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Abstract - This paper addresses the integrated resource selection and operation sequences problem. This production 

scheduling problem is an extension of the flow shop, job shop and flexible job shop problems, its main characteristics being 

the precedence relationship between operations that are part of customer orders, the lot size of orders and the flexibility of the 

machines. A mixed-integer programming model is proposed to solve the problem, simultaneously optimising two objectives. 

This class of problems with more than one objective is known as multi-objective optimization, which consists of obtaining the 

non-dominated solutions that are part of the Pareto frontier. The problem's first objective is to minimize the makespan or the 

shortest time to complete all the orders. The second objective of the problem is to balance the workload of the machines, which 

aims to prevent specific machines from having a low workload and other machines from having an excessive workload. The 

computational results show that the mathematical model could satisfactorily solve the cases or instances. 

Keywords - Integrated resource selection operation sequences problem, Mixed-integer programing model, Non-dominated 

solutions, Pareto frontier. 

1. Introduction 
In production systems, customer orders are associated 

with operations that must be executed within a set of 

workstations. In this environment, aspects such as variable 

demand with tight deadlines, acquisition and stock of raw 

materials, stock of finished products, use of machinery and 

labour, good use of physical space, etc., can be considered. 

In this way, a production program must guarantee the 

shortest delivery time for orders (aimed at meeting customer 

expectations) and achieve the highest use of workstations 

(aimed at maximizing efficiency in the factory). 

 

This paper aims to study the integrated resource 

selection and operation sequences problem (iRS/OS). The 

iRS/OS problem extends the flow shop, job shop, and 

flexible job shop problems. 

 

The flow shop problem within a production system 

consists of programming a set of orders using a set of 

different machines in series, and the machine's processing 

order must be determined. If K is the number of orders, the 

problem is finding a sequence of orders within the K! 

possible sequences that optimize a performance measure, 

generally associated with a time factor [1-3]. 

The job shop problem consists of finding a process 

sequence of a set of operations (which are part of orders), 

using a set of different machines to minimize a particular 

performance measure, with the restriction that each order has 

its manufacturing plan [2, 4, 5]. 

 

The flexible job shop problem is a generalization of the 

job shop problem and the parallel machine problem. In this 

environment, it is considered that there is at least one 

machine capable of performing more than one different 

operation (flexible machine). This problem consists of 

assigning each order operation to a specific machine and 

obtaining a sequence of operations processing, seeking to 

optimize one or more performance measures [6-8]. 

 

The iRS/OS problem is an approximation of a real 

production system. Each order is associated with a set of 

operations in this system, which depend on a precedence 

relationship and its manufacturing plant. Production 

scheduling considers order lot size, transportation times, and 

resource flexibility [9]. 

 

 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The problems described in this section are combinatorial 

optimization problems and are classified as NP-hard [10, 11]. 

2. Literature review 
Several works have been carried out to solve the iRS/OS 

problem. Moon et al. [12] proposed a genetic algorithm to 

minimize the sum of the workload of the machines and the 

total transport time. The chromosome coding only considers 

the information of the sequence of operations, while a 

heuristic based on the minimum processing time was used to 

allocate resources. Similar work, including outsourcing of 

operations, was developed by Lee et al. [13]. In this work, a 

genetic algorithm was applied to minimize the makespan, 

with the restriction of meeting the delivery deadline for each 

order. Yan et al. [14] proposed a genetic algorithm with a 

new mutation operator based on disturbance and local search 

to minimize the makespan while ensuring compliance with 

the delivery deadline of orders. Shao et al. [15] presented a 

model that integrates the production planning and scheduling 

process to improve the performance of a manufacturing 

system and an approach based on a genetic algorithm to 

facilitate the said process. Kafashi [16] studied integrating 

CAD / CAPP / CAM by planning configurations and 

sequence of operations. A genetic algorithm achieves this 

objective, showing satisfactory results in flexible 

manufacturing systems. Al Aquel et al. [17] emphasize the 

need to improve overall efficiency in modern manufacturing 

systems; here, the integration of planning and scheduling 

processes plays an important role. The authors present an 

optimization algorithm based on priorities and dispatch rules 

in this work. Saidi and Zarghami [18] presented a mixed 

integer programming model for a process planning and 

programming problem that minimizes makespan. The 

proposed model obtained better results than a genetic 

algorithm from the literature. Barzanji et al. [19] developed a 

solution algorithm based on Benders decomposition. This 

algorithm divides the original problem into two optimization 

models, a Master problem and a Slave problem. The Master 

problem determines the process plan and machine allocation, 

while the Slave problem optimizes the scheduling and 

sequencing decision. 

 

Regarding works considering more than one objective 

for the iRS/OS problem, the following can be cited: Zhang et 

al. [9] proposed a multi-stage genetic algorithm. Here one 

defines a chromosome represented by two vectors that 

contain both the information of the sequence of operations 

and the allocation of machines, considering the minimization 

of the makespan and the balancing of the workload. Yang 

and Tang [20] developed a multi-objective genetic algorithm 

with an adaptive strategy based on adjusting the crossover 

and mutation rates. Simultaneous minimization of machine 

downtime and late/early penalty was considered. Dayou et al. 

[21] presented a hybrid multi-objective genetic algorithm. 

These authors considered the simultaneous optimization of 

three objectives: the makespan, the balancing of the 

workload and the total transport time between machines. The 

genetic algorithm uses a strategy for classifying non-

dominated solutions by agglomerating them with a local 

search heuristic. 

3. Integrated resource selection and operation 

sequences problem 
3.1. Problem Description 

The iRS/OS problem can be defined as: given a set of K 

orders of lot size qk (k = 1,…, K), and a set of N machines, 

where each order k is composed of a series of Jk operations. 

Consider that each operation oki (k = 1,…, K, i = 1,…, Jk) 

must be processed by some machine Ml (l = 1,…, L) within 

the set of machines Mki capable of processing oki. 

Furthermore, the batch size qk is divided into equal sub-

batches, called the unit load uk, to be processed on the 

machines. It is desired to find the sequence of operations of 

the orders and the allocation of the operations in the 

machines so that the relation of precedence between 

operations is satisfied, the availability of the machines. It is 

optimal for minimising the makespan and balancing 

workload [9]. 

The assumptions considered in the iRS/OS problem are: 

• All orders arrive simultaneously. 

• All machines are available from the start. 

• The machines cannot stop until they finish 

processing the batch size. 

• The transport time between machines is significant. 

• For the same order, processing in one operation 

begins after the unit load of the predecessor 

operation has been completed and shipped. 

• The setup time is included in the processing time. 

 

3.2. Problem Formulation 

The notation used for the indexes, parameters, and 

decision variables to formulate the mathematical model of 

the iRS/OS problem is detailed below: 

3.2.1. Indexes 

 k: Order index, k = 1, 2,…, K 

 i, j: Operation index, i, j = 1, 2,…, J 
 m, n: Machine index, m, n = 1, 2,…, N 

3.2.2. Parameters 

 J: Number of operations 

 N: Number of machines 

 rij: Precedence relationship between operations 

 rij = {
1, if operation i precedes operation j

0, otherwise                                       
 

 Aim: Operation-machine correspondence matrix 

 Aim = {
1, if operation i can be processed by machine m

0, otherwise                                                         
 

 ki: Returns the order index of operation i 

 qi: Returns the order lot size for operation i 

 pim: Processing time of operation i in machine m 
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 uij: Unit load size from operation i to operation j 

 tmn: Transport time between machine m and machine n 

 M: Huge number 

3.2.3. Variables 

 yij = {
1, if operation i is performed immediately before 

operation j                                                       
0, otherwise                                                               

 

xim = {
1, if machine m is selected for operation i

0, otherwise                                               
 

 si: Start time of operation i 

 ci: Completion time of operation i 

 cM: Makespan 

 wm: Machine workload m 

 um, vm: Machine workload deviation m 

 𝑤̅: Average workload of machines 

 wD: Average deviation of machines workload 

 

𝑤𝐷 =
1

𝑁
∑ |𝑤𝑚 − 𝑤̅|

𝑁

𝑚=1

 

The mathematical model of the iRS/OS problem is 

formulated as: 

 

Min 𝑐𝑀                                                                                                                                                    (1) 

Min 𝑤𝐷                                                                                                                                                   (2) 

                          Subject to: 

∑ 𝑥𝑖𝑚

𝑁

𝑚=1

= 1   ∀𝑖                                                                                                                                   (3) 

𝑠𝑖 + 𝑞𝑖 ∑ 𝑝𝑖𝑚𝑥𝑖𝑚

𝑁

𝑚=1

= 𝑐𝑖    ∀𝑖                                                                                                             (4) 

𝑦𝑖𝑗 = 1   ∀𝑖, 𝑗| 𝑟𝑖𝑗 = 1                                                                                                                          (5) 

𝑦𝑖𝑗 + 𝑦𝑗𝑖 = 1    ∀𝑖, 𝑗                                                                                                                              (6) 

 𝑠𝑗 ≥ 𝑠𝑖 + 𝑢𝑖𝑗𝑝𝑖𝑚 + 𝑡𝑚𝑛 − 𝑀(3 − 𝑥𝑖𝑚 − 𝑥𝑗𝑛 − 𝑦𝑖𝑗)     ∀𝑖, 𝑗, 𝑚, 𝑛|𝑘𝑖 = 𝑘𝑗 , 𝑚 ≠ 𝑛                 (7) 

 𝑐𝑗 ≥ 𝑐𝑖 + 𝑡𝑚𝑛 + 𝑢𝑖𝑗𝑝𝑗𝑛 − 𝑀(3 − 𝑥𝑖𝑚 − 𝑥𝑗𝑛 − 𝑦𝑖𝑗)     ∀𝑖, 𝑗, 𝑚, 𝑛| 𝑘𝑖 = 𝑘𝑗 , 𝑚 ≠ 𝑛                 (8) 

 𝑠𝑗 ≥ 𝑐𝑖 − 𝑀(3 − 𝑥𝑖𝑚 − 𝑥𝑗𝑚 − 𝑦𝑖𝑗)     ∀𝑖, 𝑗, 𝑚|𝐴𝑖𝑚 = 1, 𝐴𝑗𝑚 = 1                                              (9) 

𝑐𝑀 ≥ 𝑐𝑖  ∀𝑖                                                                                                                                            (10) 

𝑤𝑚 = ∑ 𝑞𝑖𝑝𝑖𝑚𝑥𝑖𝑚

𝐽

𝑖=1

   ∀𝑚                                                                                                                  (11) 

𝑤̅ =
1

𝑁
∑ 𝑤𝑚

𝑁

𝑚=1

                                                                                                                                    (12) 

𝑢𝑚 − 𝑣𝑚 = 𝑤𝑚 − 𝑤̅  ∀𝑚                                                                                                                  (13) 

𝑤𝐷 =
1

𝑁
∑ (𝑢𝑚 + 𝑣𝑚)

𝑁

𝑚=1

                                                                                                                    (14) 

𝑥𝑖𝑚 ∈ {0,1}   ∀𝑖, 𝑚|𝐴𝑖𝑚 = 1                                                                                                             (15) 

𝑦𝑖𝑗 ∈ {0,1}    ∀𝑖, 𝑗|𝑖 ≠ 𝑗                                                                                                                      (16) 

𝑠𝑖 , 𝑐𝑖 ≥ 0    ∀𝑖                                                                                                                                        (17) 

𝑣𝑚, 𝑢𝑚, 𝑤𝑚 ≥ 0    ∀𝑚                                                                                                                         (18) 

𝑤̅, 𝑐𝑀, 𝑤𝐷 ≥ 0                                                                                                                                       (19) 

 

This mathematical model considers the simultaneous 

optimization of two objectives. The objective function (1) 

represents the depreciation of the makespan, and the 

objective function (2) represents the minimization of the 

average deviation of the workload of all machines. 

Restriction (3) ensures that each operation selects only one 

machine for processing. Constraint (4) determines the 

completion time of each operation. Constraints (5) and (6) 

guarantee the viability of the sequence of operations. 

Constraints (7) and (8) guarantee the transport of an order 

between two different machines. Restriction (9) prevents 

interference between two operations assigned to the same 

machine. The constraint (10) determines the makespan as the 

maximum completion time of all operations. The restriction 

(11) determines the workload of each machine. Constraint 

(12) determines the average workload of all machines. The 

restriction (13) determines the deviation from the average 

workload of each machine. The constraint (14) determines 

the machines' average deviation of the workload. Constraints 

(15) - (19) define the domain of the decision variables. 
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4. Multi-objective optimization 
The general model of a multi-objective optimization 

problem is defined as: 

 

𝑀𝑖𝑛 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑟(𝑥) 

𝑠. 𝑡   𝑥 ∈ 𝑋 

Given a set of variables of dimension n, x = {x1,…, xn}, 

within the domain X, the problem consists of finding a 

solution x* ∈ X that simultaneously minimizes r objective 

functions f(x*) = {f1(x*),…, fr(x*)}. 

 

Next, the concept of dominance and Pareto-optimal 

solutions is defined [22]: 

4.1. Dominance 

A solution x dominates another solution y, if and only if, 

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) for i = 1,…, r and 𝑓𝑗(𝑥) < 𝑓𝑗(𝑦) in at least one 

objective function j. 

4.2. Pareto-optimal solution 

A solution is called Pareto-optimal if it is not dominated 

by any other solution within domain X. A Pareto-optimal 

solution x* cannot be improved concerning any objective 

without harming at least one other objective, that is: 

∄ 𝑦 𝜖 𝑋  such that 𝑓𝑖(𝑦) ≤ 𝑓𝑖(𝑥∗)   for all 𝑖 = 1, … , 𝑟 

and   𝑓𝑗(𝑦) <  𝑓𝑗(𝑥∗)  for some 𝑗 = 1, . . . , 𝑟 

Pareto-optimal or non-dominated solutions in domain X 

are called the Pareto-optimal set, and the image of a Pareto-

optimal set is called the Pareto frontier. 

5. Solution method 
In this paper, a multi-start method is applied, which 

evaluates an adaptation function with several search 

directions to find the Pareto-optimal set of the problem. The 

solution method is described below. 

 

To solve a multi-objective optimization problem, it is 

usual to define an adaptation function f(x) given by the 

weighted sum of all objective functions of the problem [23-

25]: 

𝑀𝑖𝑛 𝑓(𝑥) = 𝛼1𝑓1(𝑥) + 𝛼2𝑓2(𝑥)+. . . +𝛼𝑟𝑓𝑟(𝑥)  
𝑠. 𝑎   𝑥 ∈ 𝑋   

where 𝛼1, … , 𝛼𝑟 are the weights associated with each 

objective function of the problem, which must satisfy the 

following relationships: 

𝛼𝑖  ≥  0   for all 𝑖 = 1, … , 𝑟   
𝛼1 + 𝛼2 + ⋯ + 𝛼𝑟 = 1 

Note that the search direction is fixed and unique if 

constant values are used to solve the problem. This last 

approach is inappropriate for finding all the non-dominated 

solutions to the problem. A journal article in [24] suggests 

generating random weights with several search directions. 

The weights are determined as: 

𝛼𝑖 =
𝑟𝑎𝑛𝑑𝑜𝑚𝑖

𝑟𝑎𝑛𝑑𝑜𝑚1 + ⋯ + 𝑟𝑎𝑛𝑑𝑜𝑚𝑟
      for 𝑖 = 1, … , 𝑟 

where 𝑟𝑎𝑛𝑑𝑜𝑚1, … , 𝑟𝑎𝑛𝑑𝑜𝑚𝑟 are random numbers between 

0 and 1. 

 

In this way, by generating random weights and solving 

the problem several times (replicas), it is possible to obtain 

the candidate solutions to the Pareto-optimal set of the 

problem. 

 

The following section presents the application of the 

solution method to a set of cases or instances proposed in the 

literature. 

6. Computer experiments 
The AMPL software was used to execute the solution 

method described in the previous section. The cases or 

instances of the problem were taken from [12]. Three 

instances have been considered to evaluate the mathematical 

model. All these instances have a unit load equal to 10 and a 

set of 5 machines. 

 

The results obtained by: 

a) The makespan minimization (cM). 

b) Minimizing the average deviation of the workload 

on the machines (wD). 

c) Minimizing the weighted sum of the objectives 

mentioned in (a) and (b). To resolve the multi-

objective problem, 100 replications were considered 

to search for non-dominated solutions. 

6.1. 3 × 12 instance 

This instance considers three orders with different lot 

sizes. These three orders are made up of 12 operations. Table 

1 presents the results obtained for this instance. 

6.2. 5 × 21 instance 

This instance considers five orders with different lot 

sizes. These five orders are made up of 21 operations. Table 

2 presents the obtained results for this instance. 

6.3. 7 × 30 Instance 

This instance considers seven orders with different lot 

sizes. These seven orders are made up of 30 operations. 

Table 3 presents obtained results for this instance. 
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Table 1. Results obtained from the 3 × 12 Instance 

𝒄𝑴 𝒘𝑫 𝜶𝟏𝒄𝑴  + 𝜶𝟐𝒘𝑫 

𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 Frequency 

1046 164.8 1298 104 1046 104 100% 

 
Table 2. Results obtained from the 5 × 21 Instance 

𝒄𝑴 𝒘𝑫 𝜶𝟏𝒄𝑴  + 𝜶𝟐𝒘𝑫 

𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 Frequency 

1490 48 2836 28 1490 44 87% 

    1554 28 13% 

 
Table 3. Results obtained from the 7 × 30 Instance 

𝒄𝑴 𝒘𝑫 𝜶𝟏𝒄𝑴  + 𝜶𝟐𝒘𝑫 

𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 𝒄𝑴 𝒘𝑫 Frequency 

1780 30.4 4596 7.2 1780 15.2 95% 

    1800 13.6 1% 

    1860 9.6 1% 

    1980 7.2 3% 

 

It can be seen in tables 1, 2 and 3 that the mathematical 

model was able to solve the proposed instances satisfactorily. 

As the instances increase in size, many Pareto-optimal 

solutions are obtained. Furthermore, if the depreciation of the 

makespan is just considered, the software does not return the 

lowest value of wD that can be associated with said 

makespan. Similarly, it happens with the minimization of the 

average deviation of the workload. This situation implies that 

the optimal value of an objective function can be associated 

with different values for the rest of the objective functions. 

The latter is since the problem treated is formulated with 

integer variables. 

 

Concerning the frequency observed in tables 1, 2 and 3, 

it can be concluded that the solution method is inclined to 

look for the minimum value of the makespan. In these tables, 

the value of the makespan is high compared to the average 

deviation of the workload; this difference in ranges 

influences the search for non-dominated solutions. In the 

experiments carried out on the three instances, it was found 

that there is no need to normalize the objectives. 

7. Conclusion 
This paper addressed the integrated resource selection 

and operation sequences problem. This problem is 

formulated as a multi-objective optimization problem given 

its scope in production systems. To solve this problem, a 

mixed integer programming model and a solution method 

capable of reaching the Pareto frontier and the Pareto-

optimal or non-dominated solutions that compose it was 

proposed. 

 

 

 

The proposed mathematical model proved to be capable 

of satisfactorily solving the three instances treated in the 

computational experiments in a short time. In Instance 3 × 

12, the non-dominated solution of the problem was found, 

demonstrating the existence of cases where the Pareto 

frontier can be composed of a single solution in which the 

conflicting objectives converge simultaneously. In Instance 5 

× 21, two non-dominated solutions were found. These two 

solutions, in relative terms, present a significant difference 

between their objective values (| cM | = 64; | wD | = 16). Here, 

the decision-maker can assign relative importance or priority 

to one objective over another and implement one of these 

solutions. In Instance 7 × 30, four non-dominated solutions 

were found; the two solutions found at the extremes of the 

Pareto frontier also show a significant difference (| cM | = 

200; | wD | = 8). Here, unlike in the previous instance, having 

several solutions, the most appropriate is to opt for an 

intermediate solution based on the relative importance of 

each objective. Furthermore, in the instances studied, the 

relevance of the multi-objective approach over the mono-

objective approaches is justified since, in the latter, the 

optimal solution is not necessarily part of the Pareto frontier. 

 

The results showed the advantage of applying a multi-

objective approach over a single-objective approach. A 

multi-objective optimization problem is suitable for decision-

making when product managers face conflicting objectives. 

The problem studied seeks to balance two objectives: (1) 

guarantee the shortest delivery time for orders, which is 

aimed at meeting customer expectations; and (2) balancing 

the workload of the machines, which is oriented so that all 

the machines present a utilization rate that is close to each 

other. 
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