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Abstract - In drug discovery, the foremost challenging task is predicting drug-disease correlation using drugs' various 

indications and side effects on specific diseases for proper diagnosis. To combat this issue, Wasserstein Auto-Encoder with 

Convolutional Neural Network (WAE-CNN) model was developed, which uses the side effects constraints along with the drugs 

and patient attributes from the large-scale databases to predict drugs for specific diseases. But, the correlation variability 

between several drug-disease side effect categories is quite unfair. Few categories are more complex to predict than others. 

Therefore, this article presents a Hierarchical Fuzzy Deep CNN (HFDCNN)model to predict and recommend drugs for 

particular diseases considering side effects. First, the database is created by collecting data about patients, diseases, drugs 

and their side effects. Then, such data are fed to the HFDCNN for prediction. In the HFDCNN model, FDCNN is embedded 

into the attribute hierarchy. It segregates simple classes using a coarse classifier, whereas fine classifiers differentiate 

complex classes. In the learning phase, an element-wise pre-learning is supported by global fine-tuning with a multinomial 

logistic loss normalized by a coarse coherence factor. Also, conditional executions of fine classifiers and layer variable 

reduction make this HFDCNN more robust for many disease data associated with the drugs and their side effects. Finally, the 

test results exhibit that the HFDCNN model achieves 95.3%, 97.1% and 98.55% of accuracies in predicting the drugs for 

Chronic Kidney Disease (CKD), diabetes and heart diseases, correspondingly compared to the classical models. 

Keywords - Drug-disease correlation, Side effects, WAE-CNN, Attribute hierarchy, Fuzzy DCNN, Multinomial logistic loss, 

Conditional execution. 

1. Introduction  
Data mining is used to find crucial hidden patterns in 

massive datasets. Machine learning, soft computing, data 

visualization, classifications, and regression approaches are 

used to handle some of the difficulties in data mining. This 

area of study is well-known because it produces superior 

outcomes. However, it is all centered on a few illness 

analysis, diagnosis, or prediction approaches employing 

diverse instruments and methodologies. Few studies have 

been undertaken on illness drug prediction [1-3]. There are 

two sorts of medications used in the medical field: generic 

and brand-name pharmaceuticals. Generic medications are 

comparable to brand-name pharmaceuticals in terms of dose, 

intended use, dosage forms, side effects, safeguards, and 

weight. Alternatively, they have similar pharmacological 

effects as their brand-name counterparts. Patients will be 

given a specific medicine based on the severity of their 

diseases [4-5]. 

 

Over the past decades, many investigations have been 

done using data mining algorithms to predict the appropriate 

drugs for specific diseases [6-7]. This viewpoint suggests the 

drug prediction for diabetes, asthma and chronic heart 

diseases [8]. For this purpose, many drugs and patient 

characteristics were initially retrieved. Then, Hidden Markov 

Models (HMM) were utilized to uncover hidden correlations 

between features. After that, feature statistical values were 

computed and merged. 

 

Moreover, Artificial Neural Network (ANN) was used to 

process the detected characteristics. To predict drugs for 

illnesses with fewer side effects, the ANN employed higher 

weight values assigned to each node in the hidden layers 

during the training stage. The ANN-based classifier suffers 

from excessive computational complexity when faced with 

many features. 

 

Physical traits and illness side effects of patients alter 

throughout time. As a result, attribute values change over 

time. A strategy [9] was carried out for selecting more 

relevant features in optimally split time intervals. The Krill 

Herd (KH) method [10] was used to calculate the temporal 

interval for feature selection. The KH algorithm was 

developed to choose the most discriminative features from a 
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collection of medication and patient parameters such as age, 

weight, height, and so on. This KH algorithm is composed of 

many krill, and their time-dependent location is influenced 

by three key factors: movement driven by the presence of 

other individuals, foraging activity and random diffusion. 

The best attributes from the best time segments were used in 

ANN to predict medications for various disorders. But, the 

KH method performs poorly on huge datasets. 
 

As a result, the deep learning technique with WAE [11] 

was presented to improve prediction accuracy with fine-

tuned drug and patient data. WAE fine-tunes drug attributes 

such as adverse effects and biological, chemical and 

phenotypic qualities. WAE employs AE [12] and Feed-

Forward Neural Network (FFNN) as learning algorithms for 

recreating input features. Also, WAE was learned to encode 

input into a feature space using a random set of weights. The 

attributes were then recreated using a Generative Weights 

(GW) set. First, the GWs are largely derived from the 

encoder's unfolded weights and later modified. 
 

The encoder reduces the dimensionality of the data by 

translating it to a hidden representation, and the decoder 

sequentially transfers the reduced features to the input. 

Because no labelled features were required in the training 

procedure, the method was unsupervised. WAE then 

employed the loss function to increase the stability of the 

regenerated values. Finally, the regenerated attributes were 

sent into CNN, which predicts drugs for various illnesses. 

However, the heterogeneity in correlation across multiple 

drug-disease side effect categories was quite unfair. Also, 

few categories were more difficult to predict than others. 
 

Hence in this manuscript, the HFDCNN model is 

proposed to predict and recommend drugs for particular 

diseases with the consideration of side effects. Initially, the 

database is built by gathering information about patients, 

diseases, treatments and their side effects. The data is then 

sent into the HFDCNN for prediction. FDCNN is 

incorporated into the attribute hierarchy of the HFDCNN 

model. It uses a coarse classifier to separate basic classes, 

while fine classifiers discriminate complicated 

classifications. During the learning phase, global fine-tuning 

with a multinomial logistic loss normalized by a coarse 

coherence factor is used to facilitate element-wise pre-

learning. Further, conditional executions of fine classifiers 

and layer variable reduction make this HFDCNN more 

resilient for many illness data connected with medications 

and side effects. Thus, the appropriate drugs for specific 

diseases without side effects are predicted efficiently. 

 

The remaining sections of this paper are organized as 

follows: Section II presents the studies related to drug-

disease prediction. Section III discusses the HFDCNN 

model, and Section IV illustrates its efficiency for predicting 

drugs. Section V summarizes the entire study and provides 

the future scope. 

2. Literature Survey 
Hunta et al. [13] presented an enzyme and transporter 

protein Integrated Action Crossing (IAC) technique to 

predict non-communicable disease's drug-drug correlation 

depending on pharmacokinetic strategy. In this technique, the 

drug-drug correlation data were collected from the web. 

Then, the novel characteristics were created and applied to 

the different machine learning algorithms to generate the 

prediction model. But this technique was not suitable for 

large-scale databases. 

 

Ibrahim & Thangamani [14] designed a new enhanced 

Singular Value Decomposition (SVD) scheme to reduce the 

dimensionality of drug-disease data. First, an integrated 

model for Hepatocellular Carcinoma (HCC) subordinate was 

developed using the Multi-source Bat Algorithm-based 

Random Walk (MBARW) to differentiate novel drugs and 

diseases. Then, a drug-drug similarity grid and disease-drug 

similarity chain were created based on the multi-source 

random stroll in gene-gene weighted correlation order. 

Moreover, all drugs in the drug-drug similarity chain and 

disease-drug bipartite graph chain were ranked by 

considering the known drugs for HCC. But, it was not 

suitable for the database containing many genes. 

 

Jiang et al. [26] developed a Sigmoid Kernel and CNN 

(SKCNN) to train new attributes efficiently, defining drug-

disease correlations using its hidden layer. Initially, the 

similarity metric of drugs was created by sigmoid drug 

similarity, drug structural similarity and that of disease 

utilizing disease sigmoid similarity and disease semantic 

similarity. According to the fused similarities of drugs and 

diseases, the SKCNN was utilized for training hidden 

interpretations for all drug-disease pairs whose tags were 

predicted by the random forest categorizer. But, the training 

data was comparatively inadequate, influencing the 

prediction accuracy. 

 

Peng et al. [16] developed a learning-based technique 

depending on feature interpretation training and deep 

learning called DTI-CNN to predict drug-target correlations. 

Initially, the Jaccard similarity coefficient extracted the 

related attributes of drugs and proteins from heterogeneous 

networks and restarted the random walk scheme. After that, a 

denoising AE was used to minimize the dimension and detect 

the important attributes. According to these attributes, the 

CNN was created to predict the correlation between drugs 

and proteins. But, it needs more related data and network 

design to contain more sophisticated input networks. 

 

Yang et al. [17] designed a Multiple Kernel-based Dual 

Graph RLS (MKDGRLS) to predict possible drug-disease 

correlations. Initially, the multiple kernels of drugs and 

disease spaces were determined correspondingly. After that, 

multiple kernels and associated Laplacian normalization 

terms were used to build MKDGRLS. Moreover, the 
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objective factor of MKDGRLS was solved by the alternated 

least squares to predict drug-disease correlations. But, it has 

many matrix functions and a high running time. Also, its 

efficiency was poor for small databases. 

 

Jarada et al. [18] developed a Similarity Network Fusion 

and Collective Variational AE (SNF-CVAE) model to 

predict new drug-disease correlations using drug-associated 

similarity data and known drug-disease correlations. This 

model integrated similarity measures, similarity choice, SNF 

and CVAE to perform a non-linear analysis and enhance the 

drug-disease correlation prediction. But, it has a high training 

period due to the huge amount of mixtures of learnable 

hyperparameters. 

 

Ding et al. [19-20] designed a Multi-view Graph 

Regularized Link Propagation (MvGRLP) framework to 

predict novel drug-target correlations. This framework 

merged complementary data among various views in drug 

and target space. Also, an iterative scheme was applied to 

resolve the objective function. But, it needs to define 

structural correlations among entities to increase the 

prediction efficiency. 

 

A.G.Hari Narayanan[21] recognises the signs and 

symptoms of various skin diseases. After a large no of 

Classifiers, the voting classifier makes predictions about the 

image’s content. 

 

Sunil Pandey[22] comprises CNN of stacks of different 

layers which perform feature engineering and training or 

classification computations on the inputs. The design of 

CNN algorithms for high-performance distributed and 

parallel computing architectures assume significance. 

 

Khaled Mohamad Alumstafa[23] K-nearest neighbor, 

Decision tree and SVM classifiers show the performance of 

the selected classification to classify the best or predict the 

heart disease cases. 

 

C K Gomathy[24] Naïve Bayes Supervised Machine 

Learning algorithm predicts the disease. The probability of 

the disease is calculated using the Naïve Bayes algorithm. 

Rayan Alanazi[25] Convolutional Neural Network(CNN) 

is for the prediction of the disease, and K-nearest neighbor 

(KNN) is used for calculating the distance to find the match 

that is generated in the data set for the prediction of diseases. 

 

3. Proposed Methodology 
This part briefly describes the HFDCNN model for drug 

side-effects prediction. First, several data regarding patients 

and drugs are gathered from the different websites, which 

involves many attributes like drug name, ingredients, size, 

shape, capsule shell, weight, surface region, dissolution 

period, predisposition of medema, side effect, drug mode 

(i.e., tablet, injection, capsules), drug price, drug category, 

dosage, brand name, drug feedback, patient age, sex, weight 

and height. Such details are gathered at multiple time slots, 

e.g., every week, 15 days, or month. Then, those attributes 

are fed to the HFDCNN as input to predict drugs and their 

side effects for certain diseases. The training and testing 

process of HFDCNN for drug prediction is briefly explained 

below. 

 

The notations considered in this article are the 

following: a database comprises {𝑥𝑖 , 𝑦𝑖}, where 𝑥𝑖 refers to 

the input data and 𝑦𝑖 refers to the label. There are 𝐶fine 

attributes of data in the database {𝑆𝑗
𝑓
}
𝑗=1

𝐶
. An attribute 

hierarchy is learned with 𝐾 coarse attributes (disease-related 

characteristics) {𝑆𝑘
𝑐}𝑘=1

𝐾 . 

3.1. HFDCNN Structure 

The HFDCNN is developed to replicate the architecture 

of attribute hierarchy, where fine attributes are split into 

coarse attributes. It executes end-to-end classification as 

depicted in Fig. 1. It has 4 major units: shared layers, a single 

coarse attribute layer𝐵, multiple fine attribute layers {𝐹𝑘}𝑘=1
𝐾  

and a single probabilistic averaging unit. 

 

The shared layers are utilized to obtain the most relevant 

attributes. The configuration of shared layers is assigned to 

be similar to the prior layers in the fundamental block net. 
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Fig. 1 Structure of HFDCNN for Drug Prediction based on 2-stage Attribute Hierarchy 

The top of the structure in Figure 1 has independent 

layers of coarse attribute layer𝐵, which reutilizes the setting 

of rear layers from the fundamental block FDCNN and 

creates a fine prediction {𝐵𝑖𝑗
𝑓
}
𝑗=1

𝐶
 for a data 𝑥𝑖. To generate a 

prediction {𝐵𝑖𝑘}𝑘=1
𝐾  over coarse attributes, a fine-to-coarse 

aggregation layer is added, which combines fine predictions 

into coarse ones while mapping from fine attributes to coarse 

ones𝑃: [1, 𝐶] ↦ [1, 𝐾] is provided. The coarse attribute 

probabilities are useful for 2 reasons: (i) they are utilized as a 

weight to merge the predictions created by fine attribute 

layers, and (ii) if threshold, then they allow conditional 

executions of fine attribute layers whose related coarse 

probabilities are adequately high. 

 

The bottom of the structure in Figure 1 has independent 

layers of a group of fine categorizers {𝐹𝑘}𝑘=1
𝐾 , all of which 

create fine attribute predictions. Because all fine layers 

succeed only in categorizing a tiny group of classes, they 

generate a fine prediction over a limited group of classes. 

The probabilities of another fine attribute missing in the 

limited group are perfectly assigned to 0. The layer settings 

are essentially replicated from the fundamental block 

FDCNN, except that the number of filters in the last 

categorization layer is assigned to be the number of the 

limited group rather than the entire classes. 

 

Layers in both the coarse and fine attribute layers are 

shared. The reasons for this are 3-fold: (1). It is demonstrated 

that prior layers in FDCNN respond to class-agnostic 

attributes like patient’s age, gender, etc., whereas rear layers 

capture more class-specific attributes like drug size, drug 

shape, disease name, side effects, etc. Because patient 

attributes are relevant for coarse and fine prediction 

processes, the prior layers are allowed to share with the 

coarse and fine layers;(2). It minimizes both the overall 

floating-point functions and the memory usage of system 

implementation; and (3). It minimizes the quantity of 

HFDCNN variables, which is essential for effective learning 

of HFDCNN. 

 

The right side of the structure in Figure 1 is the 

probabilistic averaging layer, which gets both the fine and 

coarse attribute predictions, as well as generates a weighted 

mean as the final prediction: 

𝑝(𝑥𝑖) =
∑ 𝐵𝑖𝑘𝑝𝑘(𝑥𝑖)
𝐾
𝑘=1

∑ 𝐵𝑖𝑘
𝐾
𝑘=1

        (1) 

 

In Eq (1), 𝐵𝑖𝑘 refers to the probability of coarse 

attribute𝑘 for the data 𝑥𝑖 predicted by 𝐵 and 𝑝𝑘(𝑥𝑖) refers to 

the fine attribute prediction created by 𝐹𝑘. It emphasized that 

coarse and fine attribute layers reutilize the layer settings 

from the fundamental block HFDCNN. This adaptable 

structure enables the selection of the appropriate FDCNN 

structure as the fundamental block according to the 

processes. 

 

3.2. Attribute hierarchy Training 

The main objective of creating an attribute hierarchy is 

to aggregate similar fine attributes into similar coarse 

attributes, allowing a specific fine attribute categorizer to be 

learned. A top-down scheme is applied to train the hierarchy 

from the learning data. 

 

A held-out data group is randomly sampled with 

balanced class distribution from the learning data. The 

remaining learning data is utilized for training a fundamental 

block net. A confusion matrix 𝐹 is obtained by analyzing the 

net on the held-out group. A distance matrix 𝐷 is determined 

as 𝐷 = 1 − 𝐹, and its diagonal values are assigned 0. Then, 

𝐷 is converted as𝐷 = 0.5 ∗ (𝐷 + 𝐷𝑇). The input 𝐷𝑖𝑗 

evaluates how simple it is to distinguish classes 𝑖 and 𝑗. 
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Spectral grouping is applied on 𝐷 to group fine attributes 

into 𝐾coarse attributes. The outcome is a 2-stage attribute 

hierarchy defining a multiple-to-single mapping 𝑃𝑑: [1, 𝐶] ↦
[1, 𝐾] from fine to coarse attributes. In this study, the coarse 

attributes are time-dependent. 

3.2.1. Overlapping coarse attributes 

When there are time-dependent coarse attributes, the 

entire categorization strongly relies on the coarse attribute 

categorizer. When the data is fed to an imperfect fine 

attribute categorizer, the error cannot be resolved since the 

probability of the labelled data is automatically assigned to 0. 

By eliminating the correlation variability limit among coarse 

attributes, the HFDCNN can become less reliant on the 

coarse attribute categorizer. 

So, additional fine attributes are added to the coarse 

attributes. For a specific fine categorizer 𝐹𝑘, it is preferred to 

include such fine attributes {𝑗}. That is expected to be 

miscategorized into the coarse attribute𝑘. So, the likelihood 

𝑢𝑘(𝑗) is estimated that the data in the fine attribute𝑗 is 

miscategorized into a coarse attribute𝑘 on the held-out group 

as: 

𝑢𝑘(𝑗) =
1

|𝑆
𝑗
𝑓
|
∑ 𝐵𝑖𝑘

𝑑
𝑖∈𝑆

𝑗
𝑓         (2) 

In Eq. (2), 𝐵𝑖𝑘
𝑑  denotes the coarse attribute probability, 

which is attained by combining fine attribute probabilities 

{𝐵𝑖𝑗
𝑓
}
𝑗
 based on the mapping 𝑃𝑑: 𝐵𝑖𝑘

𝑑 = ∑ 𝐵𝑖𝑗
𝑓

𝑗|𝑃𝑑(𝑗)=𝑘 . The 

likelihood 𝑢𝑘(𝑗) is thresholded by the parametric factor 𝑢𝑡 =
(𝛾𝐾)−1 and the limited group 𝑆𝑘

𝑐is included in each fine 

attribute{𝑗} such that 𝑢𝑘(𝑗) ≥ 𝑢𝑡. Observe that all branching 

layer provides a complete group prediction if 𝑢𝑡 = 0 and a 

time-dependent group prediction if 𝑢𝑡 = 1. With overlapping 

coarse attributes, the attribute hierarchy mapping 𝑃𝑑 is 

expanded to be a multiple-to-multiple mapping 𝑃𝑜and so the 

coarse attribute predictions are modified as 𝐵𝑖𝑘
𝑜 =

∑ 𝐵𝑖𝑗𝑗|𝑘∈𝑃𝑜(𝑗) . Observe the total of {𝐵𝑖𝑘
𝑜 }𝑘=1

𝐾  exceeds 1, and 

so 𝐿1 regularization is performed. 

3.3. HFDCNN Learning 

The quantity of variables in rear layers rises relative to 

the number of coarse attributes if fine attribute layers are 

included in the HFDCNN. It raises the learning difficulty and 

the possibility of over-fitting for an equal quantity of 

learning data. However, the learning data (attributes) in the 

stochastic gradient descent mini-batch are probabilistically 

given to distinct fine attribute layers. It needs a greater mini-

batch to guarantee that a huge amount of learning data 

calculates variable gradients in the fine attribute layers. A 

huge learning mini-batch raises the learning memory usage 

and reduces the learning speed. As a result, the HFDCNN 

learning is decomposed into many stages rather than learning 

the entire HFDCNN from scratch, as summarized in 

Algorithm 1. 

Algorithm 1: HFDCNN learning 

Function HFDCNN LEARNING 

 Pre-learn HFDCNN; 

  Initialize coarse attribute layer; 

  Pre-learn fine attribute layers; 

 Adjust the entire HFDCNN 

End Function 

 

3.3.1. Pre-learning HFDCNN  

Both the coarse and fine attribute layers are pre-learned 

simultaneously. 

 

Initialization of the coarse attribute layer 

Initially, a fundamental block of HFDCNN (𝐹𝑝) is pre-

learned by utilizing the learning data. Because both the prior 

and rear layers in the coarse attribute layer are similar to the 

layers in the fundamental block HFDCNN, the weights of 𝐹𝑝 

are replicated into the coarse attribute layer for the 

initialization task. 

 

Pre-learning the rear layers of fine attribute layers 

Fine attribute layers {𝐹𝑘}𝑘 are separately pre-learned. 

All 𝐹𝑘 must concentrate on categorizing fine attributes 

within the coarse attribute𝑆𝑘
𝑐. So, the pre-learning of all 𝐹𝑘 

utilizes only data {𝑥𝑖|𝑖 ∈ 𝑆𝑘
𝑐} from the coarse attribute𝑆𝑘

𝑐. The 

shared prior layers are previously initialized and kept 

constant in this phase. For all 𝐹𝑘, each rear layer is 

initialized, excluding the final convolutional layer by 

replicating the trained variables from the pre-learned net 𝐹𝑝. 

 

Fine-tuning HFDCNN  

Once both coarse and fine attribute layers are efficiently 

pre-learned, the entire HFDCNN is adjusted. After learning 

the attribute hierarchy and the related mapping 𝑃𝑜Every fine 

attribute layer concentrates on categorizing a predetermined 

subgroup of fine attributes. 

 

During fine-tuning, the ambiguity of coarse attribute 

predicted by the coarse attribute layer must be kept reliable 

with those related to the fine attribute layers. Therefore, a 

coarse attribute reliability term is added to normalize the 

classical multinomial logistic error. 

 

Coarse attribute reliability 

The trained fine-to-coarse attribute mapping 𝑃: [1, 𝐶] ↦
[1, 𝐾] gives a method to characterize the desired coarse 

attribute distribution {𝑡𝑘}. Particularly, 𝑡𝑘 is assigned to be 

the percentage of each learning data within the coarse 

attribute𝑆𝑘
𝑐 under the hypothesis, the distribution over coarse 

attributes across the learning set is nearby within the learning 

mini-batch. 

𝑡𝑘 =
∑ |𝑆𝑗|𝑗|𝑘∈𝑃(𝑗)

∑ ∑ |𝑆𝑗|𝑗|𝑘′∈𝑃(𝑗)
𝐾
𝑘′=1

, ∀𝑘 ∈ [1, 𝐾]     (3) 
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The final error function utilized for adjusting the 

HFDCNN is defined as: 

𝐸 = −
1

𝑛
∑ log(𝑝𝑦𝑖)
𝑛
𝑖=1 +

𝜆

2
∑ (𝑡𝑘 −

1

𝑛
∑ 𝐵𝑖𝑘
𝑛
𝑖=1 )

2
𝐾
𝑘=1   (4) 

In Eq. (4), 𝑛 denotes the size of the learning mini-batch, 𝜆 

denotes the normalization constant and is assigned to 20. 

3.4. HFDCNN Testing 

Because fine attribute layers are added to the HFDCNN, 

the number of variables, memory usage and execution period 

in rear layers, each scale linearly in the number of coarse 

attributes. To guarantee HFDCNN is adaptable for large-

scale drug-disease prediction, conditional execution and 

layer variable reduction methods are developed. 

 

3.4.1. Conditional execution 

During testing, for considered data, it is not essential to 

analyze each fine attribute categorizer because most of them 

contain irrelevant weights 𝐵𝑖𝑘 as in Eq. (1). Their 

contributions to the final prediction are omitted. Conditional 

executions of the top-weighted fine layers will speed up the 

HFDCNN categorization. So, 𝐵𝑖𝑘 is thresholded by a 

parametric factor 𝐵𝑡 = (𝛽𝐾)−1 and 𝐵𝑖𝑘 is reassigned to 0 if 

𝐵𝑖𝑘 < 𝐵𝑡. Such fine attribute categorizers with 𝐵𝑖𝑘 = 0 are 

not analyzed. 

 

3.4.2. Variable reduction 

In HFDCNN, the number of variables in rear layers of 

fine attribute categorizers raises linearly in the number of 

coarse attributes. So, the layer variables are reduced during 

the test phase to minimize memory usage. 

 

Particularly, the product quantization scheme [20] is 

adopted to reduce the variable matrix 𝑊 ∈ 𝑅𝑚×𝑛 by initially 

splitting it horizontally into sections of size 𝑠, i.e. 𝑊 =

[𝑊1, … ,𝑊(𝑛 𝑠⁄ )]. After that, k-means clustering is utilized to 

group the rows in 𝑊𝑖, ∀𝑖 ∈ [1, (𝑛 𝑠⁄ )]. By only accumulating 

the closest group indices in an 8-bit integer matrix 𝐼 ∈

𝑅𝑚×(𝑛 𝑠⁄ ) and group midpoints in a single-accuracy floating 

number matrix𝐶 ∈ 𝑅𝑘×𝑛, a reduction factor 
32𝑚𝑛

32𝑘𝑛+8𝑚𝑛
𝑠⁄
 is 

achieved. The hyperparameters for variable reduction are 
(𝑠, 𝑘). 

 

Thus, this HFDCNN is efficiently trained and tested for 

predicting the drugs for a specific disease without any side 

effects. 

4. Experimental Analysis 
In this section, the efficiency of the HFDCNN is 

analyzed by implementing it in Java 8 software tools. For 

this experiment, different details of patients and drugs are 

gathered from various websites, hospitals, etc. Also, the 

sample dataset containing the brand-name and generic drugs 

utilized for CKD, diabetes and heart diseases are collected 

according to their drug name, class, dosage, side effects and 

the ingredients present in the drugs. The efficiency of the 

HFDCNN is compared with the different existing models: 

KH-ANN [10], WAE-CNN [11], SKCNN [26], DTI-CNN 

[16], MKDGRLS [17], SNF-CVAE [18] and MvGRLP [19] 

regarding the following metrics: 

 

• Accuracy: It is the fraction of accurate prediction of 

drugs for specific diseases over the total number of 

data tested. 

•  

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

 

TP (True Positive) is a result of the given positive 

classes being categorized as themselves. TN (True 

Negative) results in the negative classes being 

categorized as themselves. FP (False Positive) is a 

result of inexactly classifying positive classes as 

negative. FN (False Negative) results in the negative 

classes being inexactly classified as positive. 

• Precision is the ratio of predicted drugs and diseases 

at TP and FP rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (6) 

 

• Recall: It is the ratio of exactly predicted drugs and 

diseases at TP and FN rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (7) 

 

Table 1 provides the accuracy values for the existing and 

proposed drug prediction models executed on various disease 

databases. 
 

Table 1. Comparison of Accuracy 

Disease 

categories 

MvGRLP MKDGRLS KH-ANN SKCNN DTI-CNN SNF-CVAE WAE-CNN HFDCNN 

Accuracy (%) 

CKD 83.3 85.9 87 89 91.6 92.8 94 95.3 

Diabetes 87.7 90.5 92 92.6 93.8 95 96 97.1 

Heart diseases 89.5 91 93 93.8 94.7 95.6 97 98.5 
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Fig. 2 Accuracy vs Different Disease Categories 

Figure 2 depicts the graphical representation of accuracy 

achieved for various drug prediction models using the 

different drugs and patient data related to CKD, diabetes and 

heart diseases. It addresses that the HFDCNN attains the 

maximum accuracy to predict appropriate drugs for patients 

and diagnose the diseases properly with less or no side 

effects. 

 

For the CKD, the accuracy of predicting drugs using 

HFDCNN is 14.41% greater than the MvGRLP, 10.94% 

greater than the MKDGRLS, 9.54% greater than the KH-

ANN, 7.08% greater than the SKCNN, 4.04% greater than 

the DTI-CNN, 2.69% greater than the SNF-CVAE and 

1.38% greater than the WAE-CNN. For diabetes disease, the 

accuracy of predicting drugs by the HFDCNN is 10.72% 

better than the MvGRLP, 7.29% better than the MKDGRLS, 

5.54% better than the KH-ANN, 4.86% better than the 

SKCNN, 3.52% better than the DTI-CNN, 2.21% better than 

the SNF-CVAE and 1.15% better than the WAE-CNN. For 

heart diseases, the accuracy of predicting drugs using 

HFDCNN is 10.06% larger than the MvGRLP, 8.24% larger 

than the MKDGRLS, 5.91% larger than the KH-ANN, 

5.01% larger than the SKCNN, 4.01% larger than the DTI-

CNN, 3.03% larger than the SNF-CVAE and 1.55% larger 

than the WAE-CNN. It is because of training the coarse and 

fine attributes hierarchically and independently. 

Table 2 provides the precision values for the different 

existing and proposed drug prediction models executed on 

various disease databases. 

Table 2. Comparison of Precision 

Disease 

categories 

MvGRLP MKDGRLS KH-ANN SKCNN DTI-CNN SNF-CVAE WAE-CNN HFDCNN 

Precision 

CKD 0.810 0.832 0.854 0.877 0.906 0.911 0.924 0.945 

Diabetes 0.850 0.869 0.887 0.900 0.915 0.930 0.941 0.959 

Heart diseases 0.847 0.864 0.875 0.896 0.933 0.948 0.963 0.981 

 

 
Fig. 3 Precision vs Different Disease Categories 

Figure 3 portrays the graphical representation of 

precision values achieved for various drug prediction models 

using the different drugs and patients’ data related to CKD, 

diabetes and heart diseases. It observes that the HFDCNN 

attains the maximum precision to predict suitable drugs for  

 

 

patients and diagnose the diseases accurately with less or no 

side effects. For the CKD, the precision of predicting drugs 

using HFDCNN is 16.67% greater than the MvGRLP, 

13.58% greater than the MKDGRLS, 10.66% greater than 

the KH-ANN, 7.75% greater than the SKCNN, 4.3% greater 

than the DTI-CNN, 3.73% greater than the SNF-CVAE and 

2.27% greater than the WAE-CNN. For diabetes disease, the 

precision of predicting drugs by the HFDCNN is 12.82% 

better than the MvGRLP, 10.36% better than the 

MKDGRLS, 8.12% better than the KH-ANN, 6.56% better 

than the SKCNN, 4.81% better than the DTI-CNN, 3.12% 

better than the SNF-CVAE and 1.91% better than the WAE-

CNN. For heart diseases, the precision of predicting drugs 

using HFDCNN is 15.82% larger than the MvGRLP, 13.54% 

larger than the MKDGRLS, 12.11% larger than the KH-

ANN, 9.49% larger than the SKCNN, 5.14% larger than the 

DTI-CNN, 3.48% larger than the SNF-CVAE and 1.87% 

larger than the WAE-CNN. 

 

Table 3 provides the recall values for the different 

existing and proposed drug prediction models executed on 

various disease databases. 
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Table 3. Comparison of Recall 

Disease 

categories 

MvGRLP MKDGRLS KH-ANN SKCNN DTI-CNN SNF-CVAE WAE-CNN HFDCNN 

Recall 

CKD 0.809 0.82 0.84 0.87 0.918 0.926 0.94 0.953 

Diabetes 0.857 0.868 0.89 0.91 0.925 0.94 0.95 0.961 

Heart diseases 0.84 0.855 0.87 0.905 0.95 0.968 0.98 0.986 

 

 
Fig. 4 Recall vs Different Disease Categories 

Fig. 4 illustrates the graphical representation of recall 

values achieved for various drug prediction models using the 

different drugs and patient data related to CKD, diabetes and 

heart diseases. It observes that the HFDCNN attains the 

maximum recall to predict suitable drugs for patients and 

diagnose the diseases accurately with less or no side effects. 

For the CKD, the recall of predicting drugs using HFDCNN 

is 17.8% greater than the MvGRLP, 16.22% greater than the 

MKDGRLS, 13.45% greater than the KH-ANN, 9.54% 

greater than the SKCNN, 3.81% greater than the DTI-CNN, 

2.92% greater than the SNF-CVAE and 1.38% greater than 

the WAE-CNN. 

 

For diabetes disease, the recall of predicting drugs by the 

HFDCNN is 12.14% better than the MvGRLP, 10.71% better  

 

than the MKDGRLS, 7.98% better than the KH-ANN, 5.6% 

better than the SKCNN, 3.89% better than the DTI-CNN, 

2.23% better than the SNF-CVAE and 1.16% better than the 

WAE-CNN. For heart diseases, the recall of predicting drugs 

using HFDCNN is 17.38% larger than the MvGRLP, 15.32% 

larger than the MKDGRLS, 13.33% larger than the KH-

ANN, 8.95% larger than the SKCNN, 3.79% larger than the 

DTI-CNN, 1.86% larger than the SNF-CVAE and 0.61% 

larger than the WAE-CNN. 

5. Conclusion 
 This study developed the HFDCNN model for drug 

prediction and recommendation for specified illnesses. 

Primarily, the database was prepared by gathering 

information regarding patients, diseases, drugs and their side 

effects. Afterward, the created database was provided to the 

HFDCNN for the prediction process. This HFDCNN model 

was designed by embedding the FDCNN into the attribute 

hierarchy, which splits uncomplicated classes by the coarse 

categorizer and complicated classes by the fine categorizers. 

During the HFDCNN learning, an element-wise pre-learning 

was adopted based on the global adjustment with a 

multinomial logistic error normalized through the coarse 

coherence factor. 

 Additionally, the HFDCNN was enhanced by the 

conditional executions of fine categorizers and the reduction 

of layer variables for huge databases. By learning the 

HFDCNN, the appropriate drugs for certain diseases were 

predicted according to the patient’s characteristics. At last, 

the test outcomes proved that the HFDCNN model has 

95.3%, 97.1% and 98.5% accuracy for predicting the drugs 

for CKD, diabetes and heart diseases, respectively, compared 

to the other existing models.  

References  
[1] Agatonovic- Kustrin S, & Morton D, “Data Mining in Drug Discovery and Design,” In Artificial Neural Network for Drug Design, 

Delivery and Disposition, Academic Press, pp. 181-193, 2016. 

[2] Chittora, A., &Mekala A. M, “Discovery of Drug and Medicine Using Data Mining Techniques,” Research Journal of Pharmacy and 

Technology, vol. 10, no. 12, pp. 4147-4151, 2017. 

[3] Yosipof, A., Guedes, R. C., & García-Sosa A. T, "Data Mining and Machine Learning Models for Predicting Drug Likeness and Their 

Disease or Organ Category,” Frontiers in Chemistry, vol. 6, pp. 1-11, 2018. 

[4] Dunne, S., Shannon, B., Dunne, C., & Cullen W, “A Review of the Differences and Similarities Between Generic Drugs and their 

Originator Counterparts, Including Economic Benefits Associated with Usage of Generic Medicines, using Ireland as a Case 

Study,” BMC Pharmacology and Toxicology, vol. 14, no. 1, pp. 1-19, 2013. 

[5] Tamargo, J., Le Heuzey, J. Y., & Mabo P, “Narrow Therapeutic Index Drugs: A Clinical Pharmacological Consideration to 

Flecainide,” European Journal of Clinical Pharmacology, vol. 71, no. 5, pp. 549-567, 2015. 

0.7

0.75

0.8

0.85

0.9

0.95

1

CKD Diabetes Heart
diseases

R
e

ca
ll

Disease Categories

Comparison of Recall

MvGRLP

MKDGRLS

KH-ANN

SKCNN

DTI-CNN

SNF-CVAE

WAE-CNN

HFDCNN



Nithya B & Anitha G / IJETT, 70(8), 140-148, 2022 

 

148 

[6] Jiménez, R., Anupol, J., Cajal, B., & Gervilla E, “Data Mining Techniques for Drug Use Research,” Addictive Behaviors Reports, vol. 

8, no. 128-135, 2018. 

[7] Bagherian, M., Sabeti, E., Wang, K., Sartor, M. A., Nikolovska-Coleska, Z., & Najarian  K, “Machine Learning Approaches and 

Databases for Prediction of Drug–Target Interaction: A Survey Paper,” Briefings in Bioinformatics, vol. 22, no. 1, pp. 247-269, 2021. 

[8] Nithya, B., & Anitha G, “Prediction of Drugs for Diseases with Side Effect and Patient Physical Attributes”. 

[9] Nithya, B., & Anitha G, “The Optimal Time Slot Selection and Feature Selection for the Prediction of Drugs for 

Diseases,” International Journal of Nonlinear Analysis and Applications, vol. 12, pp. 2137-2151, 2021. 

[10] Gandomi, A. H., & Alavi A. H, “Krill Herd: A New Bio-Inspired Optimization Algorithm,” Communications in Nonlinear Science and 

Numerical Simulation, vol. 17, no. 12, pp. 4831-4845, 2012. 

[11] Mondal, A. K., Asnani, H., Singla, P., & Prathosh A. P, “FlexAE: Flexibly Learning Latent Priors for Wasserstein Auto-Encoders,” 

In Uncertainty in Artificial Intelligence, pp. 525-535, 2021. 

[12] Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula U, “Autoencoder-Based Feature Learning for Cyber Security 

Applications,” In IEEE International Joint Conference on Neural Networks, pp. 3854-3861, 2017. 

[13] Hunta, S., Yooyativong, T., & Aunsri N, “A Novel Integrated Action Crossing Method for Drug-Drug Interaction Prediction in Non-

Communicable Diseases,” Computer Methods and Programs in Biomedicine, vol. 163, pp. 183-193, 2018. 

[14] Ibrahim, S. J. A., & Thangamani M, “Enhanced Singular Value Decomposition for Prediction of Drugs and Diseases with 

Hepatocellular Carcinoma Based on Multi-Source Bat Algorithm Based Random Walk,” Measurement, vol. 141, 176-183, 2019. 

[15] HemanthSomasekar and Dr. KavyaNaveen, "A System For Identifying Synthetic Images Using Lstm: A Deep Learning Approach," 

International Journal of Computer Trends and Technology,  vol. 69, no. 2, pp. 64-67, 2021. Crossref, https://doi.org/ 

10.14445/22312803/IJCTT-V69I2P110 

[16] Peng, J., Li, J., & Shang  X, “A Learning-Based Method for Drug-Target Interaction Prediction Based on Feature Representation 

Learning and Deep Neural Network,” BMC Bioinformatics, vol. 21, no. 13, pp. 1-13, 2020. 

[17] Yang, H., Ding, Y., Tang, J., & Guo F, “Drug–Disease Associations Prediction Via Multiple Kernel-Based Dual Graph Regularized 

Least Squares,” Applied Soft Computing, vol. 112, pp. 1-14, 2021. 

[18] Jarada, T. N., Rokne, J. G., & Alhajj R, “SNF–CVAE: Computational Method to Predict Drug–Disease Interactions using Similarity 

Network Fusion and Collective Variational Autoencoder,” Knowledge-Based Systems, vol. 212, pp. 1-23, 2021. 

[19] Ding, Y., Tang, J., & Guo F, “Identification of Drug-Target Interactions Via Multi-View Graph Regularized Link Propagation 

Model,” Neurocomputing, vol. 461, pp. 618-631, 2021. 

[20] Jegou, H., Douze, M., & Schmid C, “Product Quantization for Nearest Neighbor Search,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 33, no. 1, pp. 117-128, 2010. 

[21] A.G.Hari Narayanan, Dr J Amar Pratap Singh, “Skin Disease Ensemble Classification using Transfer Learning and Voting Classifier,” 

International Journal of Engineering Trends and Technologies, vol. 12, pp. 287-293, 2021. 

[22] Sunil Pandey,Naresh Kumar Nagwani,ShrishVerma, “Analysis and Design of High Performance Deep Learning Algorithms: 

Convolutional Neural Networks,” International Journal of Engineering Trends and Technologies, vol. 6, pp. 216-224, 2021. 

[23] Khaled Mohamad Almustafa, “Prediction of Heart Disease and Classifiers’ Sensitivity Analysis,” BMC Bioinformatics, vol. 21, pp. 

275, 2020. 

[24] C K Gomathy, “The Prediction of Disease using Machine Learning,” International Journal of Scientific Research in Engineering and 

Management(IJSREM), vol. 5, no. 10, 2021. 

[25] RayanAlanazi, “Identification and Prediction of Chronic Diseases using Machine Learning Approach,” Journal of Healthcare 

Engineering, vol. 2022, 2022 

[26] Jiang, H. J., You, Z. H., & Huang Y. A, “Predicting Drug−Disease Associations Via Sigmoid Kernel-Based Convolutional Neural 

Networks, Journal of Translational Medicine, vol. 17, no. 1, pp. 1-11, 2019. 

 

 

 


