣𝑝)where it

is also assumed as 𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝) (
𝑌

�̃�
)
1/(𝑐−1)

.

Therefore, the consumption of energy is derived and

expressed using the following equation 26

𝐺 = (
𝑉 ′

�̃�
)

𝑏−1

= (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

�̃�
)

𝑐−1

𝑌

 (26)

Therefore, using the lower bound situation, the ratio of

performance is derived in equation 27

𝛼 =
𝐺

𝐺∗
≤ (

𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

𝑌/𝑜
)

𝑐−1

 (27)

Furthermore, consumption of power is given as

𝑟 = (
𝐶(𝑡1, 𝑡2, … . , 𝑡𝑝)

�̃�
)

𝑐

 (28)

4. Performance Evaluation
The demand for resources in cloud computing has been

increasing rapidly over the years because of its flexibility,

cost efficiency, and various uses. It can be accessed easily at

any given time and place. Further, using the HPC cluster

plays an important role with the cloud to perform HPC-aware

applications. However, cluster performance directly depends

on the workload and task scheduling. Hence, these devices

must have a higher performance considering the rapidly

increasing demand [31]. Consumption of energy is high in

these devices of computation which hinders performance.

Furthermore, an essential constraint in this is makespan.

Therefore, for the optimization of these objectives, it is

necessary to introduce heterogeneous PEAS computing

devices for the efficient reduction in energy consumption and

also give a higher performance. Moreover, PEAS is

considered a simulator [19][21]. This is modified and adapted

for the HPC cloud environment.

4.1. Dataset Details for HPC application evaluation

The runtime evaluation is performed at various instances

at 25, 50, 100, and 1000. The results are graphically

represented by considering the time of execution, count of

tasks, and energy consumption. The total consumption of

power, as well as run time, is evaluated by the use of various

parameters that are explained and evaluated in the section

expressed below. The proposed PEAS model is evaluated on

the cybershake and montage scientific dataset [17]. The

various parameters that are considered include the total time

of simulation, the sum of power, the average power, and

energy consumption [32-36]. These different parameters are

evaluated at various cybershake instances and montage

instances.

4.2. Designing Instances for HPC Cloud evaluation

For cybershake, every instance has a varying value of

cybershake and montage value. Instance A is defined when

the cybershake is 30, and the virtual machine is 25. The

cybershake being 50 and the virtual machine at 50 is the

instance B. Instance C is defined as the cybershake at 100 and

the virtual machine at 100. The cybershake and virtual

machine both have values of 1000 at the instance D.

Considering the evaluation of montage, these different

parameters are evaluated for the same montage instances. In

the montage, instance A is defined when the montage value is

25 and the value of the virtual machine is 25. When the values

of both montage and the virtual machine are at 50, it is at

instance B. Instance C is given as the value of montage and

virtual machine as 100. The montage value at 1000 and the

virtual machine at 100 is at the instance D.

5. Results and Analysis
This graphical evaluation section is performed by

comparing various parameters at different instances for both

cybershake and montage. The various parameters include the

total time of simulation, the sum of power, the average power,

and energy consumption.

 5.1. Makespan evaluation

The graph below shows the simulation time at various

instances with a comparative analysis. A table is also given

showing the values of the models at various instances. It has

been observed that the simulation time increases with an

increase in the workload. The model proposed is stable.

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

246

Fig. 1 Makespan comparison for cybershake workflow

Fig. 2 Makespan comparison for montage workflow

5.2. Average Power

The tables and graphs below show the values and the

comparative analysis at various instances. This comparative

study is performed for cybershake as well as a montage. The

proposed model results in being more efficient.

Fig. 3 Power comparison of cybershake workflow

Fig. 4 Power Comparison of montage workflow

5.3. Energy utilization comparison

The graphs given below show a comparative analysis of the

energy consumption parameter. In comparison, the table lists

the detailed values of the models. The consumption is seen to

vary largely in comparison to the two models.

Fig. 5 Energy utilization evaluation through consumption comparison

on cybershake workflow

Fig. 6 Energy utilization in terms of consumption of energy on montage

workflow

M
ak

e
sp

an
(i

n
 s

e
c)

Instances

MAKESPAN
COMPARISON

ES PS

m
ak

e
sp

an
(i

n
 s

e
c)

Instances

MAKESPAN
COMPARISON

ES PS

P
o

w
e

r

Instances

AVERAGE POWER

ES PS

p
o

w
e

r

Instances

AVERAGE POWER
ES PS

En
e

rg
y

Axis Title

E N E R G Y U T I L I Z A T I O N I N T E R M S
O F C O N S U M P T I O N

ES PS
En

e
rg

y

Axis Title

E N E R G Y U T I L I Z A T I O N I N T E R M S
O F C O N S U M P T I O N

ES PS

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

247

5.4 Improvisation over the existing model

This section discusses the improvisation over the existing

model in terms of Energy utilization, Average Power, and

makespan; table 1 presents the improvisation of the existing

model with different instances. Table 1 presents the

improvisation of PEAS over the existing model for

cybershake workflow. In the case of Energy utilization, for

instance, A and B PEAS improvise their model by 96.02%

and91.06 %, respectively. Similarly, for instance, in C and D,

PEAS observes 87.83 and 88.70 % improvisation,

respectively. In the case of Average Power, PEAS observes

nearly 18% improvisation over the existing model.

Furthermore, in the case of makespan, instances A and B

observe improvisation of 93.63 and 90.20, respectively.

Similarly, C and D PEAS observe improvisation of 88.48%

and 55.58%, respectively.

Table 1. Improvisation of PEAS over existing model considering

cybershake workflow

HPC

aware

application

Energy

utilization

(in

percentage)

Average

Power(in

percentage)

Makespan(in

percentage)

Instance A 96.02111549 18.61438 93.63633

Instance B 91.06874 18.61436 90.20219

Instance C 87.8325 18.61433 88.48776

Instance D 88.70662 18.61412 55.58233

Fig. 7 Graphical improvisation on cybershake workflow

Table 2 presents the improvisation of the proposed PEAS

over the existing model considering montage workflow. For

instance, in A and instance B, PEAS observes improvisation

of 30.37% and 26.95%; similarly, in C and D, PEAS observes

improvisation of 23.64 %and 17.56 %, respectively. Further,

in the case of all instances, PEAS observes improvisation of

nearly 18%. Considering the makespan as a parameter, PEAS

observes improvisation of 19.12 % and 16.32 % for instances

A and B. Further, for Instance C and Instance D, PEAS

observes improvisation of 18.40 % and 13.72%, respectively.

Table 2. Improvisation of PEAS over the existing model

HPC aware

application

Energy

utilization

(in

percentage)

Average

power (in

percentage)

Makespan

(in

percentage)

Instance A 30.37861 18.61515 19.12682

Instance B 26.95522 18.61467 16.3259

Instance C 23.64363 18.61456 18.40231

Instance D 17.56556 18.61412 13.72573

Fig. 8 Improvisation of PEAS over the existing model in montage

workflow

6. Conclusion

In the past few years, commercial HPC users have moved

on to clouds due to cost and alternatives to the dedicated

clusters; the performance of HPC clusters highly depends on

task scheduling, and recent schedulers lack optimal resource

utilization. Hence, this research proposes a PEAS mechanism

that helps optimal task scheduling and resource utilization.

PEAS aims at optimizing the makespan and energy

consumption. PEAS are evaluated considering the HPC-aware

scientific workflow cybershake and montage considering the

energy consumption, makespan, and Average Power. Further,

a comparative analysis is carried out by designing four

instances, i.e., instance A, instance B, instance C and Instance

D. These instances comprise a certain number of VM and host.

Comparative analysis indicates that PEAS observes marginal

improvisation of up to 96% for all instances in terms of energy

utilization, up to 19% improvisation in average power

consumption, and up to 93% improvisation in makespan

cybershake workflow. Similarly, for montage workflow,

PEAS observes improvisation of up to 30% in terms of energy

utilization, up to 19% improvisation in Average Power, and

up to 19% improvisation in terms of makespan.

Although PEAS observes marginal improvisation for task

scheduling which enhances the performance of HPC Clusters,

other parameters need to be considered. Hence future work

lies in cost optimization with a fault-tolerant approach.

Chart Title

Energy utilization Average Power Makespan

Chart Title

Energy utilization Average Power Makespan

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

248

References
[1] J. Emeras, S. Varrette, V. Plugaru, and P. Bouvry, “Amazon Elastic Compute Cloud (EC2) versus In-House HPC Platform: A Cost

Analysis,” in IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 456-458, 2019. Doi: 10.1109/TCC.2016.2628371.

[2] A. Pupykina, and G. Agosta, “Survey of Memory Management Techniques for HPC and Cloud Computing,” in IEEE Access, vol. 7, pp.

167351-167373, 2019. Doi: 10.1109/ACCESS.2019.2954169.

[3] D. Dhinakaran, and P. M. Joe Prathap, “Preserving Data Confidentiality in Association Rule Mining Using Data Share Allocator

Algorithm,” Intelligent Automation & Soft Computing, vol. 33, no. 3, pp. 1877–1892, 2022. Doi:10.32604/iasc.2022.024509.

[4] B. Murugeshwari, D. Selvaraj, K. Sudharson and S. Radhika, “Data Mining with Privacy Protection Using Precise Elliptical Curve

Cryptography,” Intelligent Automation & Soft Computing, vol. 35, no. 1, pp. 839–851, 2023.

[5] A. C. Zhou, J. Lao, Z. Ke, Y. Wang, and R. Mao, “FarSpot: Optimizing Monetary Cost for HPC Applications in the Cloud Spot Market,”

in IEEE Transactions on Parallel and Distributed Systems. Doi: 10.1109/TPDS.2021.3134644.

[6] D. Dhinakaran, D. A. Kumar, S. Dinesh, D. Selvaraj, and K. Srikanth, “Recommendation System for Research Studies Based on GCR,”

International Mobile and Embedded Technology Conference (MECON), Noida, India, pp. 61-65, 2022.

 Doi: 10.1109/MECON53876.2022.9751920.

[7] A. Saad, and A. El-Mahdy, “HPC Cloud Seer: A Performance Model Based Predictor for Parallel Applications on the Cloud,” in IEEE

Access, vol. 8, pp. 87978-87993, 2020. Doi: 10.1109/ACCESS.2020.2992880.

[8] VMware, “Host Power Management in Vmware Vsphere 5.5,” Tech. Rep. EN- 001262-00, VMware Inc, 2013.

[9] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of CPU Frequency Transition Latency,” Comput. Sci. - Res. Dev., vol.

29, no. 3, pp. 187–195, 2014. Crossref, http://dx. doi.org/10.1007/s00450-013-0240-x.

[10] R. Schöne, D. Molka, and M. Werner, “Wake-up latencies for Processor Idle States on Current X86 Processors,” Comput. Sci. - Res. Dev,

vol. 30, no. 2, pp. 219–227, 2015. Crossref, http://dx.doi.org/10.1007/s00450-014-0270-z.

[11] J. Kolodziej, “Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems,” Springer, 2012.

[12] M.R. Garey, D.S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman and Company,

1979.

[13] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, “Cost and Energy Aware Scheduling Algorithm for Scientific Workflows with Deadline

Constraint in Clouds,” IEEE Trans. Serv. Comput., vol. 11, no. 4, pp. 713–726, 2015. Crossref, http://dx.doi.org/10.1109/TSC.

2015.2466545.

[14] L. Wang, S.U. Khan, D. Chen, J. Kolodziej, R. Ranjan, C. Xu, and A. Zomaya, “Energyaware Parallel Task Scheduling in a Cluster,”

Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1661–1670, 2013. Crossref, http://dx.doi.org/10.1016/j.future.2013.02.010.

[15] Y. Mhedheb, F. Jrad, J. Tao, J. Zhao, J. Kolodziej, and A. Streit, “Load and Thermalaware VM Scheduling on the Cloud,” in: Proceedings

of the 13th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’13), pp. 101-114, 2013. Crossref,

http://dx.doi.org/10.1007/978-3-319- 03859-9_8.

[16] K. Mizotani, Y. Hatori, Y. Kumura, M. Takasu, H. Chishiro, and N. Yamasaki, “An Integration of Imprecise Computation Model and

Real-Time Voltage and Frequency Scaling,” in: Proceedings of the 30th International Conference on Computers and Their Applications

(CATA’15), pp. 63–70, 2015.

[17] H. Yu, B. Veeravalli, Y. Ha, and S. Luo, “Dynamic Scheduling of Imprecise Computation Tasks on Real-Time Embedded

Multiprocessors,” in: Proceedings of the 2013 IEEE 16th International Conference on Computational Science and Engineering (CSE’13),

pp. 770–777, 2013. Crossref, http://dx.doi.org/10.1109/CSE.2013.118.

[18] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian Taylor, “Scientific Workflows: Past, Present and Future,” Future

Generation Computer Systems, vol. 75, pp. 216-227, 2017.

[19] C.C. Lin, Y.C. Syu, C.J. Chang, J.J. Wu, P. Liu, P.W. Cheng, and W.T. Hsu, “Energy Efficient Task Scheduling for Multi-Core Platforms

with Per-Core DVFS,” J. Parallel Distrib. Comput, vol. 86, pp. 71–81, 2015. Crossref, http://dx.doi.org/10.1016/j.jpdc. 2015.08.004.

[20] W. Long, L. Yuqing, and X. Qingxin, “Using CloudSim to Model and Simulate Cloud Computing Environment," 2013 Ninth International

Conference on Computational Intelligence and Security, Leshan, pp. 323-328, 2013.

[21] K. Sudharson, and V. Parthipan, “A Survey on ATTACK – Anti-Terrorism Technique for Adhoc Using Clustering and Knowledge

Extraction, Advances in Computer Science and Information Technology,” Computer Science and Engineering, CCSIT 2012, Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, Berlin, Heidelberg, vol.

85, pp. 508-514, 2012.

[22] Sharavana. K, Asghar Pasha, and Dr. Josephin Premkumar K, “Approach for Deploying the Hybrid Cloud in Diverse Open Source

Tools,” IOSR Journal of Computer Engineering (IOSR-JCE), vol. 20, no. 3, pp. 25-34, 2018.

[23] D. Dhinakaran, P.M. Joe Prathap, D. Selvaraj, D. Arul Kumar, and B. Murugeshwari, “Mining Privacy-Preserving Association Rules

based on Parallel Processing in Cloud Computing,” International Journal of Engineering Trends and Technology, vol. 70, no. 30, pp.

284-294, 2022. Doi: 10.14445/22315381/IJETT-V70I3P232.

[24] S. Arun, and K. Sudharson, “DEFECT: Discover and Eradicate Fool Around Node in Emergency Network using Combinatorial

Techniques,” Journal of Ambient Intelligence and Humanized Computing, pp. 1-2, 2020. Doi: https://doi.org/10.1007/s12652-020-02606-

7.

[25] J. Aruna Jasmine, V. Nisha Jenipher, J. S. Richard Jimreeves, K. Ravindran, and D. Dhinakaran, “A Traceability Set Up Using

Digitalization of Data and Accessibility,” 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 907-910,

2020.

[26] N. Partheeban, K. Sudharson, and P.J. Sathish Kumar, “SPEC- Serial Property Based Encryption for Cloud,” International Journal of

Pharmacy & Technology, vol. 8, no. 4, pp. 23702-23710, 2016.

Sharavana. K et al. / IJETT, 70(7), 238-249, 2022

249

[27] K. Sudharson, and V. Parthipan, “SOPE: Self-organized Protocol for Evaluating Trust in MANET Using Eigen Trust Algorithm,” 2011

3rd International Conference on Electronics Computer Technology, Kanyakumari, India, pp. 155-159, 2011.

[28] L. Rahul, and K. Sharavana, “Deployment of Virtual HPC Clusters on Demand from Volunteer Computing Resources,” International

Journal of Advanced Research in Computer and Communication Engineering, vol. 3, no. 4, 2014.

[29] D. Dhinakaran, and P.M. Joe Prathap, “Ensuring Privacy of Data and Mined Results of Data Possessor in Collaborative ARM, Pervasive

Computing and Social Networking,” Lecture Notes in Networks and Systems, Springer, Singapore, vol. 317, pp. 431-444, 2022. Doi:

10.1007/978-981-16-5640-8_34.

[30] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “StreamFlow: Cross-Breeding Cloud With HPC,” in IEEE Transactions on

Emerging Topics in Computing, vol. 9, no. 4, pp. 1723-1737, 2021. Doi: 10.1109/TETC.2020.3019202.

[31] K. Sudharson, M. Akshaya, M. Lokeswari and K. Gopika, "Secure Authentication scheme using CEEK technique for Trusted

Environment," 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, pp. 66-71, 2022.

[32] A. Fernandez, “Evaluation of the Performance of Tightly Coupled Parallel Solvers and MPI Communications in IAAS from the Public

Cloud,” in IEEE Transactions on Cloud Computing. Doi: 10.1109/TCC.2021.3052844.

[33] K. Sudharson and S. Arun, “Security Protocol Function Using Quantum Elliptic Curve Cryptography Algorithm,” Intelligent Automation

& Soft Computing, vol. 34, no. 3, pp. 1769–1784, 2022.

[34] D. Dhinakaran and P.M Joe Prathap, “Protection of Data Privacy from Vulnerability Using Two-Fish Technique with Apriori Algorithm

in Data Mining,” Journal of Supercomputing, 2022. Crossref, https://doi.org/10.1007/s11227-022-04652-8.

[35] Margesh Keskar, Dhananjay D Maktedar, “Evolutionary Computing Driven ROI-Specific Spatio-Temporal Statistical Feature Learning

Model for Medicinal Plant Disease Detection and Classification,” International Journal of Engineering Trends and Technology, vol. 70,

no. 6, pp. 165-184, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I6P220.

[36] Mandeep Singh, Shashi Bhushan, “CS Optimized Task Scheduling for Cloud Data Management,” International Journal of Engineering

Trends and Technology, vol. 70, no. 6, pp. 114-121, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I6P214.

