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Abstract - This paper uses the similarity transformation to get similar solutions to the two-dimensional hyperbolic telegraph 

equation (2-D HTE). The similarity solution of 2-D HTE is then derived using a rotated five-point similarity finite difference 

(SFD) discretization scheme to obtain the rotated five-point SFD approximation equation. Gathering rotated approximation 

equations generate a linear system with large-scale and sparse matrix characteristics. Since then, the linear system has been 

solved using the half-sweep similarity technique via half-sweep successive over-relaxation (HSSOR-SFD) iteration. Three 

numerical examples are presented in this paper to validate the performance of the HSSOR-SFD iteration in solving 2-D 

HTE. The numerical findings showed that the version of HSSOR-SFD iteration is the best compared to the standard 

similarity methods: full-sweep Gauss-Seidel (FSGS-SFD) and full-sweep SOR (FSSOR-SFD) iterations in terms of iteration 

number and computational time. 

Keywords - Two-dimensional hyperbolic telegraph equation, Similarity transformation, Similarity solution, Rotated 

similarity finite difference method, Similarity half-sweep SOR method. 

1. Introduction 
Hyperbolic partial differential equations (HPDEs) play 

a crucial role as a mathematical model in the various fields 

of science and engineering. These equations are interesting 

as they are modeled to understand various physical and 

complex phenomena. For instance, the mechanical wave [1], 

cosmic-ray transport [2], random walk theory [3], 

communication system [4] as well as signal analysis [5] are 

modeled by HPDE. In this study, we fix attention on finding 

a numerical solution to the two-dimensional hyperbolic 

telegraph equation (2-D HTE) as follows:  

 
𝜕2𝑢

𝜕𝑡2 + 2𝛼
𝜕𝑢

𝜕𝑡
+ 𝛽2𝑢 =

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝐹(𝑥, 𝑦, 𝑡)  (1) 

subject to the initial conditions 

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦); 
𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 0) = 𝜐0(𝑥, 𝑦); (𝑥, 𝑦) ∈ Ω  

  …(2) 

and boundary conditions 

𝐵[𝑢(𝑥, 𝑦, 𝑡)] = 𝑔(𝑥, 𝑦, 𝑡), (𝑥, 𝑦, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇]  (3) 

where 𝛼 and 𝛽 are given constants, 𝐹(𝑥, 𝑦, 𝑡) is given 

function. This kind of equation has proved useful worldwide 

because of its rife applications. However, it is quite difficult 

to find the analytical solution to the problem (1) and also 

suffers from high computational costs due to the high 

number of variables involved. Therefore, various studies 

have been found to reduce the number of variables in an 

equation so that simpler to solve numerically and results in 

less computational complexity. 

 

Among the methods that have been used for solving 

HPDE problems in the context of reducing the variables 

from an original equation are similarity methods such as the 

differential quadrature method (DQM) [6-9], Chebyshev 

spectral collocation method [10], and method of lines [11]. 

In articles [6], Singh et al. applied the hybrid cubic B-spline 

differential quadrature method to reduce the one-

dimensional telegraph equation into a system of 1st order 

ordinary differential equations (ODE). Next, Mittal and 

Bhatia [8] used a modified cubic B-spline differential 

quadrature method to convert a 2-D HTE into a system of 

first-order ODE. Then, the author of [10] used Chebyshev 

differentiation matrices to transform a system of PDEs with 

initial conditions into a system of ODEs for telegraph 

equations. Afterwards, the solutions were obtained in [11] 

using the lines method adopted by Jator in reducing 

hyperbolic and elliptic PDEs into systems of boundary value 

problems and initial value problems in ODEs. In general, 

the purpose of the similarity technique is to convert a given 
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problem into a simpler problem, either transform the PDE 

into a system of ordinary differential equations (ODEs) or 

reduce at least one variable from the original equation and 

therefore make the solution much simpler. It was found that 

applying the similarity technique to PDE problems made the 

results simpler and low computational cost while 

maintaining good accuracy. Due to the advantages, the 

similarity methods are used to solve various problems, see 

[12-16]. Since then, the approach of similarity methods has 

inspired us to apply it to get similar solutions for the two-

dimensional HTE problem. However, these similar solutions 

for PDE’s problem still require numerical solutions since 

the analytical solutions are quite hard to get. Therefore, 

various numerical solutions are actively being found by 

suggesting new numerical approximation techniques to 

solve the HPDE problems. 

 

The most classical techniques for solving HPDE 

problems are finite difference, finite element, and finite 

volume. In article [17], the generalized finite difference 

method is used to solve the telegraph equation numerically 

in 2-D and 3-D spaces. Next, Aslefallah and Rostamy [18] 

applied the singular boundary method to obtain a numerical 

solution for the 2-D telegraph equation on an arbitrary 

domain. Based on the study in [19], a new spectral Galerkin 

method is employed to solve second-order HTE in 2-D 

spaces. Then, Devi et al. [20] used Lagrange’s operational 

approach to find the numerical solution of 2-D HTE subject 

to Dirichlet boundary conditions. In [21], they constructed a 

hybrid meshless method for the solution of the two-

dimensional HTE with Dirichlet or mixed boundary 

conditions. In [22], the extension of the generalized finite 

difference to the explicit solution of hyperbolic and 

parabolic equations was developed for PDE with constant 

coefficients when considering 1-,2- or 3-D spaces. After 

that, Ding and Zhang [23] applied a compact finite 

difference scheme for solving 2-D second-order non-

homogeneous linear hyperbolic equations. Combining the 

original finite difference scheme with other approaches 

inspired us to introduce a new finite difference scheme, 

namely the rotated five-point similarity finite difference 

(SFD) scheme, which comes from a combination of 

similarity techniques via a rotated five-point finite 

difference scheme. A rotated five-point SFD scheme is used 

to discretize the differential part in the similarity solution of 

the 2-D HTE problem to get a rotated five-point SFD 

approximation equation and then generate a linear system 

with the characteristic large-scale and sparse. 

 

According to previous research about a large-scale and 

sparse linear system solution, the most effective solver is the 

iterative method [24-26]. In recent years, many researchers 

have applied some iterative methods such as GS [27, 28], 

SOR [29-32], KSOR [33, 34], AOR [35], and AGE [36, 37], 

to obtain the numerical solution of the linear system. 

However, the computational complexity is still high since it 

needs more computational time to satisfy the convergence 

criteria. Due to its weaknesses, Abdullah [38] proposed the 

concept of HS iteration in 1991 to solve the 2-D Poisson 

equation. The author has shown that the main idea behind 

the HS iteration concept is to take only half of the integer 

points in the solution area of the proposed problem. Due to 

the advantages, the HS iteration is used to solve various 

problems, see [39-43]. Therefore, the concept of HS 

iteration can potentially reduce the computational 

complexity in the solution procedure, which naturally leads 

to several iterations and faster computational time. 

Motivated by the unique property of HS in securing a low 

computational complexity while computing the numerical 

solutions, the further discussion of this article will focus on 

the use of the HS concept combined with the similarity 

finite difference method via successive over-relaxation 

(SOR) method, namely HSSOR-SFD method to realize the 

concept of HS iteration while obtaining the numerical 

solution of the linear system, which is generated from 

rotated five-point SFD approximation equation. 

 

So, the main motivation of the present study is to 

develop numerical solutions for the 2-D HTE using a 

similarity technique combined with a finite difference 

scheme, namely a rotated five-point SFD scheme via 

HSSOR iterative method. For this purpose, similarity 

transformation is used to reduce 2-D HTE into a 2-D elliptic 

telegraph equation (2-D ETE), which becomes simpler to 

solve numerically than the original equation since the 

independent variables of 2-D HTE are reduced. The new 

five-point SFD scheme is used to discretize the differential 

terms of 2-D ETE to get the rotated five-point SFD 

approximation solutions. A large-scale and sparse linear 

system constructed from a rotated five-point SFD 

approximate equation is then solved iteratively using the 

HSSOR-SFD method. 

2. Similarity Solutions 
In this section, the number of independent variables in 

eq. (1) is reduced by applying similarity transformation in 

particular wave variables transformation to get the similarity 

solutions of 2-D HTE. First, the wave variables are 

introduced as follows [44, 45] 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉, 𝜏);  𝜉 = 𝑥 − 𝑐𝑡;  𝜏 = 𝑦 − 𝑑𝑡   (4) 

Where 𝑐 and 𝑑 are constant. Then, by putting eq. (4) into 

eq. (1) and after some simple calculating, the following 

similar solution of 2-D HTE is reached, namely two-

dimensional elliptic telegraph equation (2-D ETE), which 

can be written as:  

 

𝑣1 (
𝑑2𝑢

𝑑𝜉2 +
𝑑2𝑢

𝑑𝜏2) − 𝑣2 (
𝑑𝑢

𝑑𝜉
+

𝑑𝑢

𝑑𝜏
) + 𝛽2𝑢(𝜉, 𝜏) = 𝑓(𝜉, 𝜏)  

  …(5) 
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with 𝑣1 =
𝜂2

2
− 1, 𝑣2 = 2𝛼

𝜂

2
 and 𝑐 = 𝑑 = 𝜂. Since eq. (5) 

still has the differential part; the discretization is needed 

using a new finite difference scheme known as the rotated 

five-point similarity finite difference (SFD) discretization 

scheme to get the rotated five-point SFD approximation 

equation, which discusses in the next section. 

3. Rotated Five-Point SFD Approximation 

Equation 
As mentioned in the section before, the differential part 

of the similarity solution of 2-D HTE in eq. (5) is 

discretized by using new discretization scheme formula, 

namely a rotated five-point similarity finite difference 

(SFD) discretization scheme to get the rotated five-point 

SFD approximation equation. The rotated five-point SFD 

approximation equation is based on the cross-orientation 

operator, which can be obtained by rotating the 𝜉-plane axis 

and 𝜏-plane axis clockwise 45° for the original mesh, see 

Figure 3. 

 So, to start the discussion of approximating the 

similarity solution of 2-D HTE in eq. (5), a new scheme 

formula is introduced, which is a rotated five-point SFD 

scheme as follows: 

 
𝑑𝑢

𝑑𝜉
|

𝜗,𝜑
=

𝑈𝜗+1,𝜑+1−𝑈𝜗−1,𝜑+1+𝑈𝜗+1,𝜑−1−𝑈𝜗−1,𝜑−1

4ℎ
  

𝑑𝑢

𝑑𝜏
|

𝜗,𝜑
=

𝑈𝜗+1,𝜑+1−𝑈𝜗+1,𝜑−1+𝑈𝜗−1,𝜑+1−𝑈𝜗−1,𝜑−1

4ℎ
  

𝑑2𝑢

𝑑𝜉2 +
𝑑2𝑢

𝑑𝜏2|
𝜗,𝜑

=
𝑈𝜗+1,𝜑+1+𝑈𝜗+1,𝜑−1+𝑈𝜗−1,𝜑+1+𝑈𝜗−1,𝜑−1−4𝑈𝜗,𝜑

2ℎ2   

 …(6) 

Then, by substituting eq. (6) into eq. (5) this will result in 

the rotated five-point SFD approximation equation as 

follows: 

𝑣1 (
𝑈𝜗+1,𝜑+1+𝑈𝜗+1,𝜑−1+𝑈𝜗−1,𝜑+1+𝑈𝜗−1,𝜑−1−4𝑈𝜗,𝜑

2ℎ2 ) −

𝑣2 (
𝑈𝜗+1,𝜑+1−𝑈𝜗−1,𝜑+1+𝑈𝜗+1,𝜑−1−𝑈𝜗−1,𝜑−1

4ℎ
+

𝑈𝜗+1,𝜑+1−𝑈𝜗+1,𝜑−1+𝑈𝜗−1,𝜑+1−𝑈𝜗−1,𝜑−1

4ℎ
) + 𝛽2𝑈𝜗,𝜑 = 𝑓𝜗,𝜑  

 …(7) 

By simplifying and reordering eq. (7), we obtain   
𝜙1−2𝜙2

𝛽2−4𝜙1
𝑈𝜗+1,𝜑+1 +

𝜙1

𝛽2−4𝜙1
𝑈𝜗+1,𝜑−1  +

𝜙1

𝛽2−4𝜙1
𝑈𝜗−1,𝜑+1  +

𝜙1+2𝜙2

𝛽2−4𝜙1
𝑈𝜗−1,𝜑−1 + 𝑈𝜗,𝜑  =

𝑓𝜗,𝜑

𝛽2−4𝜙1
  

 …(8)    

where 𝜙1 =
𝑣1

2ℎ2 and 𝜙2 =
𝑣2

4ℎ
. 

 

A rotated five-point SFD scheme is built by splitting 

the solution domain into two points categories on the 𝜉, 𝜏-

plane. The evaluation of eq. (8) may depend on the only 

type  ( ) of points. Iterations involving only one type of 

point can then be generated. Once the convergence test is 

reached, the solution at the remaining points ( ) will be 

assessed directly once using the original centred five-point 

SFD approximation equation as follows: 
𝜙1∗+𝜙2∗

𝛽2−4𝜙1∗
𝑈𝜗−1,𝜑 +

𝜙1∗−𝜙2∗

𝛽2−4𝜙1∗
𝑈𝜗+1,𝜑 +

𝜙1∗+𝜙2∗

𝛽2−4𝜙1∗
𝑈𝜗,𝜑−1 +

𝜙1∗−𝜙2∗

𝛽2−4𝜙1∗
𝑈𝜗,𝜑+1 + 𝑈𝜗,𝜑 =

𝑓𝜗,𝜑

𝛽2−4𝜙1∗
  

 …(9)    

where 𝜙1∗ =
𝑣1

ℎ2 and 𝜙2∗ =
𝑣2

2ℎ
. 
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Fig. 1 Finite grid networks for the full-sweep in case 𝒎 = 𝟖 
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Fig. 2 Finite grid networks for the half-sweep in case 𝒎 = 𝟖 

 

As to the computational molecule of both full- and 

half-sweep techniques, Fig. 3 and 4 show the information 

where the full-sweep technique has a standard 

computational molecule for finite difference approximation 

while the half-sweep technique has the cross-orientation 

computational molecule as opposed to the standard 

computational molecule. 
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Fig. 3 The computational molecules for centred five-point SFD 

approximation 

 
Fig. 4 The computational molecules for rotated five-point SFD 

approximation 

 

where 

𝑏 =
𝜙1∗+𝜙2∗

𝛽2−4𝜙1∗
  

𝑐 =
𝜙1∗−𝜙2∗

𝛽2−4𝜙1∗
  

𝑏𝑏 =
𝜙1−2𝜙2

𝛽2−4𝜙1
  

𝑐𝑐 =
𝜙1

𝛽2−4𝜙1
  

𝑑𝑑 =
𝜙1+2𝜙2

𝛽2−4𝜙1
  

 

Now considering a certain number of grid points 

based on eq. (8) as depicted in Fig. 2, the construction of the 

large-scale and sparse linear system is obtained, which can 

be expressed in the matrix form as follows: 

 

𝑊𝑈 = 𝑆  (10) 

where 𝑊 is a square nonsingular matrix while 𝑈 and 𝑆 are 

column matrices. We will use iterative methods in the next 

section to solve the linear system (10). 

 

4. Formulation of Proposed Iterative Method 
In this section, the half-sweep similarity technique via 

half-sweep successive over-relaxation (HSSOR-SFD), full-

sweep Gauss-Seidel (FSGS-SFD) and full-sweep SOR 

(FSSOR-SFD) iterations are formulated to solve the large-

scale and sparse linear system in eq. (10) as noted in the 

previous section. Firstly, start with how to derive the 

formulation of the GS iterative method. To derive the 

formulation of the proposed iterative method, the coefficient 

matrix 𝑊 of the linear system (10) decomposes as: 

 

𝑊 = 𝐷 − 𝑅 − 𝑉  (11) 

where 𝐷, 𝑅 and 𝑉 represent diagonal, lower triangular, and 

upper triangular matrices, respectively. The formulation of 

GS iteration can be stated in vector form (12) by applying 

the decomposition in eq. (11) into the linear system (10) as 

follows [24, 25, 30, 31]: 

 

𝑈(𝑘+1) = (𝐷 − 𝑅)−1𝑉𝑈(𝑘) + (𝐷 − 𝑅)−1𝑆  (12) 

For the implementation of GS iteration, each component 

𝑈𝜗,𝜑
(𝑘+1) can be computed as:  

𝑈𝜗,𝜑
(𝑘+1) = 𝑆𝜗,𝜑 − 𝑎(𝑈𝜗−1,𝜑

(𝑘+1) + 𝑈𝜗,𝜑−1) −

𝑏(𝑈𝜗+1,𝜑
(𝑘+1) + 𝑈𝜗,𝜑+1)  

 …(13)    

Next, implementing a parameter 𝜔 is considered a 

relaxation factor to derive the formulation of the SOR 

iteration. By substituting 𝜔 into eq. (10) and rewrite it as 

[46]: 

𝜔𝑊𝑈 = 𝜔𝑆  (14) 

The optimal value of 𝜔 in the range [1,2). Then, by 

applying the decomposition in eq. (11) into the linear 

system (14), the iterative formulation of the SOR method 

can be stated in vector form as [47, 48]: 

𝑈(𝑘+1) = (𝐷 − 𝜔𝑅)−1(𝜔𝑉 + (1 − 𝜔)𝐷)𝑈(𝑘) +

𝜔(𝐷 − 𝜔𝑅)−1𝑆  

 …(15)    

Note that for 𝜔 = 1, eq. (15) is turning out to be the GS 

method. To be specific, a good choice of 𝜔 can dramatically 

improve the computational performance of the SOR 

iteration. For the implementation of the SOR iteration, each 

component 𝑈𝜗,𝜑
(𝑘+1) can be computed as: 

𝑈𝜗,𝜑
(𝑘+1) = (1 − 𝜔)𝑈𝜗,𝜑

(𝑘) + 𝜔 (
𝑓𝜗,𝜑

𝛽2−4𝜙1∗
−

𝜙1∗+𝜙2∗

𝛽2−4𝜙1∗
(𝑈𝜗−1,𝜑

(𝑘+1)  +  𝑈𝜗,𝜑−1
(𝑘+1)) −

 
𝜙1∗−𝜙2∗

𝛽2−4𝜙1∗
(𝑈𝜗+1,𝜑

(𝑘+1) + 𝑈𝜗,𝜑+1
(𝑘+1)))   

 …(16)    
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To improve the computational performance, half-

sweep iterative methods based on the rotated finite 

difference approximations are much faster than the methods 

based on the standard five-point formula in solving the 

partial differential equations due to the formers’ overall 

lower computational complexities [39, 49, 50]. So, in the 

same way, the implementation of HSSOR iteration for each 

component 𝑈𝜗,𝜑
(𝑘+1) can be computed as: 

𝑈𝜗,𝜑
(𝑘+1)  =  (1 − 𝜔)𝑈𝜗,𝜑

(𝑘) + 𝜔 ∗ (
𝑓𝜗,𝜑

𝛽2−4𝜙1
−

 
𝜙1−2𝜙2

𝛽2−4𝜙1
𝑈𝜗+1,𝜑+1

(𝑘+1) −
𝜙1

𝛽2−4𝜙1
(𝑈𝜗+1,𝜑−1

(𝑘+1)  +

 𝑈𝜗−1,𝜑+1
(𝑘+1)) −  

𝜙1+2𝜙2

𝛽2−4𝜙1
𝑈𝜗−1,𝜑−1

(𝑘+1))  

 …(17)    

Using the half-sweep technique, the computational 

complexity was reduced to half due to only half of the node 

points being taken into account when performing 

calculations. Fig. 1 shows the computational grid for both 

full-sweep and half-sweep techniques to understand the 

half-sweep concept better. 

 

5. Numerical Experiments and Discussions 
In this section, three problems of the two-dimensional 

hyperbolic telegraph equation (2-D HTE) are used to show 

the performance of the HSSOR-SFD iteration. The 

experiments were executed on a Macbook Air with an 

Apple M1 chip. We considered three parameters which are 

the number of iterations (iter), computational time (t), and 

maximum absolute error (err), in making a comparison of 

the proposed iterative methods. The rate of tolerance error 

for the convergence test is set to 𝜀 = 10−10 To check the 

consistency, we tend to run the numerical simulation by 

increasing the values of grid sizes 64, 128, 256, 512 and 

1024. Below are the following three 2-D HTE problems: 

 

Prob. 1 [51] Consider the 2D-HTE in eq. (1) with 𝛼 = 𝛽 =
1 in the domain [0,1] × [0,1], the analytical solution is 

𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦−𝑡 and the source function is 𝐹(𝑥, 𝑦, 𝑡) =
−2𝑒𝑥+𝑦−𝑡. 

 

Prob. 2 [52] Consider the 2D-HTE in eq. (1) with 𝛼 =
2, 𝛽 = 1 in the domain [0,2] × [0,2], the analytical solution 

is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝑥) 𝑦2 and the source function is 

𝐹(𝑥, 𝑦, 𝑡) = −𝑒−𝑡 sin(𝑥) (𝑦2 + 2). 

 

Prob. 3 [53] Consider the 2D-HTE in eq. (1) with 𝛼 =
10, 𝛽 = 5 in the domain [0,1] × [0,1], the analytical 

solution is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥𝑝(−𝑡) sinh 𝑥 sinh 𝑦 and the 

source function is 𝐹(𝑥, 𝑦, 𝑡) = (−2𝛼 + 𝛽2 −
1)𝑒𝑥𝑝(−𝑡) sinh 𝑥 sinh 𝑦. 

 

All significant numerical results for numerical 

experiments of solving examples 1, 2, and 3 using the 

HSSOR-SFD, FSSOR-SFD and FSGS-SFD iterations are 

recorded in Tables 1, 2, and 3, respectively. Based on the 

observation in Tables 1, 2 and 3, it is found that the 

HSSOR-SFD iterative method requires a smaller number of 

iterations as compared with FSSOR-SFD and FSGS-SFD. 

In terms of execution time, the HSSOR-SFD iterative 

method provides significantly faster performance than 

FSSOR-SFD and FSGS-SFD. The proposed HSSOR-SFD 

iterative method is more efficient than FSSOR-SFD and 

FSGS-SFD iterative methods.  

 

The following is a summary of the findings. For 

problem 1, the iter and t of the HSSOR-SFD iteration have 

declined by about 96.69% - 99.67% and 95.03% - 99.56%, 

respectively, compared to the FSGS-SFD iteration. 

Meanwhile, if FSSOR-SFD iteration is compared to FSGS-

SFD iteration, the iter and t have reduced by about 94.69% - 

99.49% and 92.72% - 99.45%, respectively. Next, for 

problem 2, the iter and t have declined by about 93.12% - 

99.17% and 90.48% - 98.93%, respectively, if the HSSOR-

SFD iteration is compared to the FSGS-SFD iteration. 

When FSSOR-SFD iteration is compared to FSGS-SFD 

iteration, the iter and t. have reduced by about 90.03% - 

98.81% and 86.67% - 98.73%, respectively. Lastly, for 

problem 3, HSSOR-SFD and FSSOR-SFD iterations need 

about 86.24% - 98.71% and 78.70% - 97.98%, respectively 

lesser iter when it is compared against FSGS-SFD. While in 

terms of t, HSSOR-SFD and FSSOR-SFD iterations are 

much faster than FSGS-SFD iterations to complete the 

computing by about 80.43% - 98.32% and 76.09% - 

97.82%, respectively. Overall, the accuracy of the three 

numerical methods, i.e., HSSOR-SFD, FSSOR-SFD, and 

FSGS-SFD iterations, are comparable. 

 

Table 1. Performance of the proposed iterations in terms of iter, t and err for Problem 1 

 Method 
Grid Size 

64x64 128x128 256x256 512x512 1024x1024 

iter 

FSGS-SFD 4837 17390 61817 216467 743030 

FSSOR-SFD 257 512 1024 1944 3812 

HSSOR-SFD 160 316 627 1243 2469 

t FSGS-SFD 0.295376 3.435960 46.37301 648.571074 8900.067408 
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FSSOR-SFD 0.016110 0.125246 0.921343 6.863014 54.616080 

HSSOR-SFD 0.005352 0.032468 0.246970 2.124093 17.647942 

err 

FSGS-SFD 2.311010E-07 7.983023E-08 5.370245E-07 2.204651E-06 8.833237E-06 

FSSOR-SFD 2.596319E-07 6.412089E-08 1.493691E-08 7.116531E-09 1.896090E-08 

HSSOR-SFD 1.039366E-06 2.595287E-07 6.414711E-08 1.491863E-08 1.089272E-08 

  
 

Fig. 5 iter and t versus Grid Sizes of two different techniques for Problem 1 

 
Table 2. Performance of the proposed iterations in terms of iter, t and err for Problem 2 

 Method 

Grid Sizes 

64x64 128x128 256x256 512x512 1024x1024 

iter 

FSGS-SFD 1584 5476 18590 61010 186434 

FSSOR-SFD 158 308 595 1148 2217 

HSSOR-SFD 109 211 410 800 1556 

t 

FSGS-SFD 0.112378 1.105432 13.917351 180.885969 2236.354764 

FSSOR-SFD 0.013785 0.074993 0.538216 4.081519 31.306165 

HSSOR-SFD 0.008067 0.022833 0.164887 1.381354 11.171196 

err 

FSGS-SFD 2.416858E-05 2.415568E-05 2.411302E-05 2.390946E-05 2.294426E-05 

FSSOR-SFD 2.417184E-05 2.416981E-05 2.417365E-05 2.417362E-05 2.417368E-05 

HSSOR-SFD 2.419785E-05 2.417633E-05 2.417530E-05 2.417411E-05 2.417391E-05 
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Fig. 6 iter and t versus Grid Sizes of two different techniques for Problem 2 

 
Table 3. Performance of the proposed iterations in terms of iter, t and err for Problem 3 

 Method 
Grid Size 

64x64 128x128 256x256 512x512 1024x1024 

iter 

FSGS-SFD 676 2412 8645 30801 107678 

FSSOR-SFD 144 286 564 1107 2176 

HSSOR-SFD 93 183 359 709 1398 

t 

FSGS-SFD 0.043651 0.491499 6.688092 93.608508 1306.817991 

FSSOR-SFD 0.012655 0.068769 0.511474 3.978834 30.994040 

HSSOR-SFD 0.008148 0.020251 0.151031 1.230542 10.124107 

err 

FSGS-SFD 6.188434E-05 6.189757E-05 6.189644E-05 6.187241E-05 6.173325E-05 

FSSOR-SFD 6.188451E-05 6.189865E-05 6.190241E-05 6.190352E-05 6.190374E-05 

HSSOR-SFD 6.192869E-05 6.190967E-05 6.190516E-05 6.190421E-05 6.190391E-05 

 
Table 4. Percentage reduction in iter and t of the HSSOR-SFD and FSSOR-SFD iterations in comparison to FSGS-SFD iteration 

Problem Methods Iteration Time 

1 
FSSOR-SFD 94.69% - 99.49% 98.91% - 99.77% 

HSSOR-SFD 96.69% - 99.67% 99.72% - 99.93% 

2 
FSSOR-SFD 90.03% - 98.81% 98.09% - 99.48% 

HSSOR-SFD 93.12% - 99.17 99.23% - 99.81% 

3 
FSSOR-SFD 78.70% - 97.98% 96.20% - 99.10% 

HSSOR-SFD 86.24% - 98.70% 98.23% - 99.71% 
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Fig. 7 iter and t versus Grid Sizes of two different techniques for Problem 3 

 

6. Conclusion 
 This study described the mathematical derivation of the 

rotated five-point similarity finite difference approximation 

equation. This approximation equation leads to a linear 

system then solved using HSSOR-SFD iteration. We have 

proven that the iter of the HSSOR-SFD iteration is smaller 

than FSSOR-SFD and FSGS-SFD iterations. Also, we 

conclude that the rate of convergence of the HSSOR-SFD 

iteration is faster than the rate of convergence of the 

FSSOR-SFD and FSGS-SFD iterations. So, we can point 

out that the HSSOR-SFD iteration is verified to give the 

best performance in solving two-dimensional hyperbolic 

telegraph equations. To extend this study, we consider the 

quarter-sweep iteration as done by [54-56] to speed up the 

convergence rate of the method. 
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