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Abstract - Microarray technology is a principle to begin and verify the antibody microarrays in a registered series of patents. 

Within a particular trial, a Microarray Data Analysis (MDA) is utilized to identify the patterns of thousands of genes. The MD 

consists of a large volume of gene expression data for detecting cancer diseases. But, the imbalanced class label instances in 

microarray gene datasets and initialized parameter value for the classifier lead to over-fitting and under-fitting problems in 

cancer classification. Therefore, in this article, a stacking ensemble of Deep cluster-based Deep Learning (DL) systems for 

Cancer Classification is designed to overcome the abovementioned difficulty by using many learning models to build one ideal 

predictive model. The developed model is classified into three sections. First, a Modified Harmony Search Algorithm and 

Modified Kernel-based Fuzzy C-Means (MHSAMKFC) are developed to eliminate huge redundant features effectively. 

Second, the MHSAMKFC with Convolutional Neural Network (CNN) classifier is proposed to handle uncertainties in the 

labelled training dataset to improve the classifier performance. Third, the over-fitting and the under-fitting problem of 

MHSAMKFC-CNN is reduced by the ensemble method, which uses multiple learning models to provide better prediction 

accuracy. The whole process is termed to be En-MHSAMKFC-CNN. Finally, experimentation is carried out on four Gene 

Expression Microarray (GEM) datasets and verified that the En-MHSAMKFC-CNN improves the classification performance 

of SVM, KNN, RF and ANN classifiers.  

Keywords - Microarray Data Analysis, Convolutional Neural Network, Fuzzy C-Means, Harmony Search Algorithm, Cancer 

Classification.

1. Introduction 
One in every six fatalities can be attributed to cancer, 

making it the second leading cause of mortality globally [1]. 

If cancer is detected and treated early, the death rates can be 

diminished. The distinguishing qualities of distinct cancer 

valetudinarians are vital to characterize, and patient-specific 

care is scheduled because the indicators vary from case to 

case. The genomic data from the patient is ideal for 

extracting these features. The tremendous advancement in 

MD processing research over the last decade has made it a 

powerful tool for illness diagnosis [2]. Clinical pathology 

recognizes, explains, and categorizes human diseases, 

including cancer, using microarrays based on genomic 

information. Cancer patients will be benefitted from more 

efficient treatment and more responsive cancers if discovered 

early and appropriately. 

 

DNA microarrays produce a significant amount of 

genetic data that is possibly useful for cancer identification 

but is mostly useless and noisy. The presence of antiquated, 

unnecessary, and distracting genomes degrades data 

collections. Approaches to gene selection are critical for 

developing a clinical framework for the condition, 

particularly when samples are scarce [3]. TLBOGSA [4] was 

created for cancer categorization by utilizing a new hybrid 

metaheuristic method named Teaching learning-based 

algorithm (TLBO) and Gravitational Search Algorithm 

(GSA). When gravitational search mechanisms are combined 

with the teaching stage, the search potential during the 

growth period improves. However, due to the high 

dimensionality and small sample quantity of GEM data, this 

Feature Selection (FS) may not be efficient in identifying 

important genes. 

 

The MHSA [5] is a project intended to overcome the 

dimensional curse issue by identifying relevant genes with 

fewer intricate issues. But, this method has a disadvantage in 

the last iterations when the Pitch Adjusting Rate (PAR) value 

is close to zero, which can cause the algorithm's convergence 

performance to stagnate. The MKFC method [6] solves the 

problem of classic FCM not being able to tolerate minor 

variations between clusters. However, this technique is very 

sensitive to noisy data that provide less informative genes. 

This paper combines both MHSA and MKFC for FS from 

microarray cancer datasets to solve these problems. The 

MHSAMKFC method deliberately handles the datasets 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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having a large amount of data without class label and 

eliminate redundant feature effectively.   

 

 In literature, Machine Learning (ML) techniques like 

Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Random Forest (RF) and Artificial Neural Network 

(ANN) classifier were utilized to classify a large amount of 

MD. The wrapper FS method in processing features selection 

and classification performs better than filter-based FS 

methods. An SVM-based classification with spider monkey 

optimization based FS [7] classifies the cancer diseases with 

two objectives. The initial goal is to reduce the number of 

parameters while increasing classifier accuracy. But, the ML 

algorithm for cancer prediction is still challenging for small 

samples and is easily prone to susceptible error. 

 

To solve this, the DL Based cancer type classification 

was introduced [8] to classify the larger GEM datasets. The 

Deep Neural Network (DNN) and visualization approaches 

such as layer-wise fetidness and Grad-Cam were used to 

screen out the genes with low deviation throughout all data. 

Then, the high-dimension expression information was 

integrated into a 2-dimensional space to suit the 

Convolutional layers. The idea of the Guided Grad-Cam [9] 

was used to develop a three-layer CNN with a trained neural 

structure for selecting notable genes for classification. This 

method provides better results for cancer prediction. But, it 

results in a high computational time problem.  

 

DL-based Unsupervised CNN classifier is introduced to 

improve the classification process, which intends to learn 

data interpretations that can better reconstruct training 

samples. This Unsupervised CNN is integrated with the 

MHSAMKFC method to produce a single optimal predictive 

model to reduce the dimensionality reduction and 

uncertainties in the labelled training MD. 

 

The MHSAMKFC-CNN has the imbalanced class label 

instances in datasets and initialized parameter values for the 

classifier, which leads to over-fitting and under-fitting 

problems while performing the cancer classification. To 

solve these issues, MHSAMKFC-CNN is enhanced with a 

stacking ensemble, which uses multiple learning models to 

provide better prediction accuracy. This Ensemble model is 

achieved by employing majority voting, where unlabeled 

data will assign a class with the highest number of votes 

among the CNN classifiers predictions. The developed 

method improves the classification performance compared to 

the standard classifier for the prediction of cancer type 

prediction on GEM Datasets. 

 

2. Literature survey 
A feature extraction strategy was developed using 

ensemble FS and improved discriminant independent 

component analysis for MD classification [10]. However, the 

datasets are pre-processed by setting thresholds which 

greatly influence the accuracy of classifiers. A centroid-

based DNA choice technique was developed [11] for 

categorizing the microarray information. But, the accuracy of 

this method decreased with a large number of data features. 
 

A framework was developed [12] to choose the top-

ranked features for MD. This model used feature ranking 

techniques and attributed clustering in the pipeline to 

eliminate irrelevant features. However, if the dataset was 

imbalanced, efforts were not given to resolve this issue in the 

dataset. A two-stage local dimensionality technique was 

suggested [13] for local dimensionality reduction and 

classification of MD. However, the regularization parameter 

influences the accuracy of the two-stage local dimension 

approach. 

 

A Cooperative Co-evolution method for FS (CCFS) 

was presented [14] on MD. A binary gravitational search 

algorithm was employed to search the solution space 

utilizing the principle of coevolution theory through filter 

criterion in the objective function. However, this technique 

had a high computational complexity. Bayesian Lasso 

quintile regression method was presented [15] to classify 

gene expression for GEM selection. This method combines 

Bayesian MCMC evaluation with a skewed Laplace 

distribution for defects and a graded hybrid of regular 

probabilities for regression coefficients. 

 

A multiobjective attribute selection model was 

constructed [16] for MD through distributed parallel 

algorithms. This model selects the most significant features 

based on multiple objectives such as feature number, 

classification error and feature redundancy to classify the 

MD more effectively. However, there might be a possibility 

of conflicts between the various goals. A Partial Maximum 

Correlation Information (PMCI) method was presented [17] 

for the classification of MD. The orthogonal components 

were extracted from the attribute space to assess the 

significance of all attributes. However, this method has a 

poor F1 score. A discrete Bacterial Colony Optimization 

with a multi-size population (BCO-MDP) algorithm was 

developed [18] for feature selection and classification of 

microarray gene expression cancer data. However, finding a 

suitable search space for high classification accuracy was 

challenging without prior knowledge of datasets. 

 

An attribute Selection scheme was developed [19] for 

large data dimension Data using Weighted K-NN (WKNN) 

and GA. GA was applied for computing the best weight 

vector for the contribution of the value in the component to 

the classification, which was equal to the input degree of the 

feature value. However, this method has high computational 

complexity. A weighted group hybrid method was 

demonstrated [20] using a Partition Relevance Analysis 

(PRA) and reduction process. It is accomplished by 
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eliminating duplicate and noisy indexes using data 

dimensionality reduction techniques in the second phase of 

PRA. However, this method needs to work more on complex 

strategy functions. A Grouping Genetic Algorithm with 

Extreme Learning Machine (GGA-ELM) was developed [21] 

to resolve a maximally diverse issue in microarray data 

classification. However, this method has a low impact on 

larger datasets. 

 

A stacking ensemble DL technique for cancer type 

prediction utilizing TCGA data was described [22] based on 

a One-Dimensional CNN (1D-CNN) approach. Least 

Absolute Shrinkage and Selection Operator (LASSO) 

regression was employed as an FS approach to reduce the 

number of genes. However, this approach had a considerable 

computational overhead. The robust Minimum Redundancy 

Maximum Relevancy (rMRMR) filter strategy was 

developed [23] with Modified Gray Wolf Optimizer 

(MGWO) to determine the top-ranking genes in a microarray 

data classification. On the other hand, the proposed 

combination achieves poor classification accuracy. 
 

 

3. Proposed methodology 
The genes are the features of gene expression analysis. 

Gene selection is the procedure of identifying the genes most 

closely associated with a specific subclass. Lowering the 

dimensionality, as mentioned above, of the dataset is one of 

the benefits of this technique. Furthermore, when 

categorization is used, many genes become unnecessary. 

When gene selection is used, the risk of overwhelming the 

impact of relevant genes is lessened. In MDA, FS and 

clustering is by far the most popular technique. Hence, this 

research proposes an MHSAMKFC algorithm that seeks to 

overcome the dimensionality problem on MD and select 

meaningful genes. The complete working of this algorithm 

has been briefly explained below. 

3.1. MHSAMKFC 

In this process, an MHSA is developed for the FS 

process by modifying the existing HS, which is briefly 

illustrated below in [10]. 

 

3.1.1. Step 1 Constructing variables and Harmony Memory 

(HM)  

The first step is to define the scope of the HM project, 

choose a good starting point for your work, and establish 

parameters and harmony. The meaning of the parameters 

must be understood before using this procedure. HS can be 

compared to a Genetic Algorithm (GA) because it is an 

evolutionary algorithm. Genes are the essential portion of a 

Harmony Vector (𝐻𝑣) and are the core parts of the 

chromosome in GAs. The amount of harmonies in a single 

HM is called the HM Size (HMS). 𝐻𝑣 are random at the 

outset of the HS method's execution, and the iterative process 

relies on a small number of previously determined harmony 

values. 

 

3.1.2. Step 2 Forming New Harmony by separating HM 

Generating a New HM is similar to that of the present 

HS algorithm. Still, the observation will be carried out by 

dividing the HM into two parts, as illustrated in Figure 1. 

The topmost region comprises harmonies in the top 20% of 

fitness inside a single HM. Harmony Memory Considering 

Rate (HMCR) and PAR are not used for this area. As a 

result, the activation process does not add New Harmony. 
Rather than creating a diversity of combinations, when the 

combination is recombined within the harmony of the upper 

area, a combination of higher fit could be found, after which 

new harmonies are developed. The second area is the lower 

area in HM, in which the available harmonies form the latest 

harmonies by HMCR and PAR. 

 

  

 
Fig. 1 Divided harmony memory 
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3.1.3. Step 3 Updating HM  

Goodness-of-fit refers to the degree to which the 

classification model used in the piece works with the 

harmony selection used to make the classifications. Each 

harmony value determines the fit, sorted in the harmony 

sequence with the highest fitness. In Step 2, the longstanding 

binary harmonics with the smallest fit are corrected and 

eliminated to suit the scale of the originally provided HMS. 

 

3.1.4. Step 4 Iterating previous Steps 2 and 3  

Atpresent,  there is no  newly   modified process.  Steps 

2  and 3 should be repeated as many times as the iteration req

uires. The upper section discovers harmonies with a greater 

fitness level inside the combination with higher 

appropriateness as the total count of trials develops. The 

lower section preserves the benefits of the previous HS, 

namely, discovering combinations based on the 

diversifications. The greatest classification performance of 

two locations within one HM is saved in a text file  

 

In MHSA, The Harmony Fitness (𝐻𝑓) is evaluated 

using the Inter and Intra cluster distance, a cluster analysis 

used to discover overall distribution patterns and intriguing 

relationships among collected data features. The Intercluster 

distance 𝐼𝑑
𝑟 is the distance between two features belonging to 

two different clusters, whereas the Intra cluster's distance 

𝐼𝑑
𝑠 is the distance between two features belonging to the same 

cluster, which is defined as follows 

 

𝐼𝑑
𝑟 =  ∑ ∑ √𝑥𝑖 − 𝑐𝑗  𝐶

𝑗=1
𝑁
𝑖=1                                                    (1) 

 

 𝐼𝑑
𝑠 =   ∑ ∑ √ 𝑐𝑖 − 𝑐𝑗  𝐶

𝑗=1
𝑁
𝑖=1                                                  (2) 

 

In Equations 1 and 2, 𝑁 = Number of Clusters, 𝐶= 

Number of features under clustering, 𝑥𝑖 denotes the feature 

under clustering, 𝑐𝑖 represents the 𝑖 − 𝑡ℎ cluster,  𝑐𝑗 = 

centroid of (same) cluster, 𝑖, 𝑗 = Number of iterations. By 

using this equation, the 𝐻𝑓 can be estimated to calculate the 

fitness value for the cluster features efficiently.   

 

After the feature selection process, the collected 

features are further processed to the clustering method to 

eliminate the irrelevant features in the given datasets. The 

MKFC algorithm adds kernel information to the classic FC 

algorithm. It addresses the FC algorithm's inability to 

manage small changes within clusters, which has been 

created for effective data clustering. The kernel approach 

converts a high-dimensional feature space from a non-linear 

input data structure.  

 

Kernel-based approaches entail conducting an arbitrary 

non-linear mapping from a d-size feature space 𝑅 𝑑  to a 

higher-size space (kernel space (𝐾)). The kernel space may 

have an indefinite number of dimensions. Since the starting 

problem in the feature space may be non-linear and not 

exponentially distinct, increasing the number of dimensions 

is warranted. 

 

MKFCM is divided into two sorts, the primary of which 

includes prototypes built in the attribute space. MKFCM-F 

will be the name of these clustering methods (with F 

standing for the feature space). The prototypes are preserved 

in the 𝐾 in the second category, denoted as MKFCM-K, and 

so must be simulated in the feature space by generating an 

inverse mapping from kernel space to feature space. The 

MKFCM approach has the benefit that the hypotheses are 

stored in the feature space and are implicitly projected to the 

kernel space using the kernel operator. 

 

Obviously, due to the fact that known kernel functions 

require only kernel functions to address problems in the 

kernel space, i.e., the inner development of the transform 

function. This variant of MKFCM is referred to as MKFCM-

𝐾 when the concepts 𝑜𝑖 are produced in the kernel space. The 

fundamental purpose of Equations 3,4 and 5 is to construct 

kernel space 

𝑄 =  ∑ ∑ 𝑢𝑖𝑗 
𝑚 ‖ 𝜑 (𝑥𝑗) − 𝑜𝑖‖

2𝑁
𝑘=1

𝑐
𝑖=1                                  (3) 

 

𝑢𝑖𝑗 =  1

∑ (𝑑𝜑𝑖𝑗
2 /𝑑𝜑𝑖𝑗

2 )𝑐
ℎ=1

1
(𝑚−1)⁄⁄                                      (4)  

 

𝑑𝜑𝑖𝑗
2 = 𝑘(𝑥𝑗𝑥𝑗) − 

2 ∑ 𝑢𝑖ℎ
𝑚 𝑘(𝑥ℎ𝑥𝑗)𝑛

ℎ=1

∑ 𝑢𝑖ℎ
𝑚𝑛

ℎ=1
+

∑ ∑ 𝑢𝑖ℎ
𝑚𝑛

𝑙=1  𝑘(𝑥ℎ𝑥𝑙)𝑛
ℎ=1

∑ 𝑢𝑖ℎ
𝑚𝑛

ℎ=1
2   (5)  

                                                                                                                                                                                            
Another type of MKFCM limitation is that the kernel 

space prototypes are basically mapped from the unique data 

space, otherwise the feature space. That is, the function is 

defined in Equation 6 

 

𝑄 = ∑ ∑ 𝑢𝑖𝑗 
𝑚 ‖ 𝜑 (𝑥𝑗) −  𝜑(𝑜𝑖)‖2𝑁

𝑘=1
𝑐
𝑖=1                          (6) 

 

This type of KFCM is mentioned as KFCM-F. 

Naturally, only 𝑘(𝑥, 𝑦)  =  𝑒𝑥𝑝 (−‖𝑥 − 𝑦‖2/𝑟2) Gaussian 

kernel in Equation 7 is applied in KFCM, and 

since𝑘(𝑥, 𝑥)  =  1 for Gaussian kernel   

 

‖ 𝜑 (𝑥𝑗) −  𝜑(𝑜𝑖)‖ = <  𝜑 (𝑥𝑗),  𝜑 (𝑥𝑗) > + 

<  𝜑 (𝑜𝑖) 𝜑 (𝑜𝑖) > −2  𝜑 (𝑥𝑗)𝜑 (𝑜𝑖) 

         = 𝑘(𝑥𝑗 , 𝑥𝑗) + 𝑘(𝑜𝑖 , 𝑜𝑖) − 2𝑘(𝑥𝑗 , 𝑜𝑖 ) 

=    2(1-(𝑥𝑗 , 𝑜𝑖 ))                                (7) 

 

Here, 𝐾(𝑋𝑗, 𝑂𝑖)can be considered as a robust distance 

measurement derived from the kernel space. For these 

KFCM-F applying Gaussian kernels, iteratively update the 

prototypes and memberships as Equation 8 

 

‖ 𝜑 (𝑥𝑗) −  𝜑(𝑜𝑖)‖ = ∑ ∑ 𝑢𝑖𝑗 
𝑚 (−𝑘(𝑥𝑗 , 𝑜𝑖 ))𝑛

𝑗=1
𝐶
𝑖=1              (8)          
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Algorithm 1 MHSAMKFC 

Input: Given Dataset D 

Output: Best feature (Gene) cluster and 𝐻𝑓 

\\HS algorithm: FS process 

Apply the required variable BDR, HMCR, PAR and HMS 

Assign 𝑖𝑡𝑟: = 0 {iteration in progress}  

Choose Harmony values (0 and 1) 

BDR = HMS*0.2 // establish a top and bottom limit 

For (𝑖 =  1: 𝑖 ≤  𝐻𝑀𝑆), then 

Develop primary harmony (𝑥𝑛𝑒𝑤) 

Perform Algorithm 2 to obtain cluster and 𝐻𝑓 

End for 

Repeat  

For (J = 1: N) then              //HS in upper area 

 𝑥𝑛𝑒𝑤 = Arbitrarily chosen from 𝑥(𝐵𝐷𝑅+1)𝐽to 𝑥(𝐻𝑀𝑆)𝑗 

end for 

Create New Harmony (𝑥𝑛𝑒𝑤)  

Perform Algorithm 2 to obtain cluster and 𝐻𝑓 

If (𝑅𝑎𝑛𝑑(0,1)  <  𝐻𝑀𝐶𝑅) then //HS in lower area  

 For(𝐽 =  1: 𝑁) then  

 𝑥𝑛𝑒𝑤= Randomly select from𝑥(𝐵𝐷𝑅+1)𝐽to 𝑥(𝐻𝑀𝑆)𝑗 

 If (𝑅𝑎𝑛𝑑(0,1)  <  𝑃𝐴𝑅) then 

  𝑥𝑛𝑒𝑤 = |𝑥𝑛𝑒𝑤−1|  

 end if  

 end for 

 Generate new harmony (𝑥𝑛𝑒𝑤)  

Perform Algorithm 2 to obtain cluster and 𝐻𝑓 

else 

Develop a New Harmony randomly 

Perform Algorithm 2 to obtain cluster and 𝐻𝑓 

End if 

if(fi𝑡(𝐻𝑀𝑛𝑒𝑤(𝑢𝑝𝑝𝑒𝑟,𝑙𝑜𝑤𝑒𝑟)) <  fi𝑡( 𝐻𝑀𝑜𝑙𝑑)) 

Update HM 

End if 

Set𝑖𝑡𝑟+= 1  
Until (𝑖𝑡𝑟 <  𝑚𝑎𝑥𝑖𝑡) 

Determine the best harmony (Gene Feature and cluster) 

 

Algorithm 2.MKFC 

\\MKFCM: Clustering process 

Fix 𝑐, 𝑡𝑚𝑎𝑥, 𝑚 >  1 𝑎𝑛𝑑 𝜀 >  0  for some positive constant;  

Initialize the membership 𝑢𝑖𝑘
0  

𝐽𝑚= ∑ ∑ 𝑢𝑖𝑘 
0 ‖𝑋𝑘 − 𝑉𝑖‖

2𝑁
𝑘=1

𝑐
𝑖=1  

For t =1, 2…, 𝑡𝑚𝑎𝑥, do:         

            (a)Upgrade all prototypes 𝑉𝑖
𝑡 

            (b) Upgrade all memberships 𝑈𝑖𝑘
𝑡  

Compute 𝐸T= 𝑚𝑎𝑥𝑖,𝑘| 𝑈𝑖𝑘
𝑡 − 𝑈𝑖𝑘

𝑡−1 |, If𝐸T  ≤  𝜀,  

𝑈 Є {𝑢𝑖𝑘 Є 0,1 | ∑ 𝑢𝑖𝑘

𝑐

𝑖=1
= 1 ∀𝑘 ;   𝑂 < ∑ 𝑢𝑖𝑘

𝑁

𝑘=1
< 𝑁, ∀𝑖} 

Stop: 𝑒𝑙𝑠𝑒 𝑡 = 𝑡 + 1  \\ number of clusters is obtained 

 

The generated features are transferred to classifiers like 

SVM, KNN, RF, and ANN for effective cancer 

classifications to validate the efficacy of proposed FS and 

clustering approaches. But, these machine methods take a 

long time to classify the data features. So, the DL structure 

has been used for the classification process on GEM datasets. 
 

3.2. MHSAMKFC-CNN  

Once the data features are collected from the classifier, 

the Unsupervised CNN is used in this research work to 

reduce the time complexity and increase cluster performance 

by updating the cluster centres based on a reliable FS, which 

is a key component of this method to ensure its success. For 

the efficient performance of the clustering Algorithm, a CNN 

with the proposed MKFCMHS is briefly explained in Figure 

2. 
 

The CNN codes (the layer activations in a CNN before 

classification, including non-linearity) capture much 

information about the gene expression data. They have 

worked well as features for gene expression data used in 

many classification tasks. This work takes a step further in 

investigating the response of the individual layers to images 

of different classes.  
 

Using CNN, layer activations are clustered using the 

MHSAMKFC technique. Cluster centroids are saved using 

this technique. If a particle's distance from the cluster's 

centroid is smaller than its distance from any other centroid, 

it is considered part of that cluster. Through experiments, 

MHSAMKFC-CNN determines the optimal centroids by 

switching between (1) assigning data points to categories 

based on the current centroids and (2) assigning data points 

to categories according to the actual centroids. (2) Choosing 

a centroid (the cluster's epicentre) based on the pre-existing 

grouping of data points. MHSAMKFC-CNN will be 

developed according to a dataset 𝐷 ∈ ℝ𝑑×𝑘
of 𝑘 vectors 

(i.e., centroids), so thus that a data matrix 𝑥𝑖 ∈ ℛ𝑑𝑖 =
 1, … , 𝑚  can be projected to a code matrix s it that 

minimizes the error in reconstruction, which is defined as 

follows in Equations 9,10 and 11. 
 

𝑚𝑖𝑛
𝐷  𝑠

∑ ‖𝐷𝑖𝑠𝑖 − 𝑓(𝑥𝑖 , 𝑤)‖2
2𝑁

𝑖=1                                             (9) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑠𝑖‖0 ≤  1, ∀𝑖                                              (10) 

 

‖𝐷𝑗‖
2
= 1, ∀𝑖                                                                     (11) 

 

where 𝑥𝑖  denotes the source data and (𝑥𝑖 ,) denotes the 

CNN function that calculates the gene expression data  𝑥𝑖  

With 𝑤 weightiness and 𝐷𝑗 is the 𝑗𝑡ℎ column. The objective 

is to train a 𝐷 ∈ ℝ𝑑×𝑘  and encoded vector of 𝑠𝑖  , which will 

allow the initial CNN features to be reconstructed. Equation 

(9) yields a set of ideal cluster designations𝑦�̂�, which are 

employed as substitute labels for CNN learning factors in 

ensembles. Each CNN's parameters were subsequently learnt 

by addressing Equation 12: 

file://///HS


K. Prema & A. Kumar Kombaiya / IJETT, 70(9), 20-33, 2022 

 

25 

 
                                                                   Fig. 2 Structure for the CNN layer with MHSAMKFC System 

 

𝑚𝑖𝑛
𝑤

1

𝑁
∑ ℒ(f (𝑥𝑖 , w), 𝑦�̂�)

𝑁
𝑖=1                                                 (12) 

 

Stochastic Gradient Descent (SGD), as used in 

conventional CNN backpropagation, is used to reduce the 

cross entropy loss 𝓛, in the equation mentioned above. 

Surrogate labels are generated from CNN features (see 

Equation 9) and used to fine-tune the CNNs' parameters 

during training with MHSAMKFC, a final iterative process 

(see Equation 12). Iterations of this process are performed till 

the clustering and failure have stabilized. 

 Initially, a different procedure is devised to understand what 

kind of features are learnt in every layer. 
 

1. Select 𝑛 the number of clusters/classes. 

2. Select, from the MD, subsets of equal size 𝑘, from each 

class. Thus in total, there are 𝑛𝑘  features 

3. Each information is passed through the pre-trained 

network, and their activations for all layers are recorded: 

In layer 𝑖 there are 𝑛𝑘  activations, which constitute the 

 𝐷𝑖 , for the analysis at that layer described in the next 

step. 

4. At layer 𝑖, the t 𝐷𝑖  is clustered into 𝑛 clusters using the 

MHSAMKFC-CNN algorithm, which is explained 

above 

5. Analyze the clusters obtained at each layer concerning 

the original classes to which the corresponding features 

belong. 

 

3.3. Ensemble of MHSAMKFC-CNN 

The method of enhancing classifier efficiency by 

integrating the contributions of trained sub-models to tackle 

the identical categorization issue is known as the meta-

learner, a prototype that learns to improve the base- learners' 

predictions and obtains the final result. As a result, the 

ensemble approach achieves better predictive performance 

on the MD for Cancer categorization than individual 

learners. An ensemble's generalizability decreases variance 

in predictions and assures that the most consistent and best 

possible projection is made. The Meta model develops to 

integrate the input predictions to generate a better final 

prediction than each of the base classifiers by taking the 

output of the sub-models MHSAMKFC- CNN with varied 

variables as input. The suggested stacking ensemble DL 

algorithm for the cancer prediction method on MD is shown 

in Fig. 3. 

 

Algorithm 3. Stacking Ensemble Algorithm 

Input: Data set 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑚, 𝑦𝑚)}; 
Highest-level learning algorithms 𝐿1, … … , 𝐿𝑇 

Lowest-level learning algorithm 𝐿.  
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Process:  

1. For 𝑡 =  1, . . . , 𝑇 ∶  %Train a highest-level learner by 

applying the  

2.   ℎ𝑡 =  𝐿𝑇(𝐷);% highest-level learning algorithm 𝐿𝑇 

3. End 

4. D* = ∅;               % Create a new database 

5. For 𝑖 =  1, . . . , 𝑚:  
6.     For 𝑡 =  1, . . . , 𝑇 ∶ 
7.       𝑧𝑖𝑡 = ℎ𝑡(𝑥𝑖); 

8.     end 

9.     𝐷 ∗ =  𝐷 ∗ ∪ ((𝑧𝑖1 , … . ., 𝑧𝑖𝑇  ), 𝑦𝑖); 
10. end 

11.  

 

 

 

ℎ ∗ =
 𝐿(𝐷∗);         

% Apply the Lowest-level 

learning algorithm 𝐿 to the 

 % new data set D* to learn the 

second-level learner h*. 

Output: 𝐻(𝑥) =  ℎ∗(ℎ1(𝑥), . . . , ℎ𝑇(𝑥)) 

 

4. Dataset Description 
The effectiveness of the existing and proposed GEM 

dataset based on the cancer prediction method is 

implemented in MATLAB 2018a. It runs on a Microsoft 

Windows 7 with an Intel processor at 2.70 GHz and 4GB 

memory. Three GEM datasets, such as Leukemia, 

Lymphoma and prostate microarray, are collected for 

experimental purposes. These datasets are publicly available 

on the internet, listed in Table 1. From the collected data, 

40% of data are used for training, and 60% are used for 

testing. 
Table 1. Dataset Desecration 

Data  

set 

Instanc

es  

Featur

es  

Class

es  

Source  

Leuke

mia 

72 3572 2 https://web.stanf

ord.edu/~hastie/

CASI_files/DA

TA/leukemia.ht

ml 

Lymph

oma 

77 2647 2 https://ico2s.org

/datasets/microa

rray.html 

Prostat

e  

102 2135 2 https://ico2s.org

/datasets/microa

rray.html 

 

5. Experimental results  
The effectiveness of existing methods like GGA-ELM 

[21] and rMRMR-MGWO [23] and proposed methods 

MHSAMKFC, EN-MHSAMKFC using different algorithms 

like KNN, SVM, RF, ANN and CNN based on the 

abovementioned datasets. The performances are tested in 

terms of Accuracy, Precision, Specificity, Sensitivity and F1 

score, which are briefly explained below. 

5.1. Accuracy 

The fraction of instances successfully categorized is 

described as accuracy. It's obtained by dividing the total 

proportion of accurately predicted sick (true positive) and 

normal (true negative) people by the overall number of 

classifications. It is calculated in Equation 13 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (13) 

 

Where TP denotes cancer patients correctly categorized 

as sick, FP denotes healthy people who are wrongly labelled 

as sick. TN denotes healthy individuals who are correctly 

identified as healthy. FN denotes sick people who are 

incorrectly classed as healthy. Table 2 depicts the 

comparison results of accuracy for proposed and existing 

techniques. 
 

Table 2. Comparison of Accuracy 

Datasets\ 

Classifiers 

Leukemia Lymphoma Prostate 

GGA-ELM 82.42 83.36 84.15 

rMRMR-

MGWO  
84.13 85.24 85.67 

MHSAMKFC - 

KNN 
85.34 87.20 86.98 

MHSAMKFC - 

SVM 
87.42 89.24 89.67 

MHSAMKFC 

- RF 
90.76 91.87 91.34 

MHSAMKF

C ANN 
92.24 93.74 95.14 

MHSAMKFC-

CNN 
94.48 95.06 96.75 

EN-

MHSAMKFC- 

CNN 

96.34 97.55 98.58 

 

Fig. 4 displays the Accuracy of existing GGA-ELM, 

rMRMR-MGWO, with proposed MHSAMKFC – KNN, 

SVM, RF, ANN, CNN and EN-MHSAMKFC-CNN 

techniques. In this analysis, EN-MHSAMKFC-CNN method 

is  16.88%, 14.51%, 12.88%, 10.20%, 6.148%, 4.444% and  

1.968% for leukemia dataset; 17.02%,14.44%, 11.86%, 

9.311%, 6.182%, 4.064%, 2.61% for Lymphoma dataset and 

17.14%, 15.06%, 13.33%,  9.936 %, 7.926%, 

3.615%,1.891% for Prostate dataset is higher than that of 

GGA-ELM, rMRMR-MGWO with proposed MHSAMKFC 

– KNN, SVM, RF, ANN, CNN methods respectively on 

given dataset. This analysis shows that the EN-

MHSAMKFC-CNN can achieve better accuracy than other 

methods for microarray cancer classification. 

 

5.2. Precision 

The proportion of true positive incidents that are 

categorized as positive is known as precision. 
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Fig. 3 Stacking ensemble with MHSAMKFC-CNN 
 

Fig. 4 Comparison of Accuracy 
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Fig. 5 Comparison of Precision 

 

It is calculated in Equation 14, 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                          (14) 

 

Table 3 shows the comparison results of precision for 

proposed and existing methods. Figure 5 displays the 

precision of existing GGA-ELM, rMRMR-MGWO, with 

proposed MHSAMKFC – KNN, SVM, RF, ANN, CNN and 

EN-MHSAMKFC- CNN techniques. 

    

 In this analysis, EN-MHSAMKFC-CNN method is  

20.84%, 15.87%, 12.20%, 9.512%,  7.661%, 5.088%, and  

3.17%  for leukemia dataset; 16.94%, 14.02%, 11.92%, 

8.502%, 6.937%, 3.543%, and 1.34% for Lymphoma dataset 

and 14.58%, 10.16%, 9.563%, 7.307%,4.663% and  2.52% 

Prostate dataset is higher than that of GGA-ELM, rMRMR-

MGWO with proposed MHSAMKFC – KNN, SVM, RF, 

ANN and CNN methods respectively on given dataset. This 

analysis shows that the EN-MHSAMKFC-CNN can achieve 

better precision than other methods for microarray cancer 

classification.    
 

 

 

 

Table 3. Comparison of Precision 

Datasets\ 

Classifiers 

Leukemi

a 

Lymphom

a 

Prostate 

GGA-ELM 81.17 83.70 85.31 

rMRMR-

MGWO  
84.65 85.84 86.38 

MHSAMKFC - 

KNN 
87.42 87.45 89.85 

MHSAMKFC - 

SVM 
89.57 90.21 90.34 

MHSAMKFC  - 

RF 
91.11 91.53 92.24 

MHSAMKFC 

ANN 
93.34 94.53 94.57 

MHSAMKFC-

CNN 
95.07 96.58 96.54 

EN-

MHSAMKFC- 

CNN 

98.09 97.88 98.98 

    

5.3. Specificity 

 Specificity quantifies the rate at which original negatives 

are accurately identified as such. The formula is as follows in 

Equation 15:  
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                      (15) 

 

Table 4 shows the comparison results of Specificity for 

proposed and existing methods 

Figure 6 displays the Specificity of existing GGA-ELM, 

rMRMR-MGWO, with proposed MHSAMKFC – KNN, 

SVM, RF, ANN, CNN and EN-MHSAMKFC-CNN 

techniques. In this analysis, EN-MHSAMKFC-CNN method 

is  16.58%, 15.80%, 13.07%, 10.49%,  8.211%, 4.702%,  and 

2.168% for leukemia dataset; : 17.91%, 14.42%, 11.26%, 

7.983%, 7.155%, 4.632%, and 2.655% for Lymphoma 

dataset and : 17.57%, 14.43%, 10.00%, 8.326%, 6.219%, 

3.821%, 1.228%   for Prostate dataset is higher than that of  

Table 4. Comparison of Specificity 

Datasets\ Classifiers Leuke

mia 

Lympho

ma 

Prostate 

GGA-ELM 83.65 82.93 84.10 

rMRMR-MGWO  84.21 85.46 86.41 

MHSAMKFC - 

KNN 
86.24 87.89 89.89 

MHSAMKFC - SVM 88.26 90.56 91.28 

MHSAMKFC  - RF 90.12 91.26 93.09 

MHSAMKFC ANN 93.14 93.46 95.24 

MHSAMKFC-CNN 95.45 95.26 97.68 

EN-MHSAMKFC- 

CNN 
97.52 97.79 97.68 

        
 

 

 
Fig. 6 Comparison of Specificity 

 

GGA-ELM, rMRMR-MGWO, with proposed MHSAMKFC 

– KNN, SVM, RF, ANN and CNN methods respectively on 

given dataset. This analysis shows that the EN-

MHSAMKFC-CNN can achieve better Specificity than other 

methods for microarray cancer classification. 

 

5.4. Sensitivity 

       The definition of sensitivity is the proportion of correctly 

identified positives (e.g., the percentage of sick people who 

are correctly identified as having the condition). The formula 

is as follows in Equation 16: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (16) 

 

Table 5 shows the comparison results of sensitivity for 

proposed and existing methods. 

 

Fig. 7 displays the Sensitivity of existing GGA-ELM, 

rMRMR-MGWO, with proposed MHSAMKFC – KNN, 

SVM, RF, ANN, CNN and EN-MHSAMKFC-CNN 

techniques. In this analysis, EN-MHSAMKFC-CNN method 

is  16.58%, 15.80%, 13.07%, 10.49%,  8.211%, 4.702%,  and  
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Table 5. Comparison of Sensitivity 

Datasets\ 

Classifiers 

Leukemi

a 

Lymphom

a 

Prostate 

GGA-ELM 84.78 83.17 82.99 

rMRMR-  

MGWO  

85.67 85.23 85.19 

MHSAMKFC - 

KNN 

87.32 88.45 88.49 

MHSAMKFC - 

SVM 

89.39 89.27 90.61 

MHSAMKFC  - 

RF 

92.51 93.24 92.94 

MHSAMKFC 

ANN 

95.12 96.02 93.26 

MHSAMKFC-

CNN 

97.89 98.94 96.19 

EN-

MHSAMKFC- 

CNN 

84.78 83.17 82.99 

 

 

 

 

2.168% for leukemia dataset; 17.91%, 14.42%, 11.26%, 

7.983%, 7.155%, 4.632%, and 2.655% for Lymphoma 

dataset and 17.57%, 14.43%, 10.00%, 8.326%, 6.219%, 

3.821%, 1.228%  for Prostate dataset is higher than that of 

GGA-ELM, rMRMR-MGWO, with proposed MHSAMKFC 

– KNN, SVM, RF, ANN and CNN methods respectively on 
given dataset.  This analysis shows that the EN- 

MHSAMKFC-CNN can achieve better Specificity than other 

methods for microarray cancer classification. 

 

5.5. F1-Score 

The harmonic mean of precision and recall is the F1 

score. It is calculated in Equation 17 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                              (17) 

 

Table 6 shows the comparison results of the F1-score 

for proposed and existing methods. 

 

 

 

 
Fig. 7 Comparison of Sensitivity 
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 Fig. 8 Comparison of F1-Score 

 

 

Table 6. Comparison of F1-Score 

Datasets\ 

Classifiers 

Leukemi

a 

Lymphom

a 

Prostate 

GGA-ELM 84.10 84.68 83.65 
rMRMR-

MGWO  
86.32 86.33 85.29 

MHSAMKFC - 

KNN 

88.24 88.24 87.37 

MHSAMKFC - 

SVM 

89.92 90.73 89.78 

MHSAMKFC  - 

RF 

91.52 93.18 92.31 

MHSAMKFC 

ANN 

94.03 96.45 94.57 

MHSAMKFC-

CNN 

96.24 97.46 96.94 

EN-

MHSAMKFC- 

CNN 

98.75 99.89 98.82 

Fig. 8 displays the F1-Score of existing GGA-ELM, 

rMRMR-MGWO, with proposed MHSAMKFC – KNN, 

SVM, RF, ANN, CNN and EN-MHSAMKFC-CNN 

techniques. In this analysis, EN-MHSAMKFC-CNN method 

is 17.41%,14.39%, 11.91%, 9.819%,  7.899%,  5.019%, and 

2.608%  for leukemia dataset; 17.96%, 15.70%, 

13.20%,10.09%, 7.201%, 3.566%, and 2.493% for 

Lymphoma dataset; 18.13%, 15.86%,13.10%, 10.06%, 

7.052%, 4.494% and 1.939% for Prostate dataset is higher 

than that of GGA-ELM, rMRMR-MGWO , with proposed 

MHSAMKFC – KNN, SVM, RF, ANN and CNN methods 

respectively on given dataset.  This analysis shows that the 

EN-MHSAMKFC-CNN can achieve a better F1-Score than 

other methods for microarray cancer classification. 
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6. Conclusion 
This research proposes methods for developing an 

efficient microarray cancer detection system with high 

classification accuracy results. Initially, MHSAMKFC was 

developed to handle datasets having large amounts of data 

without class labels and eliminate redundant features 

effectively. Then, the MHSAMKFC-CNN method was 

introduced to eliminate the classification susceptible to errors 

problem in machine learning methods and reduce the time of 

CNN classification. Finally, a stacked ensemble model is 

proposed that uses multiple learning models to produce one 

optimal predictive model to handle the over-fitting and 

under-fitting problems of the classifier. To conclude, the 

experimental results prove that the proposed EN-

MHSAMKFC-CNN method has better classification results 

than other existing methods for cancer prediction.
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