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Abstract - Clustering is a data analysis technique that divides information into numerous homogeneous groups. They are 

clustering algorithms like Centroid, Density-based Distribution and Hierarchical based Clustering. These algorithms 

provide better performance for only spherical clusters and acquire high-time complexity issues. So, a Belief-Peaks 

Evidential Clustering (BPEC) method is efficiently used to deal with non-spherical clusters and improve the clustering 

performance. However, if the number of clusters is too great, the complexity of BPEC becomes exorbitant. Motivated by 

these challenges, a hybrid of Fuzzy Label Propagation and Local Resultant Evidential Clustering Method (FLPLRECM) is 

proposed to handle the sparse and helps to form more precise clusters. Initially, to select Cluster Centres (CCs) based on 

data dispersion and local density, an adaptive CCs selection approach is proposed. This model provides a Symmetric 

Neighborhood Graph (SNG) to all Data Points (DPs) with other points along with the standard deviation (SD)/kurtosis, 

local densities of each point are computed by utilizing the reverse k-Nearest Neighbors (k-NN). To deal with the high 

dimensional dataset, the Centrality (CE) and Coordination (CO) metrics are introduced to classify the DPs as interior points 

(ips), inner boundary points (ibps), boundary points (bps), or noise DPs for improving the cluster formation. The intensities 

and orientations of DPs near the fuzzy CCs and at the fuzzy cluster boundaries are assessed. First, a helpful initial fuzzy 

cluster assignment is made for each remaining point based on the distances between each CC and its neighbours. After then, 

neighbour’s labels are used to refine each point's own till the fuzzy partition remains the same. The developed method will 

provide more precise clusters with less computational time, efficiently used for the analysis of the cancer detection system. 

Keywords - Belief-Peak based clustering, Centrality, Coordination, Symmetric Neighborhood Graph, K nearest neighbour. 

1. Introduction  
The introduction Clustering is the grouping of specific 

objects based on their characteristics and similarities. 

Existing clustering algorithms can be split into two types 

based on their ideologies: Hierarchical, Partition and 

Density clustering. A dataset is divided or merged into a 

series of nested partitions using hierarchical clustering [1]. 

The nested partitions' hierarchy might be agglomerative 

(bottom-up) or divisive (top-down). Clustering begins with 

each individual object in a single cluster and progresses 

through the closest pairs of clusters until all entities are 

grouped together in a single cluster.  

 

Partition clustering [2] has been elongated to 

investigate more difficult data configurations throughout 

time, emerging in the ideas of hard [3], soft or fuzzy [4], 

approximate or rough [5], possibilistic [6] and credal [7]. 

The type of data supplied is another key variation between 

these clustering algorithms. Data items, in which a list of 

attributes accurately characterizes each object, and closeness 

(or relative) data, with only bilateral matches or 

divergences, are provided, are both partially considered to 

be two typical categories of data. All you need are the right 

measurements to transform raw object data into domain 

data. As a result, clustering algorithms that deal with 

proximity data are more general than clustering techniques 

that only engage with the data layer. 

 

Density peaks clustering (DPC), a hard partition 

clustering approach based on quick density peak search and 

find, was recently introduced in [8]. Many alternative DPC 

approaches have been developed to improve clustering 

performance. A flexible core fusion-density peak clustering 

method was designed to discover the clusters in any shape 

https://www.internationaljournalssrg.org/
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or intensity data. According to [10], the subordinate can be 

used to interpret co-relative density adjustments. The 

authors apply this interpretation to the problem of reducing 

DPC's acuity to density kernels by detecting cluster centres. 

In [11], a fuzzy kernel and a density-based k-NN statistic 

are presented for DPC to improve cluster splitting and 

reduce the occurrence of outliers. 

 

To make the most of the uncertainty and ambiguity 

inherent in data structures, the BPEC [12] is presented to 

construct a credal partition for data that permits both solo 

and composite clusters. The evidence theory [13] extends 

the idea of density [8] to belief, which indicates the 

possibility of each object becoming a cluster centre. The 

entity with the largest delta nearest to the entities with the 

highest belief counts as the cluster centre. The user 

generates a belief-delta decision graph and then sets two 

minimum thresholds for belief and delta. The targets with 

higher belief and delta are used to determine the locations of 

the cluster centres. 

 

The persistent entities are consigned using a modified 

Evidential C-Means (ECM) [14] technique to construct a 

credal division. However, BPEC and distance-based 

computational approaches are straightforward and can 

readily disregard sample correlation and similarity. The 

manual configuration has a significant impact on the 

clustering outcomes. As a result, BPEC's clustering 

effectiveness on high-dimensional datasets is poor. To 

address the BPEC difficulties, the suggested FLPLRECM 

algorithm was created to handle sparse datasets and aid in 

forming more exact clusters. Furthermore, this strategy 

effectively delivers the optimal collection of characteristics 

to increase clustering performance, which has the best 

significance and most effective cancer detection research in 

the Breast cancer Wisconsin dataset.   

 

Initially, an adaptive CCs selection approach is created 

that effectively selects CC based on data dispersion and 

local density. The fragments technique is combined based 

on the structural similarity concept to strengthen its 

competence in cluster centroid recognition and better 

identify potential abnormalities. In addition, the suggested 

approach refines the clusters at each iteration by combining 

the SD/kurtosis with Symmetric Neighbourhood (SN) 

relationships of DPs with other DPs. The cut-off distance 

determines the boundary between two clusters with varying 

densities, even though there will be one. An SN of DPs 

replaces the cut-off distance. The network that connects 

each point's SN is known as an SN graph (SNG). Outliers 

are locations in the SN that have fewer than two neighbours. 

It uses a depth-first search on an SNG to distribute each 

vertex to a correct cluster without cutting off distance. 

 

 

Then, to better cluster the high-dimensional dataset, the 

CE and CO metrics are used to categorize DPs as ips, ibps, 

bps or noisy DPs. The integration of magnitudes and 

orientations of DPs adjacent to fuzzy CC and at the fuzzy 

cluster boundaries will be assessed next. The distances 

between each CCs and its neighbours produce an instructive 

primary fuzzy cluster consignment for each enduring point. 

The fuzzy label of every enduring point will then be 

modified repeatedly by integrating the labelled data of its 

neighbours until the fuzzy segregation becomes constant. 

The suggested technology will provide more exact clusters 

in less time, which can be utilized to analyze cancer 

detection systems more effectively.  

2. Literature Survey  
Aboubi et al. [15] developed a new BAT-CLARA 

technique for clustering large data sets. This method was 

based on the bat behaviour and partitioning of k-medoids. 

This novel method was compared to well-known 

partitioning methods like PAM, CLARA, CLARANS, and 

CLAM, as well as a recently discovered algorithm. 

However, it has the disadvantages of consuming a lot of 

time and using up a lot of memory. 

 

Kaur and Ojha [16] proposed defining a normal 

subscriber of a movable operator and explained a 

framework for checking the design and symmetries in 

pseudo anonymized Call Data Records (CDR). It describes 

the difficult task of automatically generating expressive 

information from accessible data using a machine learning 

approach for clustering without including prior experience 

of the interface context in the network. The outcomes of 

clustering mining are used to gain better insights into the 

client's behaviours and to attract their illustrative profiles.  

 

Chang et al. [17] created the Deep Adaptive Clustering 

(DAC) approach to cluster images using the single-stage 

convolutional network. The method was inspired by the 

basic concept that the association between pairs of images 

was binary and that the binary pairwise-classification issues 

were the method's optimal target. The cosine proximity 

between label attributes assesses the pairwise correlations, 

and the images are depicted by label features retrieved by a 

Convolutional Neural Network (CNN). In addition, DAC 

requires that the learnt label features be one-hot vectors. 

 

Wang et al. [18] proposed a new chaotic starling Particle 

Swarm Optimization (PSO) technique to resolve the 

clustering issues. In this process, KMDD (clustering by  K-

means using both density and distance-oriented measures) 

was a two-phase clustering algorithm created to quickly 

locate clusters with various forms and intensities in 

temporal datasets. On the other hand, this approach has a 

slow convergence rate. 
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Zhou et al. [19] developed a clustering model based on a 

new Semi-supervised Evidential Label assignment approach 

which incorporates domain knowledge and performs 

clustering. After the propagation process has stabilized, the 

communities of each node can be recognized in this graph. 

The graph's prior knowledge of the node's relation with 

labels was expressed using mass functions. Using 

evidentiary label propagation principles, the labels were 

then propagated from labelled to unlabelled nodes. 

However, this strategy produces different results if the 

labelled data contains a different parameter. 

 

Narayana and Vasumathi [20] created a similarity-based 

clustering approach that involves calculating and merging 

similarities between and within characteristics. Clustering 

the attributes by their similarities using the K-medoids 

clustering algorithm helped keep the computations to a 

minimum. In addition, the best characteristics were chosen 

using the Bee Colony (BC) optimization method. 

Unfortunately, there is a great deal of computational 

inaccuracy in this approach.  

  

Pang et al. [21] introduced a MapReduce-based 

multilevel subspace clustering. This clustering worked well 

while dividing a large-scale dataset into smaller ones with 

the same data elements. During the localized clustering step, 

PAPU produces sub-clusters based on specific attribute 

subspaces from distinct sections, facilitating parallel 

computing. To increase the reliability of estimated 

clustering results, PAPU employs the hierarchical clustering 

method to combine sub-clusters iteratively across the whole 

global clustering stage, regardless of cluster size. 

 

Budiaji and Leisch [22] devised a simple and quick k-

medoids algorithm for updating medoids by minimizing the 

overall distance between clusters. A generalized distance 

function is constructed with the distance as an input to the 

technique to maximize the variance of the distances, 

especially for a combined variable dataset. Because 

different distances produce different outputs, the variation 

of the distances is an important aspect of a partitioning 

method. Because of their time complexity, K-Mediods are 

more expensive than K-Means Procedure. 

 

Ping et al. [23] proposed a new efficient technique for 

handling the support vector clustering cluster labelling 

problem (SVC). The proposed approach examines the 

topology of the functions that describe SVC cluster outlines 

and looks for interconnection paths between crucial points 

that separate various cluster contours. The suggested 

algorithm incorporates a new quick way of discovering and 

classifying crucial points and evaluating their interaction 

structures.  

 

Meng et al. [24] use belief peaks within a linear label 

assignment scheme. This method revealed the underlying 

data structure by counting clusters precisely and producing a 

fuzzy breakdown. The label assignment scheme is a useful 

alternative method in belief-peaks clustering due to its 

explicit convergence and linear overhead. An excessive 

amount of time was needed for this technique. 

3. Proposed Methodology  
This section quickly explains the main contribution of 

this work, which is the incorporation of magnitudes and 

directions of DPs close to CC and at cluster boundaries. 

Two new local metrics, CE and CO, are employed to 

represent these disparities more effectively. These new 

metrics assist in the classification of DPs as ips, ibps, bps, or 

noise DPs at a coarse level. It's worth noting that these two 

measurements are used to create SNG. The CE is a variable 

that can be anywhere between 1 and 1. When CE > 0, a data 

point is more likely to be ips; when CE < zero, it is more 

likely to be a border point. It is much simpler to separate 

DPs from inner cluster areas and border cluster areas with a 

more apparent meaning. The CO indicates how well a data 

point fits in with its surroundings. A CO value of CO > 0 

shows that DPs are oriented in the same position as their 

neighbours and are most likely near the border. Along with 

these new criteria, the value of the neighbourhood 

association is computed. 

3.1. BPEC method 

In BPEC [12], a new element of perception 𝐶 =
 {𝐶, ¬𝐶} is interpreted to determine if an object is a CCs (𝐶) 

or not (−𝐶) for a given set 𝐷 of 𝑛 data classes.  The 

following is a summary of the core concept for detecting 

CCs. The collection of 𝐾 nearest neighbours (KNN) of the 

object 𝑜𝑖 is denoted by𝑁𝑁𝐾(𝐷𝑖). Every 𝑁𝑁𝐾(𝐷𝑖) neighbour 

𝑜𝑗contributes to the evidence that entity 𝑜𝑖is a CCs. The set 

of 𝑐 clusters is specified asΩ =  {𝜔1, 𝜔2 · · ·, 𝜔𝑐}. A hard 

partition of Dataset 𝐷is applied to find which cluster each 

object belongs to. A mass function 𝑚𝑖𝑗
𝐶  can be used to 

represent the actual information. A normalized mass 

function 𝑚𝑖
𝐶  and its corresponding belief function 𝐵𝑒𝑙𝑖

𝐶 can 

be generated by merging these mass functions using 

Dempster's rule. 

 

In considering the concept of belief functions, the 

combination of mass functions plays a crucial role. Allow 

two mass functions, 𝑚1 and 𝑚2. The un-normalized mass 

function is the conjunctive conjunction of 𝑚1 and 𝑚2 in 

Equations 1 and 2. 

 
𝑚1∩2

Ω (𝐴) = ∑ 𝑚1
Ω(𝐵)𝑚2

Ω(𝐶)𝐵∩𝐶=𝐴 , ∀𝐴 ⊆  Ω                 (1) 

 

The normality requirement 𝑚Ω(∅)  =  0can be regained 

if necessary by dividing each mass 𝑚1∩2
Ω (𝐴)by 1 −

 𝑚1∩2 
Ω (∅). The procedure that results is called Dempster's 

rule of combination: 
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𝑚1 ⊕2
Ω (𝐴) =

𝑚1∩2
Ω (𝐴)

1−𝑚1∩2 
Ω (∅)

  , ∅ ≠ 𝐴 ⊆  Ω                      (2) 

 
Both rules, which are associative and progressive, allow 

the vacuous mass to function as a single neutral element. If 

an item has a higher degree of belief 𝐵𝑒𝑙𝑖
𝐶({𝐶}) Than its 

neighbours and is also at a reasonably big distance from 

other objects with higher degrees of belief, it is referred to 

as a CCs. 

3.2. Cluster Center Selection with Adaptive Strategy  

Centres of clusters are chosen by manually 

employing two-dimensional decision graphs for accurate 

clustering. Ideally, the CC would be chosen from a pool of 

locations with a high local density, where the next location 

with a higher density is only a short drive away. However, 

this strategy has several limitations and variability in 

practice. It's tough to choose the right number of CC when 

the distribution of these sites is comparable. An adaptive CC 

selection SD/kurtosis of the distance function using the data 

distribution and the local density is created to eliminate the 

uncertainty and complexity of directly identifying CC. 

 

Kurtosis is defined as the systematized fourth 

population period about the mean, 𝐾𝑢𝑟𝑡[𝑋] = 𝛽2 =
𝐸(𝑋−𝜇)4

(𝐸(𝑋−𝜇)2)2 =
𝜇4

𝜎4 Where 𝐸 is the expectation function, 𝜇 is the 

mean, 𝜇4 is the fourth moment about the mean, and 𝜎 is the 

SD. The normal distribution has a kurtosis of 3, and 𝛽2 − 3 

is often used so that the preferred normal distribution has a 

kurtosis of zero 𝛽2 − 3  is denoted as 𝛾2. A sample which is 

equivalent to 𝛽2 can be obtained by replacing the population 

moments with the sample moments, which results in 

Equation 3 

 

𝑏2 =
∑(𝑋𝑖−�̅�)4/𝑛

(∑(𝑋𝑖−�̅�)4/𝑛)2                                            (3)                                                      

 

Where  𝑏2  represents the sample kurtosis, �̅� The bar 

represents the sample mean, and 𝑛 represents the number of 

data. On the one hand, the normal variation of all variables 

is determined and employed as a measure of the arithmetical 

measures for data's dispersal level to some extent. Then, if 

the distance between the sample and the adjacent larger 

density point (LDP) is higher than or equivalent to the 

weighted average deviation, it is designated a CC. 

 

As a result, CCs are defined as DPs with a local density 

larger than the average of all data's local density. The 

constraints for choosing CC are defined by merging the two 

procedures above in Equations 4 and 5. 

𝐸𝑥𝑝𝐶 =  𝛿𝑖 ≥ 𝜆𝜎(𝛿𝑖)                                               (4) 

𝐶𝑒𝑛𝑡𝑟𝑒𝐶  =  𝐸𝑥𝑝𝐶(𝜌𝑖)  ≥  µ(𝜌𝑖)                            (5) 

where 𝐸𝐶 stands for the expected CCsestimated with 

Kurtis, 𝛿𝑖 stands for the range from the nearest LDP, 

𝜎(𝛿𝑖) stands for the SD of the distance from the adjacent 

LDP of all input data, and 𝜆  is the weight. After reducing 

noises, 𝐶𝑒𝑛𝑡𝑟𝑒 𝐶 signifies the CCs, 𝜌𝑖 is the local density of 

each sample point, 𝐸𝑥𝑝𝐶(𝜌𝑖)  defines the expected CCs, 

local density, and µ(𝜌𝑖) is the median of all the local 

populations. The CC chosen by the two phases above 

provides a significant distance from the nearest LDP and a 

large local density, avoiding errors caused by choosing 

noises as CCs and ensuring the impartiality of clustering 

outcomes. 

 

3.3. Developed Evidential Clustering with fragment 

merging strategy 

The proposed Evidential Clustering is combined with 

the fragment fusion approach to detect cluster centroids 

better. The latent loss calculation is used to determine local 

densities associated with a neighbourhood region's datasets 

in this example. According to the 𝑑𝑖𝑗 d ij and the 

𝑏𝑒𝑙𝑖𝑒𝑓𝑖
𝐶({𝐶}) each pattern's local density in Equation 6 

 

𝜌𝑖 = ∑ 𝜑(𝑑𝑖𝑗
2 ) − 𝐶𝑑𝑗∈𝑁𝑁𝑘(𝐷𝑖)                                    (6) 

 

As a result, instead of applying the heuristic technique of 

decision graphs, the created sets of residual mistakes are 

employed to construct residual fragments, which are then 

processed to find clusters and cluster centroids. For more 

appropriate local density estimation, utilize the residual 

error calculation to assess the density of each data point 

within its neighbourhood section, which may lead to a 

greater clustering process and centroid recognition. The 

residual error 𝑟𝑒𝑖𝑗 between DPs 𝑥𝑖 and 𝑥𝑗 is calculated in 

Equation 7. 

 

𝑟𝑒𝑖𝑗 =
‖𝑥𝑖−𝑥𝑗‖

𝑁
                                                             (7) 

 

Where 𝑁 is the size of the neighbourhood. It is a user-

defined consistent variable used to discover 𝑁 total of 

nearest neighbours of 𝑥𝑖, where an adaptive CCs selection 

approach based on the dispersion of the data and the local 

density is used to minimize the inconsistency and 

complexity of directly classifying CCs. The residual error of 

𝑥𝑖 can also be calculated in Equation 8 as follows 

 

𝑟𝑒𝑖𝑗 = ∑
𝑑(𝑥𝑖,𝑥𝑗)

𝑁𝑗 , ∀ 𝑑(𝑥𝑖 , 𝑥𝑗) =
𝜇4

𝜎4                           (8) 

 

Where 𝜇 is the average, 𝜇4 is the fourth period about 

the mean, 𝜎  is the SD, and the kurtosis proximity operation 

is used. To construct residual fragments for cluster creation, 

find each data point's adjoin point and neighbourhood points 

after preprocessing. 



M. Aruna et al. / IJETT, 70(9), 34-46, 2022 

 

38 

3.4. Belief Peaks Clustering In Symmetric Neighborhood 

Let 𝐷 represent a database, 𝑖 and 𝑗 represent some 

𝐷 objects, and 𝑘 represent a positive number. The 

SD/kurtosis distance between entity 𝑖 and 𝑗 is denoted by 

𝑑𝑖𝑠𝑡(𝑖, 𝑗). The 𝑘-distance of 𝑖 abbreviated as 𝑘𝑑𝑖𝑠𝑡(𝑖, 𝑜), is 

the distance 𝑑𝑖𝑠𝑡(𝑖, 𝑜) between points 𝑖 and 𝑜 in 𝐷, which is 

represented as: 

 

• It holds that 𝑑𝑖𝑠𝑡(𝑖, 𝑜′)  ≤  𝑑𝑖𝑠𝑡(𝑖, 𝑜), for at least 𝑘 

objects 𝑜′ ∈ 𝐷,  

• and 𝑑𝑖𝑠𝑡(𝑖, 𝑜′ )  <  𝑑𝑖𝑠𝑡(𝑖, 𝑜) for at most (𝑘 − 1) 

objects 𝑜′ ∈ 𝐷 

 

If a point 𝑗 meets 𝑑𝑖𝑠𝑡(𝑖, 𝑗) ≤  𝑘𝑑𝑖𝑠𝑡(𝑖),  then call 𝑗 as 

one of the kNN of 𝑖. The kNN of 𝑖 is formed by a set of 

points 𝐽 that comprises limited points 𝑗, written as 𝑘𝑁𝑁 (𝑖). 

The following Equation 9 is the meaning of 𝑘𝑁𝑁(𝑖): 
 

 𝑘𝑁𝑁(𝑖) = {𝐽 ∈  𝐷|𝑑𝑖𝑠𝑡(𝑖, 𝐽) ≤  𝑘𝑑𝑖𝑠𝑡(𝑖)}              (9)  

The point 𝑖  is considered the reverse kNN of 𝑗, and a 

collection of points 𝐼 containing finite points 𝑖 is referred to 

as the reverse k-NN, abbreviated as 𝑅𝑘𝑁𝑁 (𝑗). 𝑅𝑘𝑁𝑁(𝑖) is 

a function that can be determined in Equation 10 as follows 

 

𝑅𝑘𝑁𝑁(𝑖) = {𝑗|𝑗 ∈  𝐷, 𝑖 ∈  𝑘𝑁𝑁(𝑗)}                      (10) 

 

The probability density around 𝑖 is estimated using the 

junction of the Knn neighbourhood and the inverse k-NN. 

The neighbourhood space is referred to as the symmetric 

neighbourhood of 𝑖 abbreviated as 𝑆𝑁𝑘 (𝑖). 𝑆𝑁𝑘 (𝑖) 

means that two people are true friends only if they agree 

with one other, as demonstrated by Equation 11 

 

𝑆𝑁𝑘(𝑖) = {𝑜|𝑜 ∈ 𝐷, 𝑜 ∈ (𝑘𝑁𝑁(𝑖) ∩  𝑅𝑘𝑁𝑁(𝑖))  (11) 

                                                                                          

Generally, searching kNN of point 𝑖 yields at least 𝑘 

outcomes, whereas RkNN yields zero, one, or many results. 

Consider the effect of a point from other points, so estimate 

the local density using the inverse kNN of a point instead of 

other nearest neighbours, making it easier to find CCss. The 

current local density is determined in Equation 12 as 

follows: 

 

𝜌𝑖 = ∑ 𝑒𝑥𝑝(−𝑑𝑖𝑠𝑡2(𝑖, 𝑗))𝑗∈𝑅𝑘𝑁𝑁(𝑖)                        (12) 

Where 𝑅𝑘𝑁𝑁(𝑖) is the point𝑖's reverse kNN. While 

the previous definition [25] is determined using the cut-off 

distance𝑑𝑐𝑜This approach can ensure that the local density 

𝜌𝑖  of point, 𝑖 is impacted by the allocation data of its 

inverse kNN. It's difficult to predict the number of cut-off 

distance 𝑑𝑐𝑜, which impacts the local density of nodes and 

CCs selection. Moreover, determining parameter 𝑘 is 

simpler than determining the cut-off distance 𝑑𝑐𝑜. 

 

The network created by connecting each point's 

symmetric neighbourhood is known as a symmetric 

neighbourhood graph (SNG). Deviations are locations in the 

symmetric neighbourhood that have lower than two 

neighbours. Even though there would be a boundary among 

two clusters with varying densities, some criteria must be 

included to enforce the boundary. 

 

3.5. FLPLRECM 

3.5.1. Local Gravitation 

The local gravitation in the data clustering approach 

exemplifies the relationship between a data point and its 

immediate neighbours. According to the theory of gravity, 

the attractive force across 2-point masses (𝑚1, 𝑚2) can be 

calculated using the given formula: 

 

�⃗�𝑚1𝑚2
= 𝐺

𝑚1𝑚2

𝐷𝑚1𝑚2
2 �̂�𝑚1𝑚2

                                        (13)                                   

 

The force between point masses 1 𝑚1 and 2 𝑚2 is 

denoted by �⃗�𝑚1𝑚2
. 𝐷𝑚1𝑚2

 represents the distance between 

𝑚1 and 𝑚2, and the vector �̂�𝑚1𝑚2
 determines the way of 

connecting the two data instance masses based on force acts, 

and finally, 𝐺 is the gravitational constant. 

3.5.2.  Local Resultant Forces 

The essential premise of clustering tactics is that the 

LRFs of DPs adjacent to CCs and those at the cluster's edge 

differ significantly. The LRF depicts the relationship 

between each data point and its immediate surroundings. 

Suggest two local clustering techniques based on local 

gravity strength to advantage the information enclosed in 

the LRF: 1) the CE and 2) the CO. The Data point 𝑥𝑖   CE is 

calculated  in Equation  14 ,15,16 and 17 as 

 

𝐶𝐸𝑖 = ∑
cos(�⃗�𝑗,�⃗⃗⃗�𝑖𝑗)

𝑘

𝑘
𝑗=1                                       (14) 

 

Where �⃗⃗⃗�𝑖𝑗the displacement vector from the data is point 

𝑥′s the 𝑗 − 𝑡ℎ neighbour to it, and 𝑘 is the neighbour 

association. A data point with a CE value of CE i > 0 shows 

that most of its neighbours’ LRFs are pointing in its 

direction. Since 

1 ≤ cos(�⃗�𝑗 , �⃗⃗⃗�𝑖𝑗) ≤ 1 and −𝑘 ≤ ∑ cos(�⃗�𝑗 , �⃗⃗⃗�𝑖𝑗) ≤ 𝑘𝑘
𝑗=1  (15)  

 

CE has the properties listed below: 

 

−1 ≤ 𝐶𝐸𝑖 ≤ 1                                                         (16) 
 

The CO of data point 𝑥𝑖  is calculated as follows: 
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𝐶𝑂𝑖 = ∑ (�⃗�𝑖 , �⃗�𝑗)𝑘
𝑗=1                                                   (17) 

 

The LRF of the data instance 𝑥𝑖  is �⃗�𝑖And the force 

accompanying its neighbours is �⃗�𝑗 . The CO represents a 

data point's familiarity with its neighbours in general. A data 

instance with a CO value of 𝐶𝑂 >  0 has an LRF that is 

generally in the same position as its neighbours, and it is 

most likely near the border. 

 

3.5.3. Fuzzy label propagation process 

Let𝑋𝑐𝑒𝑛𝑡𝑒𝑟 = { 𝑥1, 𝑥2, . . . , 𝑥𝐶} and 𝑋𝑁𝑜𝑖𝑠𝑒 =
{ 𝑥𝑛−1+1, 𝑥𝑛−1+2, . . . , 𝑥𝑛} represent the collection of the 

selected CC and their outliers, respectively. It proves that 

the datasets contain 𝑐 clusters 𝒪𝑞(𝑞 =  1,2, . . . , 𝑐).  

Moreover, l finds the outliers being ignored from the  𝑋 and 

only ruminate the cluster forming off the remaining 𝑛 −  𝑙 
point to eliminate the impact of outliers. 

 

The combinatorial hypothesis [26, 27] states that 

comparable points are more likely to have a similar label. 

Based on this premise, the class of each point 𝑥𝑖’s 

neighbours 𝑥𝑗 (𝑥𝑗 ∈ 𝓝𝐾(𝑥𝑗 ))  are merged to estimate its 

label. Each neighbour's weight 𝑤𝑖𝑗 is directly equivalent to 

the distance𝑑𝑖𝑗, as is well known. Furthermore, if the 

neighbour 𝑥𝑗 is a CCs, it is more probable that 𝑥𝑖 has the 

same label as𝑥𝑗 . As a result, the amount of 𝐵𝑒𝑙𝑖𝑒𝑓𝑗
𝒞 ({𝐶}) is 

equivalent to the weight 𝑤𝑖𝑗  of neighbour 𝑥𝑗 . 

A novel metric for calculating neighbour weights. For 

𝑖, 𝑗 = 1,2, . . . , 𝑛 − 𝑙, 

𝑤𝑖𝑗
∗ = {

𝐵𝑒𝑙𝑖𝑒𝑓𝑗
𝒞({𝐶}) exp (−

𝑑𝑖𝑗
2

𝛽𝑖
2) 𝑖𝑓 𝑥𝑗 ∈ 𝓝𝐾(𝑥𝑖)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  (18)                                                                                            

Where, 𝛽𝑖

2=𝑚𝑎𝑥{𝑑𝑖𝑗

2 |𝑥𝑗 ∈ 𝓝𝐾
(𝑥𝑖

)}. Normalization can then be used to obtain the weight matrix 𝑊 = 𝑤𝑖𝑗=1

𝑛−1 

𝑤𝑖𝑗 = 𝑤𝑖𝑗

∗ /∑ 𝑤𝑖𝑗

∗𝑛−1

𝑗= 1                                         (18)                                                             

The cluster assessment 𝑦𝑖 =  [𝑦𝑖(𝑂1), 𝑦𝑖(𝑂2),···
, 𝑦𝑖(𝑂𝑐)]  of data point 𝑥𝑖  can be called a fuzzy label, 

according to the concept of "fuzzy partition" in references 

[12] and [28]. In this case, (𝑂𝑞) ∈ [ 0,1](0 ≤  q ≤

 c) and∑ 𝑦𝑖(𝑂𝑞) = 1
𝑞=𝑐
𝑞=1 . Fuzzy labels are used to assess the 

degree of ambiguity in data point cluster classifications. 

 

• Initial partition 

Indicate the point's original label 𝑥𝑖 as 𝑦i 
(0) 

= 

[𝑦i 
(0)

(𝑂1), 𝑦i 
(0)

(𝑂2),···, 𝑦i 
(0)(𝑂𝑐). For any 𝑞 ∈ { 1,2,···, 𝑐}, 

each of the CCs points 𝑥𝑘∈ 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 obviously belongs to the 

cluster 𝑂𝑘 which is denoted  in Equation 19 as  

 

𝑦k 
(0)

(𝑂𝑞) = {
1 𝑖𝑓 𝑞 = 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (19) 

The generally used label propagation models [29, 30] 

view each of the remaining points 𝑥𝑢(𝑢 =  𝑐 + 1 , 𝑐 +
2, . . . , 𝑛 − 𝑙), as having a zero vector as its label, which is 

unspecific. In addition, it suggests a normalized and relevant 

initial label for 𝑥𝑢 Based on the allocation data of its 

neighbours. The actual proximity among its K nearest 

neighbours and the CCs point 𝑥𝑞  is used to calculate the 

possibility of point 𝑥𝑢 belonging to cluster 𝑂𝑞 using an 

exponential expression to every 𝑞 ∈ { 1,2,···, 𝑐}, where the 

variable η𝑞
2 = max 𝑑𝑗𝑞

2  |𝑥𝑗 ∈ 𝓝𝐾(𝑥𝑢). Equations 20 to 24 

represent the steps of the proposed clustering method 

𝑦𝑢
(𝑜)∗

(𝑂𝑞) = exp(−1\𝐾 ∑ 𝑤𝑢𝑗

𝑑𝑗𝑞
2

η𝑞
2𝑥𝑗 ∈𝓝𝐾(𝑥𝑢) )       (20) 

Normalization can then be used to initiate fuzzy label 

𝑦𝑢
(𝑂)

 of point𝑥𝑢. For each of the 𝑞 ∈  {1,2,···, 𝑐},  
 

𝑦𝑢
(𝑂)∗

(𝑂𝑞) = 𝑦𝑢
(𝑂)∗

(𝑂𝑞)\ ∑ 𝑦𝑢
(𝑂)∗

(𝑂𝑞)𝑐
𝑞=1                (21) 

 The instructive initial fuzzy partition 𝑌(0) =  { 𝑦(0)}
𝑖=1

𝑛=1
   

is obtained as a result. 

 

• Label propagation process  
 

Based on the stated initial partition, each point 

continuously upgrades its label by partially fascinating the 

label evidence circulated by its K nearest neighbours. 𝑌(0) 

and weight matrix 𝑊. After the 𝑡 th label propagation, let 

𝑌(𝑡)  = {𝑦𝑖
(𝑡)

}
𝑖=1

𝑛=1

 signify the fuzzy partition. Under the 

synchronous updating mechanism, the label of each point 

𝑥𝑖  will be progressively changed as follows. 

 

𝑦𝑖
(𝑡)

 =  𝛼 ∑ 𝑤𝑖𝑗 𝑦𝑗
(𝑡−1)

+ (1 − 𝛼)𝑥𝑗 ∈𝓝𝐾(𝑥𝑖) 𝑦𝑖
(0)

     (22)                                                          

A proportion variable 𝛼(0 < 𝛼 < 1) is used. The label 

propagation mechanism regulates the amount of label 

information absorbed from its neighbours. When 𝑥𝑗 ∉

𝓝𝐾(𝑥𝑖)𝐴ccording to the specification of the weight matrix 

𝑊, 𝑤𝑖𝑗 = 0  is defined. As a result, the label propagation 

mechanism can be summed up as follows: 

 

𝑌(𝑡) =  𝛼𝑊𝑌(𝑡−1) + (1 − 𝛼)𝑌(𝑂)                           (23) 

Following the 𝑡 th circulation, the fuzzy partition 𝑌(𝑡) 

can be obtained. The following statement will then prove 

that the label propagation section will be convergent and 

construct a permanent fuzzy partition. 

 

Proposition 1 The linear label propagation model [31] 

yields a convergent fuzzy partition that is  

 

𝑌 =  (1 − 𝛼)(𝐼 − 𝛼𝑊)−1𝑌(𝑂)                               (24) 

Most importantly, the label propagation mechanism 

converges to a stable fuzzy division Y is represented as  
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Fig. 1 Flow diagram of FBPLRE 
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Y = (1 − 𝛼)(1 − 𝛼𝑊)−1 𝑌(𝑂) completing the suggested 

technique. Figure 1 and algorithm 1 depict this research 

work's overall flow. 

 

Algorithm 1: FLPLRECM 

Input: Dataset 𝐷 with n DPs and a user-defined 

neighbourhood size 𝑁, error vector 𝑟𝑒, sortd_re, index 

vector of each data point's nearest neighbour set of 𝑁𝑁 

Output: Clustering results 

1. Compute the degrees of belief for all entities 

(𝐵𝑒𝑙𝑖
𝐶({𝐶})) 

𝑏𝑒𝑙𝑖𝑒𝑓𝑖
𝐶({𝐶}) = 1 − ∏ [1 − 𝜑(𝑑𝑖𝑗

2 )]

𝑥𝑗∈𝑁𝑁𝑘(𝑥𝑖)

 

2. Determine each sample’s local density 𝜌𝑖 according to 

the 𝑑𝑖𝑗  and the 𝑏𝑒𝑙𝑖𝑒𝑓𝑖
𝐶({𝐶}) as  𝜌𝑖 =

∑ 𝜑(𝑑𝑖𝑗
2 )𝑗∈𝑁𝑁𝑘(𝑜𝑖)  

3. Determine the distance from each sample's nearest LDP 

𝛿𝑖 corresponding to 𝜌𝑖. 

4. Using the 𝜌𝑖 and the distance from the 𝛿𝑖 = min
𝑗:𝜌𝑗>𝜌𝑖

(
𝜇4

𝜎4)  

construct a two-dimensional decision graph. 

5. Compute the deltas (𝛿𝑖) for all objects using the 

following formula: 
 

𝛿𝑖 = {

min
𝑗:𝑏𝑒𝑙𝑖𝑒𝑓𝑗

𝐶({𝐶})>𝑏𝑒𝑙𝑖𝑒𝑓𝑖
𝐶({𝐶})

{𝑑𝑖𝑗}  xi does not have the highest belief

max
1≤𝑗≤𝑛

{𝑑𝑖𝑗} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

6. Create 𝛿 –belief decision graph and find the 𝑑𝑚𝑖𝑛 and 

belief𝑚𝑖𝑛 lower limits. 

7. Choose the CC  

8. Determine the shortest distance between the remaining 

sample points and the CCss, then place the other data 

samples in the CCs closest to them. 

9. Compute Residual Fragment Generation𝑟𝑒 →For each 

data point𝑥𝑖 and sortd_re and obtain 𝑁𝑁𝑠𝑒𝑡do 

 

𝑟𝑒𝑖𝑗 =
‖𝑥𝑖−𝑥𝑗‖

𝑁
and𝑟𝑒𝑖𝑗 = ∑

𝑑(𝑥𝑖,𝑥𝑗)

𝑁𝑗 , ∀ 𝑑(𝑥𝑖 , 𝑥𝑗) =
𝜇4

𝜎4 

 

10. Check the adjoin point identification criterion and 

satisfies update 𝐴𝑃𝑠 accordingly; 

 

𝐴𝑃𝑠 =  𝐴𝑃𝑠 ∪ 𝑥𝑖 , 𝑖𝑓𝑓 ‖𝑥𝑖 − 𝑥𝑗‖ < 𝐶𝑑  ∀ 𝑥𝑗 

 

11. For every locality point of data point 𝑥𝑖 do 

12. Calculate the weights of neighbour points and 

normalized weight matrix 

13. Check the 𝑁𝑁𝑠𝑒𝑡 recognition criterion is met and then 

upgrade n neighbour set accordingly; 

14. Determine that the 𝑁𝑁 set identification criterion is 

satisfied before updating  𝑁𝑁 𝑠𝑒𝑡. 
 

𝑁𝑁𝑥 = {𝑥𝑗|‖𝑥𝑖 − 𝑥𝑗‖ < 𝐶𝑑} 

 
15. Connect each data point to its neighbouring points, i.e., 

𝑥𝑖 + 1, and generate 𝐴𝑝𝑡 link to build a connection.   

16. Construct residual fragments and update the fragment 

set as needed. 

 

𝑟𝑒𝐹𝑥 = APtlink ∪ (𝑁𝑁𝑥  ∪  𝑁𝑁𝑦) 
 

17. Calculate each fragment's structural similarity index. 

𝑟𝑒𝐹𝑠𝑖𝑚(𝑥, 𝑦) =
|𝑟𝑒𝐹𝑥  ∩  𝑟𝑒𝐹𝑦|

√|𝑟𝑒𝐹𝑥||𝑟𝑒𝐹𝑦|
 

 

18. Check 𝑟𝑒𝐹𝑠𝑖𝑚(𝑥, 𝑦)  >  𝑇𝐻 is met, then combine 

fragments 𝑥 and 𝑦 as a single cluster. 

19. Otherwise, generate a new cluster; 

20. Identify the data point with the least error (cluster 

centroid) for each created cluster 

21. Apply 𝑥𝑖 to the cluster label of the cluster's selected 

centroid; also, check the un-clustered boundary point 

and 𝐶𝑂𝑖 ≥ 0, then add 𝑥𝑖 to its nearest cluster; 

22. Calculate the Euclidean distance 𝑑𝑖𝑗 between 𝑥𝑖 and 𝑥𝑗 

23. Find out the set 𝓝𝐾(𝑥𝑖) of k-NN of 𝑥𝑖 

24. 𝛿 − 𝐵𝑒𝑙  find the CCs𝑋𝑐𝑒𝑛𝑡𝑒𝑟 and outliers  𝑋𝑛𝑜𝑖𝑠𝑒  
25. Calculate the weight matrix W by (17)-(18) 

26. Calculate the initial partition 𝑌(𝑜) by (19)-(21) 

27. Calculate the convergent fuzzy partition Y by (24) 

28. Final 𝒞ℒ is the result of the FBPLRECM algorithm 
 

4. Results and Discussion  
This research compares the results of the proposed 

FBPLRECM with existing BPEC [12], SELP-GDC [19], 

and BPEC-FPL [24] on benchmark datasets such as 

Diabetes 130, Drug review, Codon Usage, and Breast cancer 

Wisconsin to compare the results of proposed FBPLRECM 

with existing BPEC [12], SELP-GDC [19], and BPEC-FPL 

[24] in terms of Precision, F-Measure, Adjusted Rand Index 

(ARI), and Normalized Mutual Information (NMI). 

 
4.1. Precision 

Precision is defined as the percentage of pairs that are 

appropriately placed in the identical cluster, and it is 

estimated in Equation 25 as follows:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                 (25) 
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Fig. 2  Comparison of Precision Rate 

 

Table 1. Numerical Results of Precision Rate 

Input Data BPEC 
 

SELP-

GDC 

 

BPEC-

FPL 
FLPLRECM 

Diabetes 130 89 91.6 94 95 

Drug review 88 91 93.1 94.8 

Codon Usage 88.5 90 93 95.4 

Breast cancer 

Wisconsin 
91.3 94 95 96.2 

 

The precision comparison results of different methods 

with diverse input data are provided in Table 1, which gives 

the numerical results of the Precision rate. In this analysis, 

the precision value of FLPLRECM is  6.74 %, 3.71 % and 

1.06 %;  7.72%, 4.17 % and 1.82 %; 7.79 %, 6% % and 

2.58 %; 5.36 %, 2.34 % and 1.26 %   higher than that of the 

existing method like BPEC SELP-GDC and BPEC-FPL 

respectively for the provided Diabetes 130, Drug review, 

Codon Usage and Breast cancer Wisconsin. From Figure 2, 

the proposed FLPLRECM method can obtain a high 

precision rate when compared to existing methods  

4.2 F-measure 

               It is a metric for assessing the quality or accuracy 

of clustering algorithms. Precision and recall are the two 

parameters that are used to calculate F-score. The F-

Measure  produces a single score that averages the effects of 

precision and recall problems, and it is defined in Equation 

26 as 

 
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                   (26) 

 
 

Table 2. Numerical Results of F-measure Rate 

Input Data BPEC 
SELP-

GDC 

 

BPEC

-FPL 

FLPLR

ECM 

Diabetes 130 85 87     89 91 

Drug review 86 87.9    89.3 90.9 

Codon Usage 85.6 87    89.4 92.7 

Breast cancer 

Wisconsin 
88 89.1   92 93.5 

         

The numerical results of the F-measure rate are shown 

in Table 2. Figure 3 shows the F-measure comparison 

results between proposed FLPLRECM with existing BPEC, 

SELP-GDC and BPEC-FPL on various datasets. In this 

analysis, the F-measure value of FLPLRECM is  7.05 %, 

4.59 % and 2.24 %; 5.69 %, 3.41 % and 1.79%; 8.29%, 

8.18% and  3.69%; 6.25%, 4.93% and 1.63%  higher than 

that of the existing method like BPEC SELP-GDC and 

BPEC-FPL respectively for the provided Diabetes 130, 

Drug review, Codon Usage and Breast cancer Wisconsin. 

The figure shows that the proposed FLPLRECM method 

can obtain a high F-measure rate compared to existing 

methods for better clustering results. 

 

4.3. ARI RATE 

Rand index, RI, is calculated  in Equation 27 by: 

 

𝐴𝑅𝐼 =
2((𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁))

(𝑇𝑃+𝑇𝑁)(𝑇𝑁+𝐹𝑁)+(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝐹𝑁)
           (27) 

 
In a true positive (TP) decision, two comparable 

documents are assigned to a similar cluster, whereas two 

dissimilar documents are assigned to separate clusters in a  
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Fig. 3 Comparison of F-measure rate 

 

true negative (TN) decision. False Positive (FP) decisions 

group two dissimilar documents together, whereas False 

Negative (FN) decisions group two similar objects together. 

 

The refines the clusters at each iteration by using a 

symmetric neighbourhood relationship of DPs without cut-

off distance will improve clustering results efficiently. The 

numerical results of the ARI rate are shown in Table 3. 
 

Table 3. Numerical Results of ARI Rate 

Input Data BPEC SELP-

GDC 

BPEC

-FPL 

FLPLR

ECM 

Diabetes 130 86 87.6 88 91.4 

Drug review 85 87 89 93.4 

Codon Usage 87 89 91 94 

Breast cancer 

Wisconsin 
89.1 92 93.9 95.6 

 

The numerical results of the ARI rate are depicted in 

Table 3. Figure 4 shows the ARI evaluation results between 

proposed FLPLRECM with existing BPEC, SELP-GDC and 

BPEC-FPL on various datasets. In this analysis, the ARI 

value of FLPLRECM is  6.27%, 4.33% and 3.86%; 9.88%, 

7.35% and 4.94%; 8.04%, 5.61% and 3.29%; 7.29%, 3.91% 

and 1.81%   higher than that of the existing method like 

BPEC SELP-GDC and BPEC-FPL respectively for the 

provided Diabetes 130, Drug review, Codon Usage and 

Breast cancer Wisconsin. The figure shows that the 

proposed FLPLRECM method can obtain a high ARI rate 

compared to existing methods for better clustering results.  

4.4. NMI Rate 

The NMI formula is as described in the following 

Equation 28: 

𝑁𝑀𝐼(𝑋, 𝑌) =
𝑀𝐼(𝑋,𝑌)

√𝐸(𝑋)∗𝐸(𝑌)
                                   (28) 

 

The similarity measure between two arbitrary variables 

𝑋 and 𝑌 is 𝑀𝐼(𝑋, 𝑌)While the entropy of arbitrary variables 

X and Y is E(X) and E(Y), clustering efficiency improves as 

the NMI value increases. 

 
Table 4. Numerical Results of NMI Rate 

Input Data BPEC 

SELP-

GDC 

 

BPEC

-FPL 

FLPLR

ECM 

Diabetes 130 88 89 90.2 0.93 

Drug review 87.4 88.9 91 92.7 

Codon Usage 87 89 91 94 

Breast cancer 

Wisconsin 
89 91 93 94.6 

 

    The numerical results of the NMI rate are shown in Table 

4. Figure 5   explains the NMI comparison for predicting 

CCs of BPEC, SELP-GDC, BPEC-FPL and FLPLRECM 

methods. The number of data increases according to the 

NMI value is increased linearly. In this analysis, the NMI 

value of FLPLRECM is  5.68%, 4.49% and 3.10%;6.06%, 

4.27% and 1.86%;8.04%, 5.61% and 3.29%;6.29%, 3.95% 

and 1.72%  higher than that of the existing method like 

BPEC SELP-GDC and BPEC-FPL respectively for the 

provided Diabetes 130, Drug review, Codon Usage and 

Breast cancer Wisconsin. The figure shows that the  
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Fig. 4 Comparison of ARI Rate 

 

 
Fig. 5 Comparison of NMI Rate 

 

proposed FLPLRECM method can obtain a high NMI rate 

compared to existing methods for better clustering results. 

Hence, the proposed method provides better clustering 

results with a high NMI rate. 

5. Conclusion  
In this research work, FLPLRECM is proposed to 

handle the sparse dataset; additional metrics are introduced 

to classify the DPs for improving cluster formation. The key 

addition of this work is the incorporation of magnitudes and 

orientations of DPs around CCs and at cluster boundaries. In 

addition, the fuzzy label propagation approach is 

recommended for determining the number of clusters, 

outliers, and partitioned groups based on the fuzzy method. 

The uncertainty of the data point determines outliers. 

Finally, experiment datasets reveal that the proposed 
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method outperforms other recently developed clustering 

algorithms. FLPLRECM is a highly accurate and efficient 

clustering technique that does not necessitate user input. As 

a result, it's appropriate for a broad range of research and 

operational applications, including a cancer diagnosis. 
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