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Abstract - Violence detection is part of the video surveillance research area and has played an important role in the last 

decade. Convolution Neural Network (CNN) has become a very successful classifier for violence video detection. The learned 

features of CNN give a superior result over the handcrafted features of traditional machine learning. Long Short-Term 

Memory (LSTM) layer process the learned features to capture the temporal dependencies. Violence video detection is a binary 

classification that categorizes the instance video into violence or non-violence.  However, the number of video clips in each 

class is not balanced, which makes it hard to collect the positive class. In this direction, this work presents the empirical 

results of resampling techniques to enhance the performance of video violence detection. This work compares four resampling 

techniques Random Under Sampling (RUS, Synthetic Minority Oversampling Technique (SMOTE), Random Over Sampling 

(ROS), and the combination of SMOTE and RUS. The experiments are conducted on two popular benchmark datasets, Hockey 

and Crowd Datasets. The number of positive classes of these datasets is reduced to create an imbalance of datasets for 

experimental purposes. The experiment results demonstrated that RUS produced superior performance compared to the other 

resampling techniques in terms of G-means and AUC.  

Keywords - Convolution Neural Network (CNN), Imbalance dataset, Resampling algorithm, Long Short-Term Memory 

(LSTM), Violence video detection. 

1. Introduction 
Nowadays, the amount of violence in the public area is 

increasing. It can create discomfort in public places. 

Violence also occurs because of the limited number of 

security personnel. Therefore, automatic violence video 

detection can help to monitor and prevent violence in the 

public area. Pujol et al. [1] developed a system for detecting 

violence in video. The video input is obtained from an 

installed camera, smartphone, or YouTube video. Real-time 

violence detection also has been developed for football 

stadiums [2]. The frames are categorized into the violence 

model, negative model, and human part model. A histogram 

of Oriented Gradients (HOG) was used to extract the 

features. 

 

Recently proposed methods for video violence detection 

can be categorized into handcrafted and learned features. The 

handcrafted features can be determined before feature 

extraction. For example, the generated features from Gray 

Level Co-occurrence Matrix (GLCM) are entropy, contrast, 

and homogeneity. Meanwhile, the learned features cannot be 

determined before feature extraction. 

 

 

 

In violence video detection, some studies capture the 

handcrafted features using some spatiotemporal descriptor, 

such as MoSIFT [3], Motion Weber Local Descriptor 

(MoWLD) [4], OViF [5], LHOG+LHOF [6], and DiMOLIF 

[7], Spatio Temporal Autocorrelation of Gradients 

(STACOG) [8]. Baba et al.  [9] proposed another work's 

cascade approach to separate temporal and spatial features. 

In violence video detection, some researchers 

[10][11][12][13] show that the features of convolution neural 

network (CNN) become the potential features compared to 

the handcrafted features. Although the learned features of 

CNN are superior to the handcrafted features, CNN has high 

computational complexity and needs a large number of data 

to train the network [14]. In image classification, Wang et al. 

[15] show that CNN is not better than a support vector 

machine (SVM) in terms of accuracy when using a small 

sample dataset. CNN extracts the spatial and motion features 

of the object through a long short-term memory (LSTM) 

network. CNN does not need additional feature extraction 

since the feature extraction and classification have been 

included in the structure of CNN. 
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Fig. 1 Hockey dataset, first row for violence and second row for non-

violent. 

 

 
Fig. 2 Crowd dataset, first row for violence and second row for non-

violent. 

 

In CNN, some pretrained models exist for classification 

or detection purposes, such as Resnet50, Xception, and 

InceptionV3. Bintang and Kusuma show that the 

performance of the pretrained model is more accurate than 

the simple CNN [16]. Xiao et al. [17] compared these 

pretrained models in ultrasonic breast mass discrimination. 

The results show that InceptionV3 produces better 

performance in terms of accuracy. In our previous work, 

InceptionV3 also performs better violence video detection 

[18]. These pretrained models can be utilized to classify the 

new datasets. Although the number of datasets is small, the 

classification can use transfer learning instead of building a 

CNN model from scratch.  

 

In video violence detection, data in the positive class is 

hard to be collected. Therefore, the dataset becomes 

imbalanced, and the CNN performs poorly on the minority 

classes. The imbalance of datasets also becomes a serious 

problem in other research areas, such as the automatic 

detection of arrhythmia [19], credit scoring analysis [20], and 

software defect prediction [21].  Normally, the classifier 

needs a balanced dataset in training to classify the testing 

dataset accurately. Therefore, this paper aims to evaluate the 

resampling techniques for video violence detection, such as 

ROS, RUS, SMOTE, and SMOTE+RUS. 

 

 

 

The resampling technique is a pre-processing that 

balance the label or class proportions on an imbalanced 

dataset. There are two main procedures in the resampling 

techniques, increase the size of minority examples 

(oversampling) or decrease the size of majority examples 

(undersampling). The evaluation of this study contains both 

over-sampling, under-sampling, and hybrid strategies. 

Random Under Sampling (RUS) [22] is a resampling 

technique that removes the majority of class examples. RUS 

can balance the examples by using the imbalance ratio (IR). 

Random Over Sampling (ROS) [22]  

 

 
Fig. 3 The proposed model 

 

 
Fig. 4 Confusion Matrix 
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Consists of duplicating the examples in the minority 

class. The example duplication will reduce the number of IR 

in the dataset. Synthetic Minority Oversampling Technique 

(SMOTE) [23] is like ROS, increasing the number of 

minority classes by creating synthetic examples. SMOTE 

generates the synthetic examples between the line of two 

minority examples. Hybrid resampling [22] combines the 

two previous techniques, under-sampling, and under-

sampling. Our work combines SMOTE and RUS to balance 

the dataset. 

 
Table 1. Information on Imbalance Hockey Dataset 

Dataset # Violence 
# Non-

Violence 
IR 

Low imbalance 9IR   

Hockey 1 350 400 1.14 

Hockey 2 300 400 1.33 

Hockey 3 250 400 1.6 

Hockey 4 200 400 2 

Hockey 5 150 400 2.67 

Hockey 6 100 400 4 

Hockey 7 75 400 5.33 

Hockey 8 50 400 8 

Hockey 9 45 400 8.89 

Medium imbalance 9 20IR   

Hockey 10 40 400 10 

Hockey 11 35 400 11.43 

Hockey 12 30 400 13.33 

Hockey 13 25 400 16 

Hockey 14 20 400 20 

High imbalance 20IR   

Hockey 15 15 400 26.67 

Hockey 16 10 400 40 

 
Table 2. Information on Imbalance Crowd Dataset 

Dataset # Violence 
# Non-

Violence 

 
IR 

Low imbalance 9IR   

Crowd 1 80 100  1.25 

Crowd 2 60 100  1.67 

Crowd 3 40 100  2.5 

Crowd 4 20 100  5 

Medium imbalance 9 20IR   

Crowd 5 10 100  10 

Crowd 6 5 100  20 

High imbalance 20IR   

Crowd 7 3 100  33.33 

 

2. Methods 
2.1. Experimental Data 

This study uses two popular datasets in violence video 

detection to demonstrate the potency of resampling 

techniques in CNN LSTM. The datasets consist of violence 

and non-violence classes. The first dataset is Hockey Fight 

containing 1000 video clips. Each video has a resolution of 

360×288 pixels. There are 500 videos in each class. The 

violent crowd as the second dataset consists of 246 videos. In 

the violent crowd, there are 123 videos in each class. Figures 

1 and 2 show the samples clip of Hockey and crowd video 

violence datasets. 

 

2.2. Experimental Design and Parameters Setting 

Figure 3 presents the process of the experiment. To 

evaluate the performance of resampling techniques, this 

study follows the split validation as referring to previous 

work [11]. For that reason, our study divided the dataset into 

training and testing with a ratio of 80:20. To evaluate the 

proposed model for an imbalanced dataset, this study creates 

the imbalanced datasets from the training dataset with several 

imbalance ratios (IR). This study followed Fan et al. [24] to 

decide the IR of the dataset.  

Fan et al. [24] classified the IR into three levels of imbalance, 

low, medium, and high. Based on the level of imbalance, this 

research reduced the number of violent videos. Table 1 and 

Table 2 show the imbalance proportion of Hockey and 

Crowd. Then, the generated imbalance datasets were 

implemented in our model. This study uses InceptionV3 as 

the pretrained model for our CNN. To evaluate the proposed 

model, this study repeated 10 experiments to collect the 

average performances. The experiment was executed with 

Keras library on python programming. The number of 

epochs for the neural network is set to 200. 

As discussed in the Introduction, the experiment adopted 

InceptionV3 as the pretrained network. The structured 

network of InceptionV3 extracts the features of each image. 

Our pretrained network has been trained on the ImageNet 

dataset. ImageNet contains more than 14 million images 

belonging to more than 20.000 classes. The experiment 

resizes each frame to 299x299 to feed the InceptionV3 model. 

 
2.3.  Metric Evaluation 

This section presents the two standard metrics to 

evaluate the classification performance when the dataset is 

unbalanced. G-mean and Area Under Curve (AUC) scores 

are the most frequent metrics for this purpose. High AUC 

and G-mean mean that the detection has high performance. 

The evaluation adopted these metrics based on several works 

of literature [25]. The two metrics are calculated from the 

confusion matrix, which presents the number of correct and 

incorrect classification tasks, as shown in Figure 4. 
Geo metric-mean (G-mean) is a suitable metric for the 

imbalance problem and is computed by Equation 1. 
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𝐺 − 𝑀𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃+𝐹𝑁
×

𝑇𝑁

𝑇𝑁+𝐹𝑃
   (1) 

 

 

Where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁 represent the number of true positive, false positive, false negative, and true negative. 

 
Table 3. Reported G-mean of Hockey Dataset. The color value is the best performance in each row. The value of 𝝉𝑭 is 𝟒. 𝟒𝟓, and the critical value of  

𝑭(𝟒, 𝟔𝟎) = 𝟐. 𝟎𝟒. 

Data ID IR Without Sampling ROS SMOTE RUS SMOTE+RUS 

Hockey 1 1.14 0.9066 (1) 0.9012 (2) 0.8991 (3) 0.8376 (5) 0.8893 (4) 

Hockey 2 1.33 0.905 (3)  0.9057 (2) 0.9117 (1)  0.8411 (5) 0.8959 (4) 

Hockey 3 1.60 0.8991 (2) 0.9032 (1) 0.8925 (3) 0.8382 (5) 0.8889 (4) 

Hockey 4 2.00 0.8807 (4) 0.9037 (1) 0.9024 (2) 0.8564 (5) 0.8865 (3) 

Hockey 5 2.67 0.8714 (4) 0.8857 (2) 0.8766 (3) 0.8542 (5) 0.8888 (1) 

Hockey 6 4.00 0.8926 (1) 0.8879 (3) 0.8888 (2) 0.8532 (5) 0.8874 (4) 

Hockey 7 5.33 0.8369 (5) 0.8514 (4) 0.8741 (2) 0.8826 (1) 0.862 (3) 

Hockey 8 8.00 0.6777 (5) 0.8076 (2) 0.7854 (4) 0.8875 (1) 0.7958 (3) 

Hockey 9 8.89 0.618 (5) 0.7811 (2) 0.7245 (4) 0.8943 (1) 0.7385 (3) 

Hockey 10 10.00 0.4845 (5) 0.7415 (3) 0.7481 (2) 0.8849 (1) 0.5854 (4) 

Hockey 11 11.43 0.2967 (5) 0.6966 (2) 0.6827 (3) 0.8806 (1) 0.6699 (4) 

Hockey 12 13.33 0.4762 (5) 0.653 (3) 0.6666 (2) 0.8896 (1) 0.5024 (4) 

Hockey 13 16.00 0.1764 (4) 0.2063 (2)  0.1886 (3) 0.7518 (1) 0.1436 (5) 

Hockey 14 20.00 0.0141 (5) 0.1414 (2) 0.1097 (4) 0.5923 (1) 0.1228 (3) 

Hockey 15 26.67 0.0313 (5)  0.1555 (2) 0.1262 (3) 0.5096 (1) 0.0765 (4) 

Hockey 16 40.00 0 (5) 0.1148 (2) 0.0906 (3) 0.5783 (1) 0.0807 (4) 

Avg. G-mean  0.5605 0.6585 0.6480 0.8020 0.6197 

AR  4.00 2.19 2.75 2.50 3.56 

 

Table 4. Reported G-mean of Crowd Dataset. The color value is the best performance in each row. The value of 𝝉𝑭 is 𝟑. 𝟓𝟓, and the critical value of 

𝑭(𝟒, 𝟐𝟒) = 𝟐. 𝟏𝟗. 

Data ID IR Without Sampling ROS SMOTE RUS SMOTE+RUS 

Crowd 1 1.25 0.9121 (1) 0.8988 (2) 0.8856 (3) 0.8226 (4) 0.7850 (5) 

Crowd 2 1.67 0.8603 (3) 0.8751 (1) 0.8738 (2) 0.8579 (4) 0.7736 (5) 

Crowd 3 2.50 0.8254 (4) 0.8292 (3) 0.8306 (2) 0.8661 (1) 0.7569 (5) 

Crowd 4 5.00 0.5943 (5) 0.6954 (3) 0.6999 (2) 0.7889 (1) 0.6783 (4) 

Crowd 5 10.00 0.5526 (5) 0.5894 (3) 0.5827 (4) 0.8099 (1) 0.6032 (2) 

Crowd 6 20.00 0.2631 (5) 0.3446 (3) 0.3642 (2) 0.7193 (1) 0.3155 (4) 

Crowd 7 33.33 0.0204 (5) 0.2039 (4) 0.2213 (2) 0.7014 (1) 0.2128 (3) 

Avg. G-mean  0.5755 0.6338 0.6369 0.7952 0.5893 

AR  4.00 2.71 2.43 1.86 4.00 

 

This study used the Friedman test to statistically analyze 

the performance of the resampling techniques. At a 

significant level of 0.05, the Bonferroni-Dunn post-hoc test 

was implemented to evaluate which techniques differ  

 

 

significantly. The Friedman test of this study follows Demsar 

[25]. The Friedman test is calculated as follows: 

 

𝜏𝜒2 =
12𝑁

𝑀(𝑀+1)
(∑ 𝐴𝑅𝑗

2 −
𝑀(𝑀+1)2

4

𝑀
𝑗=1 )   (2) 
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𝐴𝑅𝑗 =
1

𝑁
∑ 𝑅𝑖

𝑗𝑁
𝑖=1    (3) 

 

Where 𝑁  indicates the number of imbalance datasets, 𝑀 

indicates the number of detections with and without 

resampling techniques; AR denotes the average rank of the 

comparison. After the Friedman test is calculated, its varian 

𝜏𝐹  

 

Table 5. Reported AUC of Hockey Dataset. The color value is the best performance in each row. The value of 𝝉𝑭 is 𝟑. 𝟖𝟖, and the critical value of 

𝑭(𝟒, 𝟔𝟎) = 𝟐. 𝟎𝟒.  

Data ID IR Without Sampling ROS SMOTE RUS SMOTE+RUS 

Hockey 1 1.14 0.907 (1) 0.902 (2) 0.9 (3) 0.8455 (5) 0.89 (4) 

Hockey 2 1.33 0.906 (3) 0.9065 (2) 0.912 (1) 0.8485 (5) 0.8965 (4) 

Hockey 3 1.60 0.9 (2) 0.9035 (1) 0.894 (3) 0.846 (5) 0.89 (4) 

Hockey 4 2.00 0.883 (4) 0.904 (1) 0.903 (2) 0.862 (5) 0.8885 (3) 

Hockey 5 2.67 0.8735 (4) 0.8885 (2) 0.881 (3) 0.86 (5) 0.891 (1) 

Hockey 6 4.00 0.894 (1) 0.8895 (4) 0.89 (2.5) 0.859 (5) 0.89 (2.5) 

Hockey 7 5.33 0.845 (5) 0.8565 (4) 0.8765 (2) 0.8855 (1) 0.8665 (3) 

Hockey 8 8.00 0.754 (5) 0.824 (2) 0.807 (4) 0.89 (1) 0.812 (3) 

Hockey 9 8.89 0.735 (5) 0.803 (2) 0.7615 (4) 0.896 (1) 0.7695 (3) 

Hockey 10 10.00 0.6645 (5) 0.774 (3) 0.776 (2) 0.8855 (1) 0.67 (4) 

Hockey 11 11.43 0.599 (5) 0.7405 (2) 0.7305 (3) 0.8825 (1) 0.7215 (4) 

Hockey 12 13.33 0.661 (4) 0.713 (3) 0.7215 (2) 0.8905 (1) 0.624 (5) 

Hockey 13 16.00 0.049 (5) 0.5215 (2) 0.519 (3) 0.7685 (1) 0.5105 (4) 

Hockey 14 20.00 0.5005 (5) 0.5095 (2) 0.508 (4) 0.6585 (1) 0.5085 (3) 

Hockey 15 26.67 0.5015 (5) 0.5105 (2) 0.508 (3) 0.6235 (1) 0.5045 (4) 

Hockey 16 40.00 0.5 (5) 0.507 (2) 0.5055 (3.5) 0.6575 (1) 0.5055 (3.5) 

Avg. AUC  0.6983 0.7596 0.7558 0.8224 0.7400 

AR  4.00 2.25 2.81 2.50 3.44 

 
Table 6. Reported AUC of Crowd Dataset. The color value is the best performance in each row. The value of 𝝉𝑭 is 𝟒. 𝟕𝟏, and the critical value of 

𝑭(𝟒, 𝟐𝟒) = 𝟐. 𝟏𝟗. 

CROWD IR Without Sampling ROS SMOTE RUS SMOTE+RUS 

Crowd 1 1.25 0.913 (1) 0.9 (2) 0.887 (3) 0.837 (4) 0.8 (5) 

Crowd 2 1.67 0.8652 (4) 0.8783 (1) 0.8761 (2) 0.8674 (3) 0.7891 (5) 

Crowd 3 2.50 0.8348 (4) 0.837 (3) 0.8391 (2) 0.8696 (1) 0.7783 (5) 

Crowd 4 5.00 0.6848 (5) 0.7239 (3) 0.7261 (2) 0.7891 (1) 0.7152 (4) 

Crowd 5 10.00 0.6326 (4) 0.6478 (2) 0.6435 (3) 0.6236 (5) 0.6652 (1) 

Crowd 6 20.00 0.5283 (5) 0.5457 (3) 0.55 (2) 0.7413 (1) 0.537 (4) 

Crowd 7 33.33 0.5 (4.5) 0.5 (4.5) 0.5065 (2) 0.7239 (1) 0.5043 (3) 

Avg. AUC  0.7084 0.7190 0.7183 0.7788 0.6842 

AR  3.93 2.64 2.29 2.29 3.86 

 

can be used to conduct the statistical test, which is computed 

as Equation 4. 

 

 

𝜏𝐹 =
(𝑁−1)𝜏

𝜒2

𝑁(𝑀−1)−𝜏𝜒2
      (4) 
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The value of 𝜏𝐹 is compared against the critical value in 

the F distribution to reject or accept the null hypothesis. If 

the results reject the null hypothesis, the performance of the 

methods is significantly different, and then the Bonferroni-

Dunn post-hoc test can be conducted. 

 

 

 
Fig. 5 Comparison of resampling techniques with the Friedman and Bonferroni-Dunn tests in G-mean. First row for Hockey imbalanced datasets 

(𝑪𝑫 = 𝟏. 𝟑𝟕) and the second row for Crowd imbalanced datasets (𝑪𝑫 = 𝟐. 𝟎𝟖). 

 

 
Fig. 6 Comparison of resampling techniques with the Friedman and Bonferroni-Dunn tests in terms of AUC. First row for Hockey imbalanced 

datasets (𝑪𝑫 = 𝟏. 𝟑𝟕) and the second row for Crowd imbalanced datasets (𝑪𝑫 = 𝟐. 𝟎𝟖). 

 

The Bonferroni-Dunn test reports significant differences 

between the resampling technique and the control algorithm. 

The test is applied when the results reject the null hypothesis, 

which means there is a significant difference between the 

methods. In this study, the control algorithm refers to 

detecting without resampling. The critical difference is 

evaluated as follows:   

𝐶𝐷 = 𝑞𝛼√
𝑀(𝑀+1)

12𝑁
      (5) 

If the difference in AR between the resampling technique and 

the control is larger than the value of 𝐶𝐷, their performance 

difference is significant. 

 

3. Results and Discussion 
This research developed video violence detection with 

created imbalanced datasets using CNN. There are 23 

imbalanced datasets. Tables 3 and 4 show the performance of 

CNN on Hockey and Crowd datasets based on G-mean. The 

large number of IR reduces the performance of imbalanced 

datasets with and without resampling techniques. These 

experiments noticed that CNN without resampling 

techniques produced the best performance on 3 low 

imbalanced datasets (Hockey 1, Hockey 6, and Crowd 1). 

The two datasets have a small number of IR. Resampling 

techniques such as ROS, SMOTE, and SMOTE+RUS 

improve the G-mean only on one or two low imbalanced 

datasets. RUS results in the best G-mean on 16 imbalance 

datasets. The compared resampling techniques are 

significantly different on the high imbalance datasets. Vast 

improvement happens after applying RUS on high imbalance 

datasets. In the experiments, SMOTE is the worst technique. 

In Crowd imbalanced datasets, as shown in Table 4, SMOTE 

improves the performance of video violence detection, but 

the performance is not the best result. 
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The results also show the AUC of the Hockey and crowd 

imbalance video violence datasets with and without 

resampling. In Tables 5 and 6, AUC reported the 

Performance results like G-mean. 
 

Table 7. AUC comparison with the other approaches  

Dataset Related Works AUC 

Hockey ViF [27] 0.8801 

Ours 0.9120 

OViF [5]  0.9193 

DiMOLIF [7] 0.9323 

HOMO [28] 0.9518 

MoWLD [4]  0.9758 

LHOG+LHOF [6]  0.9798 

Crowd HOMO [28]  0.8284 

ViF [27]  0.8804 

DiMOLIF [7] 0.8925 

Ours 0.9130 

OViF [5] 0.9182 

MoWLD [4]  0.9408 

LHOG+LHOF [6] 0.9703 

The AUC of RUS gives the best performance on the most 

imbalanced datasets. Although the IR is high, the 

performances of RUS are reduced insignificantly. 

Based on Table 3, the Friedman test can be computed as 

follows: 

 

𝜏𝜒2 =
12 × 16

5(5 + 1)
((42 + 2.192 + 2.752 + 2.52 + 3.562)

−
5(5 + 1)2

4
) = 14.65 

 

𝜏𝐹 =
(16 − 1)14.65

16(5 − 1) − 14.65
= 4.45 

 

With 5 methods and 16 datasets, the degree of freedom is 

5 − 1 = 4 and (5 − 1) × (16 − 1) = 60. The critical value 

of 𝐹(4,60)  for 𝛼 = 0.1 (90%)  is 2.04  (See F distribution 

table). The value of 𝜏𝐹 is greater than the critical value, so 

there is a performance difference between the resampling 

techniques. It also happens in Tables 4, 5, and 6; the value of 

𝜏𝐹  is higher than the critical value. Therefore, the 

Bonferroni-Dunn test was performed.   

 

Based on the average G-mean and AUC in Table 3-6, 

RUS performs better than other resampling techniques. 

However, Figure 5 and 6 shows that ROS has better AR on 

the Hockey imbalanced datasets in term of G-mean and 

AUC. Moreover, the AR of ROS seems to significantly differ 

from the detection without resampling technique (control 

method). The AR of RUS is higher than ROS in the Hockey 

imbalanced datasets; it may be caused by the fact that the 

RUS ranks are the worst resampling technique at the small 

IR (Hockey 1-6 datasets). 

Based on the experiment results, according to Tables 3, 4, 5, 

and 6, RUS shows the best results in most datasets, followed 

by ROS, SMOTE, and SMOTE+RUS. The results are 

consistent with [26], in which the performance of RUS is 

better than that of ROS and SMOTE. Figures 5 and 6 on 

Crowd imbalanced datasets show that RUS is the only 

resampling technique with significant differences from the 

control algorithm (without resampling technique). The 

reason may be that the small number of Crowd imbalance 

datasets causes the difference AR between resampling 

techniques and the control algorithm to be less than the value 
CD . AUC comparison with the other approaches is reported 

in Table 7. This study compares the results with ViF, OViF, 

DiMOLIF, HOMO, MoWLD, and LHOG+LHOF. In the 

performance view, our approach can achieve better 

performance than ViF [27] on the Hockey dataset and 

DiMOLIF [7], ViF [27], and HOMO [28] on the Crowd 

dataset. Our AUC differs slightly from OViF [5] on 

Hockey and Crowd. Although our approach 

CNN+LSTM has a hard computational issue, this study 

experimented on NVIDIA DGX A100 with no 

computing problem. 

 

4. Conclusion  
This paper evaluated four resampling techniques, ROS, 

SMOTE, RUS, and SMOTE+RUS, on various imbalances. 

The methods are evaluated on two datasets containing 

violence and non-violence video clips, namely Hockey and 

Crowd datasets. RUS achieves the best performance in terms 

of AUC and G-mean, which is better than the other 

resampling techniques. Therefore, RUS is suitable for 

resampling techniques in video violence detection, which 

imbalance could be the issue in the dataset. In the future, the 

research plans to propose a resampling technique based on 

statistic evaluation and evaluate more video violence 

datasets. The research also can evaluate real-time deep 

learning applications, such as research in [29] which 

proposed deep learning to detect the handgun from live video 

and real-time. The use of cross-validation can be proposed to 

evaluate the performances based on each fold. The selection 

of representative samples for training in cross-validation is 

important to avoid underfitting or overfitting.  
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