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Abstract - Satellite image denoising is imperative for improving images' visual quality and making future image processing 

and analysis chores easier. Noise detection is critical after the noise has been discovered; appropriate filters are applied to 

eliminate the impulse noise from the image. By attenuating the high-frequency image components and removing noise from the 

image, essential features are also lost. An efficient denoising approach is necessary to retain important information, improve 

the visual appearance, and reliably categorize an image. This paper proposes a novel method for denoising satellite images 

using the isolated vector median filtering with the k-means clustering (IMF-KM) approach. The proposed method has given 

better performance when compared to the existing algorithms in terms of peak signal-to-noise ratio (PSNR), structure 

similarity index (SSIM), and root means square error (RMSE). 

Keywords - Image De-noising, Vector median filter, Isolated vector median filter, Basic vector directional filter, Directional 

distance filter, Directional vector median filter, Isolated vector minimum distance filter. 

1. Introduction  
Satellite image denoising has recently gained popularity 

among remote sensing experts. One of the most critical and 

difficult jobs in image processing is noise reduction. Various 

unwanted noises can influence the quality and resolution of a 

picture. Before completing any additional analysis and 

processing of the image, noise reduction plays a vital 

function as a preprocessing step in various applications, such 

as satellite and remote sensing image processing. Satellite 

images are valuable for multiple environmental applications, 

including earth resource tracking, geographical mapping, 

agricultural crop prediction, urban expansion, weather, flood 

and fire management, etc. The detection and analysis of 

objects in photographs collected from deep space probe 

missions are part of the space imaging application [1]. If salt 

and pepper noise is introduced into satellite images, it has 

random occurrences of both black and white intensity values 

and is frequently created by a noisy image threshold. The 

noise, which appears as black and white dots on satellite 

images, dramatically decreases the visual impression of the 

image. Standard filtering is insufficient to eliminate such 

noise and enhance image quality; it is critical to preserve 

features and edges while reducing noise in satellite images to 

be usable in the future [1]. 

 

One successful method for removing impulsive noise is 

to use the well-known median filter and its variations 

[2][3][4]. The effectiveness of median filters is due to two 

primary characteristics: edge retention and efficient noise 

reduction with impulsive noise resilience. Due to visual 

perception, edge preservation is critical in image processing 

[5][6]. 

 

An image is a two-dimensional numerical data set 

comprising the intensities of collected red, green, and blue 

hues. Images and electronic data are susceptible to noise, 

particularly during transmission from one location to 

another. Noise reduction (also known as image denoising) is 

essential to digital image processing. It allows for restoring 

the original image and reduces any information loss caused 

by noise. The impulse noise model is modeled using 

probabilistic measurements because of the unpredictability of 

pixel deterioration [7]. 

 

Several nonlinear filtering techniques may be used to 

reduce impulse noise. The median filter is a nonlinear digital 

noise reduction filter that may be used on satellite images 

[8,9]. A multilayer weighted graph model for image 

representation is created to define the grey or color 

difference between pixels and their adjacent pixels at 
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different scales. The noise detection is then transformed to 

locate the graph node with the lowest strength [10]. The 

median is derived by sorting all of the pixel values in the 

surrounding neighborhood into numerical order, then 

replacing the pixel in concern with the median pixel value. If 

there are an even number of pixels in the neighborhood, the 

average of the two middle pixel values is used [11]. The 

vector median filter (VMF) is a nonlinear approach for 

processing color and satellite images as a vector field to 

reduce multichannel dependency. Because they adequately 

address the color component correlation, the filters in this 

family, particularly the VMF, may perform pretty well in the 

impulse noise reduction without generating color artifacts 

[8][12]. This approach reduces the aggregate distance across 

all pixels by replacing the test pixel with another pixel in the 

window.  

 

VDF (vector directional filter) separates image data 

processing into "directional processing" and "magnitude 

processing" based on the direction of image vectors. 

"directional processing" refers to image data processing that 

only considers directional information in the vector space. 

On the other hand, Magnitude processing relates to image 

data processing that solely considers the vector magnitudes. 

The separation of processing feature of VDF connects vector 

signal processing with single-channel image processing [13]. 

As proposed in the basic vector directional filter (BVDF), 

using direction is an alternative to using distance. This filter 

reduces the aggregate angular distance across all pixels in the 

window by using the angular distance between pixels rather 

than vector magnitudes [7][12]. Directional distance filtering 

(DDF), which uses a weighted product of VMF and BVDF, 

is another image filtering method [14]. Another directed 

approach is the directional VMF (DVMF), which applies 

vector median filtering over the pixels within degrees of the 

Centre test pixel and then calculates the VMF for the 

resulting [15]. By processing the test windows in isolation, 

the isolated vector minimum distance filter (IVMDF) is used 

to tackle this problem. The main concept is to keep the vector 

pixels isolated to minimize the aggregated distance between 

them and all the other pixels in the test window. Any 

smoothing done there impacts only the color component in 

consideration, not the others [16]. In the isolated vector 

median filtering (IVMF) approach, the primary idea is to 

isolate the joint vector pixels before applying median 

filtering to the most relevant pixels [17]. The adaptive rank-

weighted switching filter (ARWSF) and adaptive switching 

trimmed (AST) filters have been proven to be effective in 

minimizing impulsive noise [15][18].  

 

The proposed IMF-KM method is based on two main 

ideas: (a) categorizing the pixels in the sliding window into 

two groups, one that contributes to the signal and the other 

that contributes to the noise, and (b) performing median 

filtering over the pixel intensities that contribute to the 

signal, while ignoring the color components.  

2. Signal Model 

Noise is likely to degrade digital images during 

transmission. This research focuses on impulse noise, which 

is one of the various forms of noise that is significant [2,9]. 

In digital images, impulse noise is a random burst or sag of 

energy during transmission. With a certain degree of 

likelihood, a pixel will be distorted here. 

 

2.1. The Impulse noise model 

Let X be the color image of M X N pixels containing 

MN pixels, where M signifies the number of rows and N the 

number of columns. Then, image X will be a set of vector 

pixels. 

 

     𝑋 = {𝑥𝑖,𝑗  𝑖 = 1,2, … … . , 𝑀, 𝑗 = 1,2, … … . , 𝑁}          (1) 

 

with each pixel consisting of a joint vector representing the 

color intensities in the red, green, and blue components as 

 

𝑥𝑖,𝑗 = (𝑥𝑖,𝑗,𝑟 , 𝑥𝑖,𝑗,𝑔, 𝑥𝑖,𝑗,𝑏), 𝑖 = 1,2, … , 𝑀, 𝑗 = 1,2, … , 𝑁  (2) 

 

Let 𝑍 = {𝑧𝑖,𝑗 , 𝑖 = 1,2, … , 𝑀 , 𝑗 = 1,2, … , 𝑁} be the image 

corrupted by impulse noise. Fixed valued impulse noise (also 

known as salt and pepper noise) and random valued impulse 

noise are the two basic types of impulse noise. A pixel in the 

fixed valued impulse noise is corrupted with probability p ∈ 

(0,1). A corrupted pixel indicates that one of its red, green, or 

blue components has been corrupted by changing to 0 

(complete black) or 255 (complete white) with uniform 

probability throughout the color components. Instead of 

cycling to high or low values, the damaged pixels in random 

valued impulse noise take any random value between 0 and 

255. 
 

 

 

Zi,j=  

𝒙𝒊,𝒋 If q>=p 

(3) 
(𝒙𝒊,𝒋,𝒓, 𝒙𝒊,𝒋,𝒈, 𝒂) If q<p,r<1/3 

(𝒙𝒊,𝒋,𝒓, 𝒂, 𝒙𝒊,𝒋,𝒃) If q<p,1/3<=r<2/3 

(𝒂, 𝒙𝒊,𝒋,𝒈, 𝒙𝒊,𝒋,𝒃) If q<p,2/3<=r 

 

2.2. Conventional Noise Reduction Filters 

This section summarises typical impulse noise filtering 

methods employed in the invention. Generally, the filtering 

procedure employs a sliding window W of n pixels and a size 

of √𝑛 𝑋√𝑛. It donates the set of pixels included in the 

window as, 

 

W={𝑥𝑖 , 𝑖 = 1, … … , 𝑛}                                                   (4) 

 

where the joint vector is 𝑥𝑖 = (𝑥𝑖,𝑟 , 𝑥𝑖,𝑔, 𝑥𝑖,𝑏)With this 

notation, the digital color image in (1) is now modified as  

    

X= {𝑥𝑖 , 𝑖 = 1, … … , 𝑀𝑁 }                                               (5) 
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The filtering algorithms work by identifying and 

processing the center pixel inside the test window W. The 

VMF technique is the most well-known of the filtering 

systems. 

 

The aggregated distance between each pixel and every 

other pixel is calculated as 

𝑆𝑖 = ∑ 𝑑(𝑥𝑖

𝑛

𝑗=1

− 𝑥𝑗), 𝑖 = 1, … , 𝑛                                  (6) 

where 𝑑(𝑥𝑖 − 𝑥𝑗) is the Minkowski's distance between two 

joint pixels 𝑥𝑖 and 𝑥𝑗 and the aggregate is reordered as 

 

𝑆�̂�=1,….,𝑛 ⇒ 𝑥�̂�=1,…,𝑛: 𝑆�̂�=1 ≤ 𝑆�̂�=2 ≤ ⋯ 𝑆�̂�=𝑛               (7) 

 

𝒙𝟏 𝒙𝟒 𝒙𝟕 

𝒙𝟐 𝒙𝒄=𝒙𝟓 𝒙𝟖 

𝒙𝟑 𝒙𝟔 𝒙𝟗 

Fig. 1  A 3 x 3 test window with n = 32 = 9 and the test pixel in the 

center 

 

The center pixel is then substituted with the pixel with 

the shortest aggregate distance from all other pixels as 

 

𝑥𝑐 = 𝑥𝑖−1                                                                         (8)  

 

The BVDF, on the other hand, uses the aggregated angular 

distance between pixels as 

 

𝜃𝑖 = ∑ cos−1 (
𝑥𝑖 𝑥𝑗

‖𝑥𝑖‖ ‖𝑥𝑗‖ 
) , 𝑖 = 1,2, … . , 𝑛           (9)

𝑛

𝑗=1

 

 

And replaces the center pixel with the pixel that minimizes as 

specified in (7) and (8). 

The DDF employs the weighted product of Minkowski's 

distance and the angular distance as  

 

𝐴𝑖 = 𝑆𝑖
𝛾

𝜃𝑖
1−𝛾

, 𝑖 = 1,2, … . , 𝑛                       (10) 

 

Where 𝛾 ∈ (0,1).  

 

The DVMF filter takes the VMF of the pixels in degrees to 

the center pixel, as illustrated in Fig.2, and then obtains the 

VMF of the resultant.  

 
 

 

 

 

Fig. 2 A pictorial representation of DVMF 

 

The VMFDD method adds the distances in four 

directions, then picks the pixels that lie at the angle that 

minimizes the sum from the center pixel, and then VMF is 

applied to those pixels. The alpha-trimming technique trims 

the distances by a predetermined trimming factor α, but the 

AST method uses a switching condition throughout the 

trimming operation. 

 

All these strategies aim to reduce noise by using the 

VMF mechanism in various versions. There has been limited 

progress in detecting pixels that correlate with noise and 

minimizing their impact throughout the filtering process. The 

peer group filter explored this method; however, it was 

confined to grayscale images. The recently suggested 

ARWSF rankings combine the process of finding excellent 

pixels (those that contribute to the signal/information) by 

first measuring the distances of the pixel d(.) in the sliding 

window and then scaling the distances using a fading 

function. This scaling assigns high weight to the pixels with 

the shortest aggregate distance. When performing VMF over 

pixels using scaling, the most informative pixels are 

weighted heavily in the filtering process, resulting in more 

significant noise reduction. This paper proposes the IMF-KM 

approach, which improves the ARWSF method by fully 

marginalizing the noise pixels, resulting in better noise 

reduction. 
 

3. Proposed Method  
The proposed invention describes an isolated vector 

median filtering method that uses k-means clustering to 

reduce noise in digital color images. The proposed invention 

establishes notation and defines impulsive noise. The current 

technique is followed by traditional impulse noise reduction 

methods and the proposed isolated Vector Median Filtering 

using k-means clustering (IMF-KM) filter. The proposed 

innovation offers a unique way of filtering away impulsive 

noise in satellite images. Traditional filtering methods apply 

a noise reduction algorithm, often the vector median filtering 
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approach and its variations, to the center pixel of an 

appropriately chosen window that iteratively slides 

throughout the image. In the filtering process, these 

approaches consider the entire window into account. On the 

other hand, this approach considers the noise inside the noisy 

pixels in the filtering process and may damage the final 

result. 

 

On the other hand, the current method works by 

grouping the pixels in the selected window into two groups, 

one for pixel intensities in the signal space and the other for 

those in the noise space. The motivation for this clustering 

approach is to marginalize those pixels in the noise space that 

appears to contribute nothing to the information in the image. 

The median filter is used for the pixels contributing to the 

signal in isolating the color components to filter out impulse 

noise.  
 

The present state of the artworks is by splitting the 

pixels of a selected sliding window into two groups, one for 

the signal and the other for the noise. To achieve this 

grouping based on pixel intensities, the well-known k-means 

algorithm with K=2 was used. The main reason for dividing 

the pixels in a sliding window into signal and noise 

components is that the pixels encompassing the signal will be 

numerous and have relative intensities. In contrast, the pixels 

containing the noise will be few and have intensities distant 

from those corresponding to the signal space. According to 

this rationale, the cluster with the maximum number of 

pixels will include the signal space. To calculate the new 

value of the test (center) pixel, the pixels in this cluster are 

filtered using the median filter. The median filter is used on 

isolated color components to prevent the filtering process 

from being exploited by adjacent color components. In 

essence, this method employs those pixels that appear to 

contribute to the signal, thereby mitigating the impact of 

corrupted pixels in the filtering process. The current 

approach has a higher level of accuracy. The simulation 

results demonstrate that the proposed method outperforms 

state-of-the-art impulse noise reduction filters. 
 

The proposed IMF-KM method is based on two key 

ideas: (a) categorizing the pixels in the sliding window into 

two groups, one that contributes to the signal and the other 

that contributes to the noise, and (b) performing median 

filtering over the pixel intensities that contribute to the signal 

in the isolation of the color components. The k-means 

clustering technique is used in step (a) to classify the pixels 

based on their spatial location of intensities. The median 

filter processes the cluster of intensities that contribute to the 

signal. This operation is executed in isolation over the colour 

components to avoid the impact of smoothing, softening, or 

smearing in one color component leveraging itself on the 

others. 
 

 

 

Consider a sliding window 

 𝑊 = {𝑥𝑖 , 𝑖 = 1, … , 𝑛} Containing n pixels. From W, the 

isolated color sliding windows is acquired as 

 

𝑊𝑟 = {𝑥𝑟,𝑖 , 𝑖 = 1, … , 𝑛}                                             (11) 

𝑊𝑔 = {𝑥𝑔,𝑖 , 𝑖 = 1, … , 𝑛}                                            (12) 

 

𝑊𝑏 = {𝑥𝑏,𝑖 , 𝑖 = 1, … , 𝑛}                                            (13) 

 

The approach described in the sequel relates to the red 

component and should be expanded to the green and blue 

components in the isolation of the color components. 

Consider the sliding window associated with the red 

component 𝑊𝑟 = {𝑥𝑟,𝑖 , 𝑖 = 1, … , 𝑛}. The red component 

pixel intensities are displayed in this window. These intensity 

values are then grouped using the k-means approach with K 

= 2 and unsupervised learning. The k-means algorithm 

applied to the sliding window yields a responsibility vector, 

 

𝑅𝑟 = {𝑗𝑖 , 𝑗𝑖𝜖(1,2), 𝑖 = 1, … , 𝑛}                                 (14) 

 

𝑅𝑟 = {𝑗𝑖=1,…,𝑛 = 1} ∪ {𝑗𝑖=1,…,𝑛 = 2}                       (15) 

 

𝑅𝑟 = 𝑅𝑟[1] ∪ 𝑅𝑟[2]                                                    (16) 

 

The 𝑖𝑡ℎ responsibility variable 𝑗𝑖 can take one of two 

values, 1 or 2, signifying the cluster number to which the 𝑖𝑡ℎ 

pixel intensity 𝑥𝑟,𝑖 corresponds. The indices are contained in 

the set 𝑅𝑟[1]. As seen below, this allows us to divide the n 

pixels into two groups. 

 

𝐶𝑟[1] = {𝑥𝑗,𝑟 ∶ 𝑗𝑖 = 1}, 𝑖 = 1, … , 𝑛                          (17) 

 

𝐶𝑟[2] = {𝑥𝑗,𝑟 ∶ 𝑗𝑖 = 2}, 𝑖 = 1, … , 𝑛                          (18) 

 

And then select the cluster with the highest pixel values 

according to 

 

𝜂𝑟 = 𝐶𝑟[𝑗] 𝑠. 𝑡. |𝐶𝑟[𝑗]| > |𝐶𝑟[ 𝑖𝜖(1,2), 𝑖 ≠ 𝑗]|       (19) 

 

where |.| signifies the cardinality of a set. Essentially, this 

approach divides the pixel intensities in the sliding window 

into two groups: the dominant set r, which is assumed to be 

in the signal space, and the second, which is assumed to be in 

the noise space. As the dominant group has higher pixel 

intensities spaced close together, they contribute to the 

image's signal while the other set adds to the noise. Then the 

median filtering can be applied to the pixel intensities in the 

dominating set and replace the red component of the center 

test pixel as 

 

𝑥𝑐,𝑟 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝜂𝑟)                                                     (20) 
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The process is repeated in isolation for the green and blue 

components, and the final test pixel is obtained as 

 

𝑥𝑐 = (𝑥𝑐,𝑟 , 𝑥𝑐,𝑔, 𝑥𝑐,𝑏)                                                  (21) 

 

 

The proposed Algorithm 1 describes the k-means 

algorithm used to cluster the pixel intensities in the red 

component and get the responsibility vector Rr in (14). 

 

Algorithm 1: The k-means Algorithm 

Rr = K – MEANS [{𝑥𝑖,𝑟 , 𝑖 = 1, … , 𝑛}, 𝐾] 

         Initialize centroids 𝑐𝑘 = 1, … , 𝐾 at random. 

          While Flag Up do 

          Compute distance D(i,k)=d(𝑥𝑖,𝑟 − 𝑐𝑘), 

                        i=1,…,n. k=1,…,K. 

where d(.) is any distance measure. 

          Compute responsibility vector    

      𝑅𝑟 = {𝑗𝑖 = 𝑘 ∶ arg 𝑚𝑖𝑛𝑘 𝐷(𝑖, 𝑘), 𝑖 = 1, … , 𝑛} 

That is, the ith sample will belong to the ji
th cluster that 

minimizes its distance over the centroids. 

          Compute new centroids 

𝑐𝑘 = ∑ 𝑥𝑗𝑖=𝑘,𝑟 ⌈{𝑗𝑖 = 𝑘, 𝑖 = 1, … , 𝑛}⌉, 𝑘 = 1, … , 𝐾 

          If 𝑐𝑘, 𝑘 = 1, … , 𝑘 values unchanged, then Flag Down 

          end if 

end while 

 

IMF-KM method for the red component is outlined in 

Algorithm 2. 

 

Algorithm 2: The proposed IMF-KM Algorithm 

𝑥𝑐,𝑟 = 𝐼𝑀𝐹 − 𝐾𝑀[𝑊𝑟 = {𝑥𝑖,𝑟 , 𝑖 = 1, … , 𝑛}] 

          Cluster the pixel intensities using the k-means 

algorithm and obtain the responsibility vector 𝑅𝑟. 

𝑅𝑟 = 𝐾 − 𝑀𝐸𝐴𝑁𝑆[{𝑥𝑖,𝑟 , 𝑖 = 1, … , 𝑛}, 𝐾 = 2] 

          Categorize the n pixels into two clusters 

           𝐶𝑟[𝑗] = {𝑥𝑗𝑖,𝑟
: 𝑗𝑟 = 1}, 𝑖 = 1, … , 𝑛. 𝑗 = 1,2 

    Determine the dominant cluster 𝜂𝑟 according to (19) 

           The center test pixel is 𝑥𝑐,𝑟 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝜂𝑟) 

 

4. Experimental Results  
This paper uses three test statistics to compare recent 

techniques' suggested IMF-KM against state-of-the-art vector 

median filters. The first is the root mean square error 

(RMSE), which is defined as 

 

𝑅𝑀𝑆𝐸(𝑋, 𝑌) = √
1

𝑀𝑁
∑ ∑ ‖𝑋𝑖,𝑗 − 𝑌𝑖,𝑗‖

2𝑁
𝑗=1

𝑀
𝑖=1           (22) 

 

where X and Y represent the original and filtered images, 

respectively. A small RMSE value indicates that the error 

between the filtered and original images is tiny. Hence, 

modest RMSE values are acquired. The second measure is 

the peak signal-to-noise ratio (PSNR) which is defined as 

 

𝑃𝑆𝑁𝑅(𝑋, 𝑌) = 10 log10 (
𝑀𝑎𝑥(𝑋)2

𝑀𝑆𝐸(𝑋,𝑌)
)                          (23) 

 

where MSE (X, Y) is the filtered image's mean square error. 

A high PSNR is desired because it shows superior signal-to-

noise recovery. 

The third measure is the structural similarity index (SSIM) 

which is defined as 

 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑥+𝜇𝑦+𝑐1)(2𝐶𝑥,𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                         (24) 

 

where the image means are 

 

𝜇𝑥 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1                                                           (25) 

 

𝜇𝑦 =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1                                                           (26) 

 

Where 𝜎2 denotes the variance and 𝐶(. , . ) denotes the 

covariance between the original and filtered images. 

 

The SSIM value reflects the similarity between the 

original and the filtered pictures by combining perceptual 

variables such as luminance and contrast. A high SSIM value 

indicates that the original image was accurately 

reconstructed. 

 

Fig. 3 is used to analyze the proposed denoising method 

experimentally. 
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Fig. 3 Original Test Image 1 

 

Fig.4 depicts noisy and filtered images with various 

noise probabilities, and it can be seen that the last column, 

which corresponds to the suggested IMF-KM approach, 

outperforms the others. 

 

Under an illustrative implementation of the disclosure, 

PSNR versus Noise Probability, RMSE versus Noise 

Probability, and SSIM versus Noise Probability for test 

image-1 are shown in Fig.5, Fig.6, and Fig.7. As can be 

observed, our IMF-KM method outperforms the joint 

vector approaches and the IVMDF approach in terms of 

accuracy (low RMSE), and the efficiency increases as the 

noise probability increases. 

  

Fig. 4 Noise Reduction by various filters: Left to right: (a) Noisy image, (b) Median filter, (c) VMF, (d) BVDF, (e) DDF, (f) DVMF, (g) VMFDD, (h) 

ARWSF, (i) Alpha trim VMF, (j) ASTVMF, (k) IMF-KM.  Top to bottom: Noise probability p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, in accordance 

with an illustrative embodiment of the disclosure. 
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Fig. 5 The PSNR versus the Noise Probability for test image-1 
 

Table 1. Shows the Psnr Values for the Images Shown in Fig.4 

 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 31.70 29.65 31.64 32.35 31.73 29.56 29.26 29.31 29.38 32.86 

0.2 30.98 28.88 30.96 29.95 31.01 29.18 29.15 29.06 29.27 31.83 

0.3 30.14 28.10 30.18 27.82 30.15 28.86 28.96 28.76 29.19 31.49 

0.4 28.62 26.94 28.82 25.44 28.61 27.87 28.04 27.61 28.80 31.30 

0.5 26.90 25.61 27.15 23.41 26.90 26.50 26.69 26.16 28.29 30.78 

0.6 24.59 23.98 25.01 21.36 24.58 24.29 24.40 23.68 27.44 28.66 

0.7 22.47 22.39 22.92 19.76 22.47 21.75 21.89 21.07 26.34 27.65 

0.8 20.64 20.65 21.07 18.33 20.64 19.39 19.69 18.81 25.35 26.72 

0.9 18.83 18.96 19.20 16.93 18.82 16.99 17.41 16.52 24.01 25.75 
 

 
Fig. 6 The RMSE versus the Noise Probability for test image-1. 
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Table 2. Shows the RMSE values for the images shown in Fig.4 
 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 0.0234 0.0297 0.0236 0.0217 0.0233 0.0300 0.0310 0.0308 0.0306 0.0210 

0.2 0.0254 0.0324 0.0255 0.0287 0.0254 0.0313 0.0314 0.0318 0.0310 0.0247 

0.3 0.0280 0.0355 0.0279 0.0366 0.0280 0.0325 0.0321 0.0329 0.0313 0.0269 

0.4 0.0334 0.0405 0.0326 0.0481 0.0334 0.0364 0.0357 0.0375 0.0327 0.0309 

0.5 0.0407 0.0472 0.0395 0.0608 0.0407 0.0426 0.0417 0.0443 0.0347 0.0338 

0.6 0.0531 0.0570 0.0506 0.0770 0.0531 0.0549 0.0543 0.0589 0.0383 0.0369 

0.7 0.0677 0.0684 0.0644 0.0925 0.0677 0.0737 0.0725 0.0796 0.0434 0.0391 

0.8 0.0835 0.0836 0.0796 0.1090 0.0835 0.0966 0.0934 0.1033 0.0486 0.0438 

0.9 0.1029 0.1015 0.0987 0.1282 0.1031 0.1274 0.1213 0.1345 0.0568 0.0526 
 

 
Fig. 7 The SSIM versus the Noise Probability for test image-1 

 

Table 3. Shows the Ssim values for the Images Shown in Fig.4 

 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 0.1426 0.1431 0.1428 0.1438 0.1426 0.1454 0.1460 0.1463 0.1477 0.1489 

0.2 0.1417 0.1428 0.1421 0.1429 0.1418 0.1450 0.1456 0.1460 0.1473 0.1487 

0.3 0.1409 0.1423 0.1414 0.1415 0.1409 0.1445 0.1450 0.1454 0.1459 0.1462 

0.4 0.1392 0.1419 0.1400 0.1393 0.1392 0.1437 0.1440 0.1445 0.1456 0.1461 

0.5 0.1372 0.1406 0.1385 0.1368 0.1372 0.1425 0.1426 0.1432 0.1438 0.1445 

0.6 0.1339 0.1388 0.1360 0.1327 0.1339 0.1403 0.1399 0.1404 0.1431 0.1444 

0.7 0.1286 0.1355 0.1315 0.1275 0.1286 0.1355 0.1349 0.1352 0.1420 0.1430 

0.8 0.1230 0.1316 0.1269 0.1222 0.1230 0.1294 0.1289 0.1288 0.1411 0.1424 

0.9 0.1156 0.1266 0.1203 0.1148 0.1156 0.1184 0.1187 0.1174 0.1397 0.1409 
 

Structural similarities can also be used to explain their 

superiority. At p= 0.2, the suggested IMF-KM approach 

outperforms the VMF method, but at p= 0.9, it becomes 

more efficient, reaching roughly 15% efficiency.  

 

It demonstrates that isolated median filtering using k-

means of just the valid pixels, i.e., those pixels in the signal 

space that allegedly carry meaningful information, improves 

impulse noise reduction.   
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Fig. 8 Test Image-2 
 

Fig.9, Fig.10, Fig.11, and Fig.12 provide performance 

data for Test Images-2. Fig.10 depicts the PSNR versus the 

Noise Probability, Fig.11 depicts the RMSE versus the Noise 

Probability, and Fig.12 shows the SSIM versus the Noise 

Probability. Despite the suggested IMF-KM technique's vast 

advantage over the VMF and DVMF methods, the PSNR, 

RMSE, and SSIM performance data reveal that the VMF and 

DVMF methods compare well to the proposed IMF-KM 

approach. 

 

 
Fig. 9 Noise Reduction by various filters: Left to right: (a) Noisy image, (b) Median filter, (c) VMF, (d) BVDF, (e) DDF, (f) DVMF, (g) VMFDD, (h) 

ARWSF, (i) Alpha trim VMF, (j) ASTVMF, (k) IMF-KM.  Top to bottom: Noise probability p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, in accordance 

with an illustrative embodiment of the disclosure. 
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Fig. 10 The PSNR versus the Noise Probability for test image-2 

 

Table 4. shows the PSNR values for the images shown in Fig.9 

 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 32.36 30.49 32.31 33.97 32.49 30.05 29.72 29.83 29.91 34.57 

0.2 31.77 29.68 31.77 31.48 31.88 29.79 29.75 29.73 29.90 33.11 

0.3 30.88 28.77 30.86 29.04 30.96 29.21 29.47 29.17 29.67 31.37 

0.4 29.76 27.77 29.78 26.91 29.81 28.84 29.10 28.76 29.54 30.40 

0.5 28.13 26.39 28.22 25.11 28.16 27.55 27.81 27.31 29.17 29.96 

0.6 26.43 25.09 26.70 23.32 26.43 25.88 26.07 25.42 28.60 29.38 

0.7 24.59 23.57 24.80 21.76 24.59 23.76 24.07 23.23 27.79 28.56 

0.8 22.82 22.16 23.01 20.37 22.81 21.51 21.91 21.02 26.97 27.76 

0.9 21.02 20.45 21.19 19.00 21.02 19.13 19.72 18.78 25.58 26.90 
 

 
Fig. 11 The RMSE versus the Noise Probability for test image-2 
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Table 5. Shows the RMSE values for the images shown in Fig.9 

 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 0.0241 0.0299 0.0242 0.0200 0.0237 0.0314 0.0327 0.0322 0.0319 0.0195 

0.2 0.0258 0.0328 0.0258 0.0267 0.0255 0.0324 0.0325 0.0326 0.0320 0.0248 

0.3 0.0286 0.0364 0.0286 0.0353 0.0283 0.0346 0.0336 0.0348 0.0328 0.0270 

0.4 0.0325 0.0409 0.0324 0.0451 0.0323 0.0361 0.0351 0.0365 0.0333 0.0302 

0.5 0.0392 0.0479 0.0388 0.0554 0.0391 0.0419 0.0407 0.0431 0.0348 0.0336 

0.6 0.0477 0.0556 0.0462 0.0682 0.0477 0.0508 0.0497 0.0536 0.0372 0.0328 

0.7 0.0589 0.0663 0.0575 0.0815 0.0589 0.0648 0.0626 0.0689 0.0408 0.0327 

0.8 0.0722 0.0780 0.0707 0.0957 0.0722 0.0840 0.0802 0.0889 0.0448 0.0348 

0.9 0.0888 0.0949 0.0872 0.1120 0.0888 0.1104 0.1032 0.1150 0.0526 0.0402 
 

 
Fig. 12 The SSIM versus the Noise Probability for test image-2 

 

Table 6. Shows the SSIM values for the images shown in Fig.9 

 MF VMF BVDF DDF DVMF VMFDD ARWSF ATVMF ASTVMF IMF_KM 

0.1 0.1051 0.1055 0.1053 0.1068 0.1055 0.1074 0.1079 0.1083 0.1077 0.1108 

0.2 0.1042 0.1051 0.1046 0.1057 0.1046 0.1071 0.1077 0.1081 0.1074 0.1093 

0.3 0.1032 0.1045 0.1036 0.1043 0.1035 0.1064 0.1069 0.1074 0.1069 0.1090 

0.4 0.1017 0.1036 0.1023 0.1026 0.1019 0.1058 0.1061 0.1068 0.1065 0.1088 

0.5 0.1000 0.1025 0.1008 0.1007 0.1002 0.1048 0.1048 0.1057 0.1061 0.1089 

0.6 0.0974 0.1012 0.0987 0.0981 0.0975 0.1030 0.1028 0.1037 0.1057 0.1077 

0.7 0.0946 0.0994 0.0962 0.0953 0.0947 0.1007 0.1003 0.1011 0.1050 0.1067 

0.8 0.0909 0.0969 0.0930 0.0919 0.0909 0.0967 0.0965 0.0970 0.1045 0.1063 

0.9 0.0861 0.0923 0.0886 0.0876 0.0861 0.0897 0.0902 0.0899 0.1030 0.1050 
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In summary, our findings suggest that grouping pixels 

inside a test window to identify those containing information 

and subsequently filtering those pixels can reduce impulsive 

noise in satellite images. This innovation presented isolated 

median filtering with k means clustering for noise reduction 

in satellite images. The method consists of two steps: first, 

categorize the pixels in the sliding window into two groups, 

one that contributes to the signal and the other that 

contributes to the noise, and then perform median filtering 

over the pixel intensities that contribute to the signal, while 

isolating the color components. The primary benefit of this 

concept is that by median filtering just the usable pixels in 

the isolation of the color components, smoothing stays local 

and does not affect the other color components, resulting in 

better image reconstruction accuracy. 

 

 

5. Conclusion 
This paper proposed a novel methodology for denoising 

impulse noise in satellite Images through an Isolated Vector 

Median Filter with k-means clustering. Traditional filtering 

techniques apply a noise reduction algorithm to the center 

pixel of a well-chosen window that iteratively slides along 

the entire image, most often the vector median filtering 

approach and its variants. The technique described in this 

invention works by dividing the pixels in the selected 

window into two groups, one for pixel intensities in the 

signal space and the other for pixel intensities in the noise 

space. On the other hand, the current technique clusters the 

pixels in the selected window into two groups, one for pixel 

intensities in the signal space and the other for pixel 

intensities in the noise space. This paper demonstrated the 

superiority of the proposed method using satellite images and 

several statistical measures. 

6. References 
[1] Yogesh, V. and Yogendra, K, “Removal of Salt and Pepper Noise From Satellite Images,”  International Journal of Engineering 

Research & Technology (IJERT), vol.2, pp.2051-2058.  

[2] Pitas, I. and Venetsanopoulos, A.N, “Nonlinear Digital Filters: Principles and Applications ,” Springer Science & Business Media. 

[3] Sicuranza, G., “Nonlinear Image Processing. Elsevier,”  vol.84, 2000.  

[4]  Nodes, T. and Gallagher, N, “ Median Filters: Some Modifications and Their Properties,” IEEE Transactions on Acoustics, Speech, and 

Signal Processing, vol.30, no.5 pp.739-746. 

[5] Khryashchev, V.V., Priorov, A.L., Apalkov, I.V. and Zvonarev, P.S, “Image Denoising Using Adaptive Switching Median Filter,” 

In IEEE International Conference on Image Processing,vol. 1, pp. I-117, 2005. IEEE. 

[6] Yin, L., Yang, R., Gabbouj, M. and Neuvo, Y, “Weighted Median Filters: A Tutorial,” IEEE Transactions on Circuits and Systems II: 

Analog and Digital Signal Processing, vol.43, no.3, pp.157-192, 1996. 

[7] Chanu, R. and Singh, K.M, “ Vector Median Filters—A Survey,”  International Journal of Computer Science and Network 

Security, vol.16, no.12,  pp.66-84, 2016. 

[8] Astola, J., Haavisto, P. and Neuvo, Y,  “Vector Median Filters,” Proceedings of the IEEE, vol.78, no.4, pp.678-689, 1990 

[9] Tukey, J.W., 1974. Nonlinear (Nonsuperposable) Methods for Smoothing Data. Proc. Cong. Rec. EASCOM'74, pp.673-681, 1974. 

[10] Xu, Q., Zhang, Q., Hu, D. and Liu, J, “ Removal of Salt and Pepper Noise in Corrupted Image Based on Multilevel Weighted Graphs 

and IGOWA Operator,” Mathematical Problems in Engineering, 2018. 

[11] Kumar, N.R. and Kumar, J.U, “A Spatial Mean and Median Filter for Noise Removal in Digital Images,” International Journal of 

Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol.4, no.1, pp.246-253, 2015. 

[12] Khryashchev, V., Kuykin, D. and Studenova, A, “ Vector Median Filter with Directional Detector for Color Image Denoising.,” In Proc. 

of the World Congress on Engineering,  vol. 2, pp. 1-6, 2011. 

[13] Plataniotis, K.N., Androutsos, D. and Venetsanopoulos, A.N, “Vector Directional Filters: An Overview. In CCECE'97,”  Canadian 

Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings , vol. 1, 

pp. 106-109, 1997. IEEE. 

[14] Trahanias, P.E. and Venetsanopoulos, A.N, “ Vector Directional Filters-A New Class of Multichannel Image Processing Filters,”  IEEE 

Transactions on Image Processing, vol.2, no.4, pp.528-534, 1993. 

[15] Lukac, R, “ Adaptive Color Image Filtering Based on Center-Weighted Vector Directional Filters,” Multidimensional Systems and 

Signal Processing, vol.15, no.2, pp.169-196, 2004. 

[16] Choppala, P., Meka, J.S. and PVGD, P.R, “Vector Isolated Minimum Distance Filtering for Image De-Noising In Digital Color 

Images,” International Journal of Recent Technology and Engineering, vol.8, no.4, pp.2401-2405, 2019. 

[17] Choppala, P., Meka, J.S. and PVGD, P.R, “Isolated Vector Median Filtering for Noise Reduction in Digital Color Images,” 2020. 

[18] Smolka, B., Malik, K. and Malik, D, “ Adaptive Rank Weighted Switching Filter for Impulsive Noise Removal in Color Images,” 

Journal of Real-Time Image Processing, vol.10, no.2 pp.289-31, 2015. 

[19] Harini N, Shaik Majeeth S, Aswanth Kumar G and Abinaya J, "CT Image Denoising using DTCWT with Level Dependent 

Thresholding," International Journal of Electronics and Communication Engineering, vol. 5,  no. 8, pp. 14-21, 

2018. Crossref, https://doi.org/10.14445/23488549/IJECE-V5I8P103 

[20] D.C. Shubhangi, Anita Totapnor, "Survey On Noise Detection Method", International Journal of Engineering Trends and Technology 

67.8 (2019): 19-21. 

[21] Johnsymol Joy, "Overview of Different Data Clustering Algorithms for Static and Dynamic Data Sets" SSRG International 

Journal of Computer Science and Engineering, vol. 5, no. 3 pp. 1-3, 2018.    

Crossref, https://doi.org/10.14445/23488387/IJCSE-V5I3P101 
 


