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Abstract - Technology has revolutionized different human endeavors to take advantage of a clean, comfortable, safe life. In 

this paper, the proposed work introduces a robotic system that can navigate through buried sewers to detect isolated 

blockages using camera sensors and embedded vision. AI detection algorithms YOLOv3 and YOLOv4 have been trained with 

newly created imagery datasets and are a major aspect of this development. This robotic system will also solve the problem 

of human hygiene by removing the obstructions in the sewer in real-time with the help of a newly developed cutter. The 

linkage mechanism, cutting tools, the central frame and three separate crawler modules developed in Catia V5 R21 ED2 are 

also crucial parts of the proposed robotic system. The system provided is one of the best achievements in the field of sewer 

robotics that works to detect and remove barriers for real-world application. The methodologies in the presented system are 

revealed to specify the concepts and advantages. 
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1. Introduction 
The underground drainage system is essential to 

modern development to maintain a safe and clean 

environment. However, despite many benefits, underground 

systems have several problems such as blockages, corrosion 

and cracks in pipes causing leaks and tree roots intrusions. 

Periodic maintenance is required to keep sewers in good 

condition.  

 

Government authorities maintain the sewerage system 

in India, and the Government of India has presented 

standard operating procedures (SOP) for maintaining 

sewerage systems [1], [22]. The practice of manual 

scavenging continues in some places in India, although the 

government banned manual scavenging in 2013.  

Technological solutions, including robotics and remote-

controlled devices, should be used to avoid this practice 

permanently. 

 

In this regard, mechanical methods and sewer robotic 

systems are available and reviewed in earlier work [2]. The 

KARO [19], PIRAT [21], KANTARO [16], SIAR [17], 

KURT [18], MAKRO [20] are some instances in the sewer 

robotic field. The previous survey details were also analysed 

based on computer vision methodologies for the assessment 

of sewerage systems [23], [24], [25]. The mechanical 

systems are also used for water quality monitoring [26][28]. 

These robotic systems used sensors, computer vision, 

onboard remote control processing unit, and navigation 

assembly. Many existing systems are operated to solve 

distinct sewer defects to maintain sewerage [12]. In contrast, 

blockage is the most common concern in the real-world 

scenario in underground sewers [3]. There is not much 

information on detecting various sewer blockages, so 

necessary remedial actions are selected.   

 

This paper collected a set of sewer blockage images, 

and the dataset is used to train YOLOv3 and YOLOv4 

detection models on the darknet to detect sewer blockages. 

The linkage mechanism, cutting tools, the central frame and 

three separate crawler modules of the robotic framework are 

also presented for modelling purposes and highlighting the 

features required to work in underground infrastructure. 

 

This paper describes the proposed methodology of 

dataset formation, training outcomes for YOLOv3 and 

YOLOv4, and hardware modelling in the proposed system. 

 

2. Methodology 
The block diagram shown in figure 1 details the 

assembly of the proposed sewer robotic system. The key 

aspects of the systems are a new imagery dataset for training 
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detection models and computer vision algorithms with an 

embedded platform for identifying gutter blockages. The 

central frame, linkage mechanism, cutting tool and three 

separate crawlers are the main components for system 

navigation and sewer blockages removing tasks. The 

embedded vision is the significant platform for developing 

the real-world visual application system [27], [28].  

 
Fig. 1 Block Diagram of Proposed Sewer Robotic System 

 

3. Collection of Sewer Blockages Frames 
A typical sewer line of 12-inch diameter was built in 

the research laboratory (DYPSOE, Pune) shown in figure 2. 

Various common sewer blockages were replicated in the 

sewer pipe setup, and images of these simulated blockages 

were captured to build an “image dataset”.  

 
Fig. 2 Lab set for sewer line 

 

The new dataset S-BIRD (Sewer-Blockage Imagery 

Recognition Dataset) of sewer blockages images was used 

to train detection models (E.G. Yolov3 and Yolov4) to 

enable these models to detect isolated sewer blockages. A 

total of 7040 images of sewer blockage were captured, out 

of which 5984 images were used as a training set, and 1056 

images were utilized as a testing set. 

 

 

Figure 3 shows a few of these captured images of 

common blockages in sewer lines, such as tree roots, plastic 

and grease.  

 
Fig. 3 Sewer blockages frames 

 

4. Training of Object detectors  
Many object detectors are available and classified as 

single-stage and two-stage object detectors. One-stage 

detectors like YOLO (You Only Look Once) were 

introduced first by Joseph Redmon [4], SSD, etc. These 

one-stage detectors are faster than the two-stage and are 

commonly used for real-time applications. 

 

YOLO has been modified a few times, and we used the 

third-generation model YOLOv3 presented in 2018. 

YOLOv3 is three times faster than SSD detector [5], [13] 

and Retinanet detector, but as accurate as SSD and has the 

same functionality as Retinanet.  

 

The YOLOv4 has also been used, a one-stage object 

detector introduced by Alexey Bochkovskiy with novel 

features such as WRC, CSP, CmBN, SAT, Mish activation, 

Mosaic data augmentation, CmBN, DropBlock 

regularization, and CIoU loss and achieved advanced results 

[6].    

 

YOLOv3 and YOLOv4 use DarkNet 53 Neural 

Network Framework that supports both CPU and GPU 

execution and being a one-stage detection, the device's 

architecture is good for real-time detection.  YOLOv4 has 

better mean average precision (mAP) by about 10% and an 

improvement in the number of frames per second by 12% 

compared to Yolov3.  

4.1. Setting up Training Parameters 

The annotations for each object were done with higher 

precision to locate objects exactly in the images for 

respective computations. The annotation of a frame consists 

of the information shown in figure 4 about the object:
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Fig. 4 Annotation details for each object 

 

All these parameters are normalized by original frame 

width and height, and all values must range from 0 to 1. In 

classes, 0 represents Tree roots, whereas 1 for Plastic and 2 

for Grease. 

 

For the presented dataset, the customization has been 

done in the respective network for the three classes 

mentioned above. The training parameters are defined as 

max_batches, and filters are calculated by equations (1) and 

(2), respectively. 
 

max_batches = classes * 2000                                         (1) 

 

Filters = (Classes + Coordinates + 1) * Masks              (2) 

 

Steps = 80% max_batches, 90% of max_batches            (3) 

 

In our case, max_batches (total no. iterations) are 6000 

for three classes; filters are 24, and steps are 4800 and 5400 

computed from equations (1), (2) and (3), respectively. 

 

Table 1 shows the training parameters with their values 

for key referencing.   

 
Table 1. Training Parameters 

Parameters Values 

Batch 64 

Subdivisions 16 

Width 416 

Height 416 

Channels 3 

Decay 0.0005 

Angle 0 

Exposure 1.5 

Hue .1 

Learning Rate 0.001 

 

4.2. Training outcomes of YOLOv3 

Tesla V100-DGXS workstation with 32 GB of GPU 

was used for training the YOLOv3 detection model. Tables 

2 and 3 give the outcomes of trained model at a particular 

iteration. It was noticed that the precision rate was 

increasing as the iteration increased, so the iteration 

doubled, i.e., 12000 iterations. However, the accuracy rate 

was saturated while achieving 12000 repetitions, so training 

was stopped. The best-trained model gave 89.59 % of the 

mean average precision for the overall mentioned classes for 

real-time detection application in robotic sewer systems. 

 

The training progress charts have been given for 6000 

iterations in figure 5 (a) and from 6000 to 12000 iterations 

in figure 5 (b). 

 

 
Table 2. Outcomes of the trained model at a particular iteration 

Trained model 

at a particular 

iteration 

Average precision in % True Positive 

(TP) 

False Positive 

(FP) 

False Negative 

(FN) Tree-roots Plastic Grease 

1000 64.85 87.67 68.56 854 63 686 

2000 75.62 93.10 89.24 1083 44 457 

3000 78.99 93.88 91.77 1247 166 293 

4000 76.81 93.06 91.95 1235 194 305 

5000 81.03 93.97 91.67 1269 128 271 

6000 81.52 93.53 92.94 1289 110 251 

10000 80.39 91.53 92.16 1294 167 246 

12000 80.04 92.53 92.85 1299 116 241 

Best-Model 82.08 93.80 92.87 1309 131 231 

Table 3. Outcomes of the trained model at a particular iteration 

Trained model 

at a particular 

iteration 

Mean Average 

Precision in  % 

F1-score Aver. IoU 

in  % 

recall  

Precision 

Detection Time 

in seconds 

1000 73.70 0.70 69.87 0.55 0.93 9  

2000 85.99 0.81 77.70 0.70 0.96 9 

3000 88.21 0.84 72.38 0.81 0.88 9 

4000 87.27 0.83 70.83 0.80 0.86 10 
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5000 88.89 0.86 73.05 0.82 0.91 10 

6000 89.33 0.88 78.18 0.84 0.92 9 

10000 88.02 0.86 73.33 0.84 0.89 10 

12000 88.47 0.88 78.77 0.84 0.92 10 

Best-Model 89.59 0.88 77.62 0.85 0.91 9 

 

 
(a) 

 

 
(b) 

Fig. 5 Training progress charts for YOLOv3 
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Figure 6 illustrates the precision versus recall curve of 

the obtained values for the trained YOLOv3 detection 

model.  

 
Fig. 6 Precision versus Recall curve 

4.3. Training outcome of YOLOv4 

The training parameters were customized exactly in the 

same way as for YOLOv3 for the new dataset. 

 

Tables 4 and 5 give the trained model outcomes at a 

particular iteration. In this, iterations have also been 

increased up to 12000 to get the best-performing model.   

 

Figure 7 (a) displays a training progress chart for 6000 

iterations, whereas figure 7 (b) gives a training progress 

chart for 6000 to 12000 iterations. 

 

 

Table 4. Trained model outcomes at a particular iteration 

Trained model 

at a particular 

iteration 

Average precision in % True 

Positive 

(TP) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 
Tree-roots Plastic Grease 

1000 70.27 89.18 71.55 1004 134 536 

2000 77.16 93.13 88.28 1156 74 384 

3000 79.49 95.53 92.79 1244 118 296 

4000 80.33 94.23 94.15 1270 124 270 

5000 79.59 95.34 94.32 1283 131 257 

6000 79.25 95.34 94.38 1283 127 257 

10000 75.65 93.73 92.37 1284 139 256 

12000 75.73 93.72 92.46 1299 126 241 

Best-Model 81.55 95.39 93.44 1267 110 273 

 
 

Table 5. Trained model outcomes at a particular iteration 

Trained model 

at a particular 

iteration 

Mean Average 

Precision in  

% 

F1-score Aver. 

IoU in  

% 

recall  

Precision 

Detection 

Time in 

seconds 

1000 77.00 0.75 66.41 0.65 0.88 18  

2000 86.19 0.83 74.25 0.75 0.94 18 

3000 89.27 0.86 76.67 0.81 0.91 18 

4000 89.57 0.87 75.82 0.82 0.91 18 

5000 89.75 0.87 77.78 0.83 0.91 18 

6000 89.66 0.87 78.24 0.83 0.91 18 

10000 87.25 0.87 77.54 0.83 0.90 18 

12000 87.30 0.88 79.30 0.84 0.91 18 

Best-Model 90.13 0.87 76.80 0.82 0.92 18 
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(a) 

 

 
(b) 

Fig. 7 Training progress charts for YOLOv4
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The precision versus recall curve of obtained resulting 

values for the trained YOLOv4 detection model has been 

revealed in figure 8. 

 

 
Fig. 8 Precision versus Recall curve 

 

 
Fig. 9 Detection Results for mentioned sewer blockages types 

 

Figure 9 shows the imagistic detection results for 

mentioned classes of sewer blockages in real-time states. 

 

5. Hardware Design 

5.1. Central Frame 

The central frame is a major part of any navigation 

system. The central frame carries the automotive system's 

external load, including its weight. The central frames have 

been modelled in Catia V5 R21 ED2 version. A semi-

integral frame involves a half-frame fixed in the front end, 

and the front suspension is mounted. It is used due to its 

flexibility in replacing damaged sections without requiring 

complete robotic disassembly [7]. Three crawlers in 120-

degree angle configuration have been attached to the central 

frame. 

5.2. Revolute joint mechanism for Left-Right Rotation 

Revolute joint rotating in single axis consists of one 

degree of freedom kinematic pair and utilized repeatedly in 

devices and automotives [8]. It is applied in a semi-integral 

frame, as shown in figure 10. The revolute joint mechanism 

uses a 60 kg cm metal gear servo motor.  

   
Fig. 10 Up-view CAD Model of Central frame and Rendering view in 

Sewer pipe 

5.3. Parallel linkage mechanism 

A four-bar linkage mechanism is used in the proposed 

system to transmit motion. The parallel motion linkage is a 

four-bar linkage mechanism in which opposite sides of the 

parallelogram ensure that input and output motions remain 

parallel [9], [15]. 

 

 
Fig. 11 Four bar parallel linkage mechanism with movement   

        

 
Fig. 12 Implemented four-bar parallel linkage mechanism 
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The parallel linkage mechanism helps the system to 

navigate with wall press type in the slippery surrounding. 

The proposed prototype has three independent crawlers 

moving with the help of servo motors and a pair of six 

wheels.  

5.4. Gear Box 

It has a single start worm of 20-degree pressure angle 

and an axial pitch of 4mm, whereas the worm wheel 

comprises 10 mm wide 13 helix teeth [10], [14]. Here, a 

radial ball bearing is used to reduce friction and maintain 

the rotating shaft's correct position. 

 

  
Fig. 13 CAD model and Rendering image of worm wheel gearbox 

5.5. Cutter 

The double-sided serrated flat root saw blade and round 

wire corkscrew are made of alloy steel, which have been 

employed for cutting obstructions after detection [11]. 

 

 
Fig. 14 Cutting Tool 

 

6. Conclusion 
This paper presents a robotic platform for identifying 

and removing common obstructions such as tree roots, 

plastics and grease in buried sewers.  

 

A newly created S-BIRD dataset was used to train AI 

detection models, which delivered 89.59% AP (Average 

Precision), 0.85 recall, and 77.62% Ave. IoU for YOLOv3 

while 90.13% AP, 0.82 recall, 76.80% Ave. IoU for 

YOLOv4 in the task of detecting sewer blockages. It is 

noticed that the detection time of YOLOv3 is less, i.e., half 

that of YOLOv4. 

 

The cutting tool, central frame, parallel linkage 

mechanism, and crawler modules were designed to function 

in the robotic sewer framework based on their needs.  

 

The developed robotic system will be a significant 

addition to the robotic sewer field due to the ability to detect 

the major sewer blockages mentioned by a trained detector 

using a new training dataset and remove sewer blockages by 

cutting tools without employing water pressure like Jetting 

machines.  

Acknowledgement 
The authors would like to thank the Department of 

Biotechnology, New Delhi, India (DBT, New Delhi, India), 

for funding under SPRING Project in collaboration with 

India-EU water cooperation, Horizon 2020 (Ref No.: 

BT/IN/EUWR/60/SP/2018). We also thank the Department 

of Computer Engineering and IT, COEP, for providing the 

high computing GPU server facility procured under TEQIP-

III (A world bank project) for our project work. 

 

 

 

 

 

 

References 
[1] Information Manual, “Standard Operating Procedure (SOP) for Cleaning of Sewers and Septic Tanks by Central Public Health & 

Environmental Engineering Organisation (CPHEEO),” Ministry of Housing and Urban Affairs, Government of India. Available: 

Http://Cpheeo.Gov.In/Upload/5c0a062b23e94sopforcleaningofsewersseptictanks.Pdf [Accessed: 20 April 2022]. 

[2] S. M. Ansari, S. M. Khairnar, Ravindra R. Patil, Rupali S. Kokate, “An Assessment-Water Quality Monitoring Practices and Sewer 

Robotic Systems,” Information Technology In Industry, vol. 9, no.1 (2021), pp.140-148, 2021. 

[3] R. R. Patil, S. M. Ansari, R. K. Calay, and M. Y. Mustafa, “Review of the State-of-the-Art Sewer Monitoring and Maintenance 

Systems Pune Municipal Corporation-A Case Study,” TEM Journal, vol.10, no.4 pp. 1500-1508, 2021. 

[4] J. Redmon, D. Santosh, G. Ross, and F. Ali, “You Only Look Once: Unified, Real-Time Object Detection,” In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788. 2016. 

[5] J. Redmon, and F. Ali, “Yolov3: An Incremental Improvement,” Arxiv Preprint Arxiv:1804.02767, 2018. 

 



Saniya M. Ansari et al. / IJETT, 70(8), 247-255, 2022 

 

255 

[6] A. Bochkovskiy, C.Y. Wang, and H.Y.M. Liao, “Yolov4: Optimal Speed and Accuracy of Object Detection,” Arxiv Preprint 

Arxiv:2004.10934, 2020. 

[7] K Irshad & M.V. Krishna, Analysis of Chassis with & Without Stiffener Using FEM, International Journal of Mechanical Engineering 

and Robotics Research, vol.3, no.2, pp.390, 2014. 

[8] J. Zhang, H. Guo, J. Wu, G. Gao, Z. Kou, A. Eriksson, “Design and Analysis of Flexure Revolute Joint Based on Four-Bar 

Mechanism,” Acta Astronautica, vol.151, pp. 420-431, 2018. 

[9] A. K. Natesan, “Kinematic Analysis and Synthesis of Four-Bar Mechanisms for Straight Line Coupler Curves,” 1994. 

[10] V. B. Bhandari, “Design of Machine Elements,” Tata Mcgraw-Hill Education, pp.730-742, 2010. 

[11] K. CPHEEO, “Manual on Sewerage and Sewage Treatment,” - Part B: Operation and Maintenance Final Draft, 2013. 

[12] G.E.M. Abro, B. Jabeen, K.K. Ajodhia, A. Rauf, and A. noman, “Designing Smart Sewerbot for the Identification of Sewer Defects 

and Blockages,” International Journal of Advanced Computer Science and Applications, vol.10, no.2, pp. 615-619, 2019. 

[13] WWWWTWKMRNDB Weliwita, JAP Isuru, SC Premaratne, “Modeling Abandoned Object Detection and Recognition in Real-Time 

Surveillance,” International Journal of Engineering Trends and Technology, vol.69, no.2, pp.188-193.  

[14] I. Dudás, “the Theory and Practice of Worm Gear Drives,” Butterworth-Heinemann, pp. 6-68, 2005. 

[15] J. J. Uicker, G. R. Pennock, J. E. Shigley, and J. M. Mccarthy, “Theory of Machines and Mechanisms,” New York: Oxford University 

Press, vol. 768,  2003. 

[16] Amir A. F. Nassiraei, Yoshinori Kawamura, Alireza Ahrary, Yoshikazu Mikuriya and Kazuo Ishii, “Concept and Design of a Fully 

Autonomous Sewer Pipe Inspection Mobile Robot “KANTARO”, 2007 IEEE International Conference on Robotics and Automation, 

Roma, Italy, DOI Https://Doi.Org/10.1109/ROBOT.2007.363777, pp. 136-143, 2007. 

[17] D. Alejo, G. Mier, C. Marques, F. Caballero, L. Merino and P. Alvito, “SIAR: A Ground Robot Solution for Semi-Autonomous 

Inspection of Visitable Sewers,” In: Grau A., Morel Y., Puig-Pey A., Cecchi F. (Eds) Advances in Robotics Research: From Lab to 

Market. Springer Tracts In Advanced Robotics, Springer, C Ham, DOI – Https://Doi.Org/10.1007/978-3-030-22327-4_13, vol.132, 

2020. 

[18] F. Kirchner and J. Hertzberg, “A Prototype Study of an Autonomous Robot Platform for Sewerage System Maintenance,” Autonomous 

Robots, vol.4, no.4, pp. 319-331, 1997. 

[19] H.B. Kuntze, D. Schmidt, H. Haffner, and M. Loh., “KARO - A Flexible Robot for Smart Sensor-Based Sewer Inspection,”  In Proc. 

12th Int. no- Dig Conference, Hamburg, pp. 367-374, 1995. 

[20] E. Rome, J. Hertzberg, F. Kirchner, U. Licht, H. Streich and Th. Christaller, “Towards Autonomous Sewer Robots: the MAKRO 

Project,”, vol.1, pp.57-70, 1999. 

[21] R. Kirkham, P.D. Kearney and K.J. Rogers, “PIRAT - A System for Quantitative Sewer Assessment,” In Proc. Int. Conf. Field and 

Service Robotics (FSR ’99), CMU, Pittsburgh (PA), pp. 7-12, 1999. 

[22] Information Manual - Manual on Storm Water Drainage Systems – 2019 By Central Public Health & Environmental Engineering 

Organisation (CPHEEO), Ministry of Housing and Urban Affairs, Government of India. Available: – Http://Cpheeo.Gov.In/ 

[Accessed: 22 April 2022]. 

[23] Joakim Bruslund Haurum and Thomas B. Moeslund, “A Survey on Image-Based Automation of CCTV and SSET Sewer Inspections,” 

Automation In Construction – An International Research Journal (Elsevier), DOI – Https://Doi.Org/10.1016/J.Autcon.2019.103061, 

2020. 

[24] Saeed Moradi, Tarek Zayed, and Farzaneh Golkhoo, “Review on Computer Aided Sewer Pipeline Defect Detection and Condition 

Assessment, MDPI – Infrastructures,” ISSN 2412-3811, DOI - Https://Doi.Org/10.3390/Infrastructures4010010, 2019. 

[25] Zheng Liu and Yehuda Kleiner, State of the Art Review of Inspection Technologies for Condition Assessment of Water Pipes, Journal 

of the International Measurement Confederation (IMEKO) (Elsevier), DOI - Https://Doi.Org/10.1016/J.Measurement.2012.05.032, 

2013. 

[26] A. A Maindalkar, and S. M. Ansari, “Aquatic Robot Design for Water Pollutants Monitoring,” International Journal on Recent and 

Innovation Trends In Computing and Communication, vol.3, no.6, pp.3699-3703, 2015. 

[27] O. S. Vaidya, R. Patil, G. M. Phade, & S. T. Gandhe, Embedded Vision Based Cost Effective Tele-Operating Smart 

Robot,” International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol.8, no.7, pp. 1544-1550, 2019. 

[28] R. R. Patil, O. S. Vaidya, Phade, G. M. Phade, & S. T. Gandhe, Qualified Scrutiny for Real-Time Object Tracking 

Framework, International Journal on Emerging Technologies, vol.11, no.3, pp. 313-319, 2020. 

[29] Saniya Ansari, Mr Piyush Kadam, “Design & Development of Automated Solar Panel Cleaning Robot” ISSN no.:0886-9367, the 

International Journal of Analytical and Experimental Modal Analysis, 2021. 

[30] L.Ananth, M.Akash, B.Dharmasooriyan, S.Jones Raj and M.Balamurugan, "Microcontroller Based Sewage 

Cleaner" SSRG International Journal of Electrical and Electronics Engineering  vol. 5, no.8 pp. 19-20. 2018. 

 

https://scholar.google.com/citations?user=g2h6dMYAAAAJ&hl=en&oi=sra
http://cpheeo.gov.in/index.php
http://cpheeo.gov.in/index.php
http://cpheeo.gov.in/index.php
http://cpheeo.gov.in/

