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Abstract - Weather forecasting is a computer program that offers meteorological information to forecast the atmospheric 

conditions for a particular location. It has been done by using enormous techniques but is still not enough for handling big 

data since the data consists of a more volume of data. Therefore, the techniques do not show the forecasting accuracy perfectly 

and take more prediction time. To improve the prediction accuracy with lesser time, A Fisher Kernelized Target Feature 

Projection-based Implicit Morisita-Horn Indexive Decision Stumped Bootstrap Aggregating Classification (FKTFP-

IMHIDSBAC) technique is introduced for forecasting higher accuracy and less time consumption of marine weather. The 

proposed IUMHIDSBAC technique consists of two main processes: feature selection and classification, which are carried out 

using Fisher Kernelized Target Feature Projection. The feature selection process of the proposed FKTFP-IMHIDSBAC 

technique has reduced the time complexity of the prediction. Then Implicit Morisita-Horn Indexive Decision Stumped 

Bootstrap Aggregating Classifier is applied for weather forecasting with the selected features. The Bootstrap Aggregating 

Classifier is an ensemble technique that uses the weak learners as a Morisita-Horn Indexive Decision Stump for analyzing the 

testing and training data. Then the ensemble classifier combines the weak learner and applies the implicit utilitarian voting 

scheme to find accurate results and minimize the error. The results and discussion demonstrate that the proposed FKTFP-

IMHIDSBAC technique increases the accuracy and minimizes the error as well as target tracking time than the existing 

techniques 

Keywords - Marine weather forecasting, Big data, Fisher Kernelized Target Feature Projection, Implicit Morisita-Horn 

Indexive Decision Stumped Bootstrap Aggregating Classifier. 

1. Introduction  
Weather forecasting could be an advanced method for 

understanding the changes in the future. However, existing 

solutions perpetually get little prediction accuracy for short 

forecasting. The numerical prognostication models are not 

performing well in many circumstances. Machine learning 

approaches neglect has been applied to create higher 

prognostication accuracy fluctuate in several areas. 

 
1.1.  Contribution of Our Work 

To solve the issues found in the literature study, The 

FKTFP-IMHIDSBAC technique is introduced with novelty 

as, 

 

- To improve the weather prediction accuracy rate, an 

FKTFP-IMHIDSBAC method is introduced based on two 

different processes: Fisher Kernel zed Target Feature 

Projection and Implicit Morisita-Horn Indexive Decision 

Stumped Bootstrap Aggregating Classifier.  

- To minimize weather prediction time and space 

complexity, Fisher Kernel zed Target Feature Projection is 

handled to analyze the features and to select significant 

values based on the likelihood measure. The feature having 

maximum likelihood is selected for prediction.  

- Implicit Morisita-Horn Indexive Decision Stumped 

Bootstrap Aggregating Classifiers then applied for weather 

data analysis and prediction. The proposed Classifier initially 

utilizes an Implicit Morisita-Horn Indexive Decision 

Stumped classifier to analyze the weather data with different 

observations and predict weather conditions. The cardinal 

voting is applied to combine the weak classifier performance 

to make strong results by reducing the error.  

- A comprehensive method is organized to measure the 

implementation of the FKTFP-IMHIDSBAC technique and 

all existing models. The results achieved show that our 

FKTFP-IMHIDSBAC technique performs well. 

 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2. Paper Organization 

Next in this paper, Section 2 explains the FKTFP-

IMHIDSBAC technique by separating it into two sections: 

feature selection and classification. Section 3 gives the 

experimental setup. Section 4 provides a detailed analysis of 

the experiment being conducted and the results that were 

achieved. Section 5 provides the conclusion of the current 

work. 

2. Proposal Methodology  
Marine weather forecasting is a promising field that 

predicts climatic situations in a particular placemat. Due to 

the development of big data technology and continuous 

climate changes, accurate weather prediction and the lack of 

handling large data volume is a complex task. Still, the 

weather forecast under various circumstances is inaccurate in 

many conditions. In this research, the model uses the 

FKTFP-IMHIDSBAC technique for accurate forecasting 

using a huge volume of data. Time Series climate data 

analysis in data mining risks accurate prediction. The 

relevant feature selection process minimizes the 

dimensionality; hence it reduces the time and space 

complexity. Based on this, the FKTFP-IMHIDSBAC model 

is developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 architecture of FKTFP-IMHIDSBAC   technique 

 Fig. 1 given above illustrates a block diagram of the 

FKTFP-IMHIDSBACtechnique. The number of time series 

features and records are initially stored from big weather 

data. Next, feature selection is said to be performed using 

Fisher Kernelized Target Feature Projection to identify the 

relevant features and remove the other features. The 

Bootstrap Aggregating Classification technique is applied 

with the relevant features for accurate classification.  These 

two different processes of the FKTFP-IMHIDSBAC 

technique are described in the following sections.  

 

 

 

2.1. Fisher Kernel zed Target Feature Projection 

The proposed FKTFP-IMHIDSBAC technique performs 

the feature selection to minimize the dimensionality of the 

dataset. Massive amounts of time series data are generated 

regularly. This data aims to efficiently analyze the huge 

amounts of data generated to develop an effective early 

forecasting system. Due to the large volume of data, 

dimensionality reduction is a challenging task in the data 

mining community. Therefore this problem is solved by 

introducing a feature selection process. The main goal of 

feature selection is to discover the optimal subset of features. 

As a result, the high computational complexity of weather 

forecasting is minimized.  

Collect time series marine weather 
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Fig. 2 Flow process of Fisher Kernelized 

2.2. Target Feature Projection technique 

Fig. 2 illustrates the flow process of feature selection 

using Fisher Kernel zed Target Feature Projection. The 

Fisher kernel is used to estimate the maximum likelihood of 

the existing features to identify a significant one. 

Let us consider several features 𝐹 = 𝐹1, 𝐹2, … 𝐹𝑛  Are 

collected from the dataset.  The feature matrix is constructed 

as given below, 

𝐹 = [

F11 F12 … F1𝑛

F21 F22 … F2𝑛

⋮ ⋮ ⋮ ⋮
F𝑛1 F𝑛2 … F𝑛𝑛

]                  (2) 

 Where ‘ 𝐹 ’ denotes a feature matrix. A maximum 

likelihood between the two features is estimated as 

follows, 𝐹𝑘 = arg max(𝜑𝐿)                                  (3) 

𝜑𝐿 = log [((2𝜋𝑑2)1/2).
−0.5∗|𝐹𝑖−𝐹𝑗|

𝑑2 ]       (4) 

 Where, 𝐹𝑘 Denotes a Fisher Kernel output, 𝜑𝐿 Indicates 

a likelihood function, 𝑎𝑟𝑔 max indicates an argument of the 

maximum likelihood function, 𝐹𝑖, 𝐹𝑗 Denotes two feature sets 

in the respective columns. 𝑙𝑜𝑔 Indicatesthe logarithm 

function, 𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡  the deviation. The feature with 

maximum likelihood is selected for classification.  The 

relevant (i.e. target) elements are estimated from high-

dimensional space into low-dimensional space. 

 ∅ ∶ 𝑇𝐹  → 𝐹𝑠                                       (5) 

 Where∅  indicates a target projection function to map 

the target features (𝑇𝐹)  from the high dimensional space 

‘into the feature subset. ‘𝐹𝑠 ’ in low dimensional space. This 

process minimizes the time complexity. 

Algorithm 2: Fisher Kernelized Target Feature 

Projection 

Input: Big time-series dataset, number of features𝐹 =
𝐹1, 𝐹2, … 𝐹𝑛 

Output: Select target features  

Begin  

1. Collect the number of features𝐹 = 𝐹1, 𝐹2, … 𝐹𝑛 

2. For each feature𝐹𝑖 

3.    Construct feature matrix  𝐹’,   
4.     Measure the likelihood between the features  

5.   if(𝑎𝑟𝑔 max 𝜑𝐿)then 

6.       Features are said to be a relevant 

7.       project the target features into low-

dimensional space 

8. else 

9.     Remove irrelevant features   

10. End if 

11. End for 

End 
 

Algorithm 2 demonstrates the Fisher Kernelized Target 

Feature Projection. Initially, many elements are gathered 

from the big weather data. After that feature matrix is 

constructed. The forecast matrix launches the high 

resemblance features into two-dimensional spaces. The 

E1 Nino Big 

Dataset 

Collect number of features 𝐹 =

𝐹1, 𝐹2, … , 𝐹𝑛 

Find maximum likelihood between 

the features 

 

 

Find the relevant (target) feature  

 

 Map the target features  

 

Preprocessed data 
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maximum likelihood between the features is measured. The 

feature with a higher likelihood is identified as the target 

feature. The relevant features selected are, Meridional winds, 

Moisture, Airborne Temperature and Ocean Surface 

Temperature. Feature selection in the FKTFP-IMHIDSBAC 

method decreases the forecast time and space complexity.   

2.3. Implicit Morisita-Horn Indexive Decision Stumped 

Bootstrap Aggregating Classifier 

 The second process of the FKTFP-IMHIDSBAC 

technique is to perform the data classification with the 

selected features using Implicit Morisita-Horn Indexive 

Decision Stumped Bootstrap Aggregating Classifier. The 

Bootstrap Aggregating Classifier uses the decision tree 

methods for weak learners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 schematic diagram of the bootstrap aggregating classifier 

Fig. 3 illustrates the schematic diagram of the bootstrap 

aggregating classifier. Let us consider bootstrap aggregating 

classifier uses the training sets {𝑥𝑖 , 𝑧 } where 𝑥𝑖   Denotes a 

bootstrap sample (i.e. input data), and ‘  𝑍 ’ represents 

classification results. The ensemble classifier   constructs an 

empty set of ‘𝑘’ weak learnersR1, R2, R3, … . Rk . Here, the 

ImplicitMorisita-Horn Indexive Decision Stump is used as a 

weak learner to classify the given input data. Here, the 

implicit reflects previous occurrences of the time series data. 

The Decision Stump classifier starts with the root node 

directly connected to the leaf node.  

 
Fig. 4 process of Implicit Morisita-Horn Indexive Decision Stump 

As shown in Fig. 4, Implicit Morisita-Horn Indexive 

Decision Stump obtains the prediction results by analyzing 

the patterns.  The decision tree classifier analyzes the training 

time series data using the Implicit Morisita-Horn Index. 

Morisita-Horn’s index measures the similarity between the 

time series data at different observations.  The similarity is 

measured as follows,  

𝐻 = 2 ∗ [
∑ 𝐷𝑖(𝑡𝑖)∗𝐷𝑗(𝑡𝑗)

∑ 𝐷𝑖(𝑡𝑖)2+∑ 𝐷𝑗(𝑡𝑗)2]      (6) 

Where Morisita-Horn’s similarity index  ‘ 𝐻 ’ is 

measured based on the sum of the product of two training 

time series data at different observations ‘∑ 𝐷𝑖(𝑡𝑖) ∗ 𝐷𝑗(𝑡𝑗)’ 

and  𝐷𝑖(𝑡𝑖)
2signifies a  squared count of data𝐷𝑖, and 𝐷𝑗(𝑡𝑗)2 

denotes a squared score of data ‘ 𝐷𝑗 ’. Morisita-Horn’s 

similarity index ranges between ‘0’ and ‘+1’. The index with 

‘+1’ indicates a complete similarity, whereas 0’ represents no 

similarity between the training time series data. Based on the 

comparison rate, the future weather conditions are correctly 

predicted. 

𝑧 = ∑ 𝑅𝑖
𝑚
𝑖=1                                          (7) 

In (7),  𝑧 symbolizes the ensemble classification 

results, 𝑤𝑖 (𝑥 ) represents the output of the decision tree 

classifier. After combining results, the error is measured 

based on the difference of opinion between observed and 

predicted results.  

𝑒𝐺 = (𝑧 − 𝑧𝑜)2                                   (8) 

Where, 𝑒𝐺  denotes an error, 𝑧symbolizes the predicted 

results,𝑧𝑜 Indicates observed results. According to the error 

value, the classifiers are arranged by applying Cardinal 

voting. The voting scheme is applied to rank. ‘𝜗𝑟’ the weak 

learner results ‘𝑅𝑖’ based on the error value.  

𝜗𝑟 → ∑ 𝑅𝑖
𝑚
𝑖=1                                       (9) 
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Compared to the conventional bootstrap aggregating 

classifier, the proposed bootstrap aggregating classifier 

removes the “worst” classifiers with the largest error rates. 

Then the aggregating classifier finds the high-ranked 

classification results. Then the final output of the bootstrap 

aggregating classification is obtained by finding the majority 

votes of the results.  

𝐹 = 𝑎𝑟𝑔 𝑚𝑎𝑥  [𝑣 (𝑅𝑖)]                   (10) 

In (10),  𝐹  represents the final ensemble classification 

results, and arg max  denotes an argument of a maximum 

function to find the maximum votes of sample’ 𝑣 ’ in the 

weak classifier results ‘𝑅𝑖’ whose decision is known to the 

last classifier. As a result, the bagging classifier improves the 

weather prediction with minimum error.  The algorithmic 

process of the proposed ensemble classification results is 

shown below, 

Algorithm 3: Implicit Morisita-Horn Indexive 

Decision Stumped Bootstrap Aggregating 

Classifier 

Input: Number of training data, i.e. bootstrap samples  

𝐷1, 𝐷2, 𝐷3, … . 𝐷𝑛 ,  

Output: Improve prediction accuracy 

Begin  

1. For each sample. ‘𝐷𝑖’ 

2. Construct ‘k’ decision trees with training 

data𝐷1, 𝐷2, 𝐷3, … . 𝐷𝑛 

3.    Find the Morisita-Horn similarity 

between  data at different observation  

4.      If (𝐻 = +𝟏), then 

5. High similarity  between training data 

6.   else 

7. The low similarity  between training data 

8. end if 

9.       Combine a set of weak learners ∑ 𝑅𝑖
𝑚
𝑖=1  

10.      For each 𝑅𝑖 

11.          Calculate the error. ‘ 𝑒𝐺’ 

12. end for 

13. Rank the𝑅𝑖 based on out of error   

14. Fins𝑅𝑖 with minimum error  

15. Find the output classification results 𝐹 =
𝑎𝑟𝑔 𝑚𝑎𝑥  [𝑣 (𝑅𝑖)] 

16.   Obtain strong prediction results 

End 
 

2.4. Algorithm 3Implicit Morisita-Horn   Indexive Decision 

Stumped Bootstrap Aggregating Classifier 

Algorithm 3 describes the various processing of the 

Implicit Morisita-Horn Indexive Decision Stumped 

Bootstrap Aggregating Classifier. The proposed ensemble 

classifier first constructs weak learners by training weather 

data. Weak learner measures the similarity between the 

training data at different observations using the Implicit 

Morisita-Horn index. The weak learner classifies the time 

series value according to the similarity value. The weak 

classification results are formed to construct strong 

classification results. The training error is calculated for each 

weak learner based on observed results. Then the weak 

learners are ranked according to the error value. The weak 

classifiers with the highest error are removed, and the 

classifiers with a lesser error are found. Finally, the majority 

votes of the classification results are correctly identified as 

prediction results. This process assists in improving weather 

prediction accuracy and minimising the error rate.  

3. Experimental Evaluation  
Experimental evaluations of the FKTFP-IMHIDSBAC 

and existing SFPLN [1] STConvS2S [2] are implemented 

using JAVA with the E1 Nino dataset taken from 

https://www.kaggle.com/uciml/el-nino-dataset. The main 

aim of this dataset is to predict the seasonal-to-inter annual 

climate variations such as air temperature, surface 

temperatures, and Humidity for one to two years. The E1nino 

dataset collected for phase 1 and phase 2 journal is of 

spatiotemporal characteristics including integer and real type 

with an overall instance of 178080 and 12 attributes. 

Moreover, the dataset type ranges from integer (i.e., 

observation, year, month, day, date, latitude), categorical 

(i.e., zonal and meridional winds), and non-integer values, 

respectively.  
 

The dataset consists of 178080 instances and 12 

different attributes. Latitude and longitude indicate that 

buoys shifted to dissimilar locations in the equatorial Pacific 

Ocean. The latitude values are identified by a degree on a 

particular location. The longitude values are collected as five 

degrees off. Zonal and meridional breezes are varied between 

-10 m/s and 10 m/s.  The relative moisture values were 

normally observed from 70% to 90%. The airborne warmth 

and the aquatic surface temperature varied from 20-30 

degrees Celsius.    All the meteorological analyses were 

collected at a similar point in time. 

2.1.  Performance of results analysis 

The evaluation of the proposed FKTFP-IMHIDSBAC 

and existing SFPLN [1] D2CL[2]  are provided in this 

section with the different performance metrics, namely 

prediction accuracy and mean absolute error rate, prediction 

time, and space complexity, with the help of table and two-

dimensional graph. For each subsection, the implementation 

of FKTFP-IMHIDSBAC method is evaluated against the 

other methods.    

Prediction accuracy is the ratio of predicted weather data 

to the total weather using the meteorological weather data. 

The formula for calculating the Prediction accuracy is 

measured as given below,  

𝑃𝑎𝑐𝑐 = ∑
𝐷𝑝𝑎𝑐𝑐

𝐷𝑖
∗ 100𝑛

𝑖=1   (11) 
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Where, 𝑃𝑎𝑐𝑐  denotes a prediction accuracy, ‘ 𝐷𝑝𝑎𝑐𝑐 ’ 

represent weather data accurately predicted, 𝐷𝑖  Indicates 

whether data is involved in the simulation process for marine 

weather forecasting. It is measured in terms of percentage 

(%).  

2.1.1. Mean Absolute Error (MAE) 

It is evaluated to measure the difference between the real 

value and the forecasted value during marine weather 

forecasting, which is formulated as follows, 

𝐸𝑅 = 𝑀𝐴𝐸 =
1

𝑛
∑ (𝐴𝑉𝑖 − 𝑃𝑉𝑖) ∗ 100 𝑛

𝑖=1  (12) 

Where,𝐴𝑉𝑖 Denotes real value and the expected value. ‘𝑃𝑉𝑖’ 

for ‘𝑛’ samples, respectively. 

Prediction time is defined as the amount of time consumed 

by the algorithm for marine weather forecasting using 

meteorological data.  

𝑃𝑡𝑖𝑚𝑒 =  ∑ 𝐷𝑖 ∗ 𝑇𝑖𝑚𝑒 [𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑎𝑡𝑎]𝑛
𝑖=1   (13) 

Where, 𝑃𝑡𝑖𝑚𝑒  Denotes a prediction time, 𝐷𝑖  Weather 

data involved in the simulation process for marine weather 

forecasting the time consumed in weather data prediction.  

2.1.2. Space complexity 

It is calculated as a quantity of memory area consumed 

by the algorithm for weather prediction. The formula for 

calculating the space complexity is, 

𝐶𝑜𝑚𝑆 = ∑ 𝐷𝑖 ∗ 𝑀𝑒𝑚 [𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑎𝑡𝑎]𝑛
𝑖=1        (14) 

 Where, 𝐶𝑜𝑚𝑆  denotes a Space complexity, 𝐷𝑖 

Weather data involved in the simulation process for marine 

weather forecasting, 𝑀𝑒𝑚 denotes a memory for processing 

the single weather data prediction.  

Table 1. prediction accuracy 

 

Number of 

weather data 

Prediction accuracy (%) 

FKTEP-

IMHIDSBAC 

SFPLN D2CL 

10000 98.3 94.5 96.3 

20000 96.25 91.5 93.75 

30000 94.33 89 91.66 

40000 93.75 88 90.75 

50000 92.4 87 89 

60000 90.83 85.83 87.5 

70000 89.28 85.42 86.42 

80000 88.75 82.75 85.62 

 

        Table 1 shows the implementation results of weather 

prediction accuracy with the dataset from 10000 to 100000. 

The performance of different weather calculation accuracy of 

three methods, namely FKTFP-IMHIDSBAC and  SFPLN 

[1] D2CL [2], are reported in table 1. The table values 

demonstrate that the accuracy of the FKTFP-IMHIDSBAC 

model is noticeably enhanced than the existing techniques.  

Let us consider the 10000-time series weather data in the first 

iteration. Therefore, the accuracy of the proposedFKTFP-

IMHIDSBAC technique is observed as98.3%, and the 

prediction accuracy of existing SFPLN [1] D2CL 

[2]is94.5%, and 96.3%, respectively. Correspondingly, ten 

varieties of prediction accuracy results of the proposed 

FKTFP-IMHIDSBAC technique are compared to the 

conventional methods. The overall value of the ten 

comparison results provides evidence that the prediction 

accuracy of the FKTFP-IMHIDSBAC technique is increased 

by 6% when compared to [1] and 3% when compared to [2], 

respectively.  

 
Fig. 1 Comparative analysis of the prediction accuracy 

 Fig. 1 shows the prediction accuracy. As shown in Fig. 

5, the blue colour cone indicates the prediction accuracy of 

the FKTFP-IMHIDSBAC technique. According to the 

visualization, the proposed technique's accuracy is increased. 

This enhancement is achieved by applying the Implicit 

Morisita-Horn Indexive Decision Stumped Bootstrap 

Aggregating Classifier. The ensemble classifier initially 

constructs the empty set of decision stump classifiers to 

analyze the time series data based on different observations. 

The weak classification results are combined and obtain the 

final results of different temperature prediction accuracy in 

the Atlantic Ocean. 
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Table 2. Tabulation of prediction time 
 

Number of 

weather data 

Prediction time (ms) 

FKTFP-

IMHIDSBAC 

SFPLN D2CL 

10000 2200 2700 2500 

20000 2600 3000 2800 

30000 3300 4200 3750 

40000 4000 4800 4400 

50000 4500 5500 5000 

60000 4800 5820 5400 

70000 5250 6160 5600 

80000 6240 7040 6560 

90000 6570 7380 7020 

100000 6800 7500 7200 

 
Fig. 2 Comparative analysis of the prediction time  

Fig. 2 shows the graphical representation of the FKTFP-

IMHIDSBAC technique and SFPLN [1] and D2CL [2]. As 

shown, the performance of prediction time using all the 

methods increases while increasing the number of weather 

data. Prediction time using the proposed FKTFP-

IMHIDSBAC method is comparatively minimized than [1] 

and [2]. This is owing to the geometric projection of the 

feature selection using Fisher Kernelized Target Feature 

Projection. The maximum likelihood between the features is 

measured. The feature with a higher likelihood is identified 

as the target feature for accurate prediction. FKTFP-

IMHIDSBAC technique reduces the prediction time.  Let us 

consider the experimentation of the ‘10000’ number of 

weather data, and the time consumed for predicting weather 

data using the IMHIDSBAC technique is ‘2200𝑚𝑠 ’, and 

‘2700𝑚𝑠’ and 2500𝑚𝑠’ using SFPLN [1] and D2CL [2].  

Since it is assumed that the weather prediction time using the 

FKTFP-IMHIDSBAC method is relatively smaller than [1] 

and [2]. The obtained results compared the performance of 

the recommended method is compared to existing results. 

This helps to minimize the weather prediction time FKTFP-

IMHIDSBAC technique by 15% [1] and 8% [2], 

respectively.  

 
Table 3. Tabulation of space complexity 

 

Number of 

weather data 

Space complexity (MB) 

FKTFP-

IMHIDSBAC 

SFPLN D2CL 

10000 83 110 96 

20000 100 140 120 

30000 114 150 135 

40000 144 176 160 

50000 170 210 190 

60000 192 234 210 

70000 210 252 238 

80000 224 288 256 

90000 261 306 279 

100000 300 340 320 

 
Fig. 3 Comparative analysis of the space complexity  

 Table 3 and Fig. 8 given above illustrate the comparative 

analysis. Fig. 3 illustrates the comparison graphical 

illustration of space complexity using the FKTFP-

IMHIDSBAC technique, SFPLN [1], and D2CL [2].  The 

graphical results infer that the space complexity is 

comparatively smaller using the FKTFP-IMHIDSBAC 

technique compared to existing techniques. The reason for 

this improvement is the application of the feature selection 

process. By applying this dimensionality reduction 

algorithm, the size of the dataset is minimized.  The lesser 

relevant features and the data are used for the prediction 

process rather than the other features in the dataset. This 

process is said to be minimized the space complexity. The 

average of ten results demonstrates that the FKTFP-

IMHIDSBAC technique is minimized by 20% more than the 

SFPLN [1] and 11% compared to D2CL[2].  
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3. Conclusion  
The proposed marine weather forecasting technique, 

FKTFP-IMHIDSBAC, simultaneously analyzes the spatial 

and temporal feature selection and classification. The 

FKTFP-IMHIDSBACtechnique is Fisher Kernelized Target 

Feature Projection to analyze the features and selects the 

target features to minimize the dimensionality of the dataset. 

In the next phase, computationally efficient, robust and 

accurate weather forecasting is performed through Implicit 

Morisita-Horn Indexive Decision Stumped Bootstrap 

Aggregating Classifier. Here, the Implicit Morisita-Horn 

Indexive Decision Stump classifier is used as a weak learner 

applied to the input features by evaluating the selected target 

features and combining their results using cardinal voting.  

The performance of the FKTFP-IMHIDSBACtechnique and 

existing classification techniques is estimated with prediction 

accuracy, mean absolute error rate, and prediction time and 

space complexity. The observed results demonstrate that 

higher weather prediction accuracy is achieved using the 

FKTFP-IMHIDSBACtechnique and minimises the time, 

space complexity and error rate compared to conventional 

classification methods.  
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