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Abstract - Most applications generate data in a stream format in the Big Data world. Mining this data stream is considered 

necessary to extract meaningful information from such a large amount of data. To be successful in this well-known field of 

analytics, traditional classification, clustering, and aggregation techniques must be improved. Ensemble-based classifiers 

developed using bagging, boosting, or hybrid methods outperformed traditional single classifiers. The ensemble concept has 

been shown to improve classifier accuracy and diversity in design. At the same time, using a drift detector to address the 

concept drift issue of a data stream has yielded fantastic results. The primary goal of this proposed system is to provide a 

suitable methodology for selecting an appropriate drift detector for an effective ensemble classifier by combining a cutting-

edge base ensemble classifier with standard drift detectors. Similarly, this paper also examined a proposed boosting ensemble 

strategy using several drift detectors to determine the most effective combination to address all types of concept drift. The 

results and analysis discussed in this paper are expected to be relevant and useful for selecting the proper parameters of drift 

detectors and designing strong ensemble classifiers. 

Keywords - Concept Drift, Data Stream mining, Drift Detector, Ensemble-based learning, Real-time data analysis.  

1. Introduction   
A key concern with data stream analysis is the lack of a 

proper strategy for dealing with the continuous flow 

of data.   It is a difficult area for data mining because the 

technique must recognise changes efficiently to extract 

meaningful data from it. It must keep reliable stats on this 

revolving data. Likewise, the predictive model should be 

revised as input changes. 

 

When multiple models of base techniques are applied to 

the same input to improve overall performance, the term 

"ensemble" is used. This same concept is used in data stream 

mining, where ensembles are designed using Bagging, 

Boosting [1], and stacking[2]approaches. The change in data 

concept must be handled with caution because it affects the 

accuracy of prediction models. Drift detection methods 

detect such changes, allowing the prediction model to update 

under the drift rate. 

 

Oza and Russell designed Online Boosting 

(OZABOOST)[1] to deal with big data stream problems for 

the first time in the literature. They used a Poisson 

distribution to predict behavioral drift patterns. Researchers 

have developed a variety of ensemble algorithms that 

manage data in stream format by overcoming speed, time, 

and volume issues [3]–[6]. This paper's major goal is to look 

into ways to select a drift handler that can effectively manage 

all types of drifted data   

 

The significant contributions of this work include the 

following: 

• To assess the accuracy of the prediction, an ensemble of 

10 base classifiers is utilized rather than a single 

classifier. 

• Three separate ensemble classifiers were used to test 

three different drift detection algorithms. 

• Two majors are used: kappa and accuracy. 

• To make more precise judgments, experimenters use a 

variety of data streams, including real and synthetic data 

streams that contain rapid, complex, and progressive drift. 

• Comparisons are made based on performance. 

Many academics have employed the ensemble to address 

large stream difficulties while performing data stream 

analysis. Different strategies were used to produce these 

ensembles. This research will focus on a systematic approach 

for emphasizing the use of drift detectors in ensemble 

creation. Similarly, the behavior of our suggested boosting 

ensemble classifier is examined on drifted data streams using 

a variety of drift detector algorithms. The following is how 

the paper is organized. Section 2's literature review examines 

ensembles of various types and covers the most popular and 
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effective methods for drift detection. Section 3 contains 

information on the experimental setup and data sets. Section 

4 contains results and comparative analysis. Section 5 deals 

with the conclusion. 

 

2. Literature Review 
2.1. Ensemble Method 

To deal with different drifts in data streams, this 

research emphasises the combination of ensemble classifier 

and drift detection method. This study considered various 

ensemble-based classification methods as well as drift 

detectors. Some of the most well-known ensemble-based 

classifiers were developed to address the concept drift 

problem. In this part, the ensemble classifier literature is 

covered in more detail. 

 

Accuracy Weighted Ensembles AWE[7], developed by 

Haixun Wang et al., employs a weighting strategy for 

ensemble selection. A weighted ensemble classifier design 

strategy is suggested by this method. It used naive Bayesian-

like base classifiers, C4.5, RIPPER, and input in the form of 

sequential data chunks. If the expert model predicts that 

instance Ai (A) of the input data belongs to label l, this is 

probable. In the case of ensemble development, the output of 

several base experts(1..n) is pooled, and the final output is 

just the average of all as follows: 

  𝑓(𝐴) = 𝑖\𝑘 ∗ ∑  𝑓(A)𝑘
𝑘=1        (1) 

Here f
i

 l
 (A) is an output of ith base expert in the system. 

The approximate probability, the bias, and the model's 

variance are all considered when calculating the prediction 

probability for a particular case. To lessen training 

inconsistencies overall, the AWE technique considers 

variance-related errors. As a result, AWE created the 

weighted technique as opposed to the general ensemble 

strategy, which averages the outputs of the basic experts. A 

weight Wi has been given to each base expert. This weight is 

inversely related to the base expert's estimated mistake. 

 

By combining a window-based ADWIN[8] drift 

detection approach with online bagging, Albert Bifet et al. 

created the Leveraging Bagging method[9]. The method's 

creators have improved bagging performance by altering the 

data input and output identification processes. Variation can 

be reduced by changing data resampling by utilizing various 

lambda values. The result is rebuilt by transforming a 

multiclass label into a binary class label and utilizing error-

correcting coding. The authors utilized bagging without input 

data stream replacement, half-bagging, and sub-bagging, 

increasing performance time but decreasing model accuracy.  

To address the shortcomings of AWE[9], Dariusz Brzezinski 

and Jerzy Stefanowski presented Accuracy Updated 

Ensemble (AUE)[12]. AUE focuses on online stream 

processing rather than working with data blocks. Therefore it 

not only modifies expert weights but also updates them based 

on current performance. Similar changes have been made to 

the AUE error computation, which now takes into account 

mean square error for both random prediction and each 

instance as follows: 

𝑀𝑆𝑅ₑ = 1 |𝐴𝑖|⁄ ∑ (1 − 𝑓  (𝐴))
2

𝐴,𝑙∊𝐴𝑖
   (2) 

𝑀𝑆𝑅𝑟  = ∑ 𝑝(𝑏𝑒)(1 − 𝑝(𝑏𝑒))
2

𝑏𝑒
  (3) 

Here equation 2 depicts the mean square error 

calculation for each instance, whereas eq. 3 gives random 

prediction errors used in the AUE method. Final, the weight 

of each expert is calculated as Wbe given in eq. 4. 

Wbe =𝑀𝑆𝑅𝑟 − 𝑀𝑆𝑅ₑ          (4) 

 Even while classifier performance has increased, using 

comparable examples for training reduces classifier variety. 

By combining the advantages of block and incremental 

processing, Dariusz Brzezinski and Jerzy Stefanowski 

created the next technique, also known as Online Accuracy 

Updated Ensemble OAUE[10]. An incremental online 

ensemble is created by changing three major components of 

a block-based ensemble. The authors used online component 

evaluation, an incremental learner, and a drift detector to 

evaluate input. This Accuracy Updated Ensemble weights 

expert members according to their errors in constant time and 

memory. The weights of the base expert in the OAUE 

method are calculated on a window of the last n errors, which 

is not similar to the sliding window algorithms used in data 

stream classification. Similarly, this method reconstructs the 

ensemble regularly by replacing base experts[10]. The error 

calculation procedure utilized here is the same as in equation 

4; however, for newly recruited experts, the error is always 

treated as zero for the first n occasions. 

 

The ensemble basis classifier is thoroughly examined to 

determine the most effective methods for fending off each 

drift. A comparative examination of ensemble-based 

classifier design at the cutting edge is conducted for various 

kinds of datasets. This study emphasizes the suitability and 

restrictions of each ensemble designing technique[11]. 

In a recent study, L. Durga and R. Deepu used the 

convergence of image analysis and learning algorithms to 

extend graph logical notions to suit the big five personality 

classifications. Correlations between the graph's logical 

properties and the big five personality observations are also 

made using clustering-based analysis. It has also developed 

an ensemble training classifier model for predicting the Big 

Five Personality Traits using Graph logical Features[12]. 
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Making decisions based on several criteria is a crucial 

challenge in big data study. It often uses the most recent ML 

techniques to provide insights into big data, including 

decision-making algorithms and deep learning methods 

based on many criteria. To raise the dual of runtime and 

increase the potentiality and efficacy of the overall system, 

the derivations are developed to go with the approximations. 

Deep learning and multicriteria decision-based decision-

making challenges are used in many industries, including 

agriculture. By offering new research with the merging 

approaches of data-driven techniques, S. L.V. Papineni et al. 

have presented various applications that involve the 

principles of deep learning techniques and utilizing the 

multicriteria methods for problems faced in big data 

analytics[13]. 
 

The speed of data generation has recently made big data 

analytics more important. Many creative solutions have been 

developed to address the big data challenge, including 

distributed systems, network systems, and huge frameworks. 

After completing tests at Huawei Noah's Ark Lab, the writers 

Bifet et al. developed the idea of StreamDM[14]. The authors 

improved the Spark API by utilizing Spark streaming, a 

scalable data stream processing tool. Using a machine 

learning library, a new piece of free software for data mining 

is produced. StreamDM is simple for users, programmers, 

and researchers to use and extend. The article claims this is 

the first Spark Streaming library that includes sophisticated 

stream mining techniques[14]. 

2.2. Drift detection methods 

Drift detectors play an important role in improving the 

accuracy of the classification model. The primary 

characteristics of a drift detector are: 

 

1. To determine when a change has occurred.  

2. To preserve design consistency by retaining more 

relevant instances. 

3. If a change takes place, update the model. 
 

This section focuses on three basic drift detection 

techniques as follows. Albert Bifet and Ricard Gavalda have 

created a drift detection technique that employs a sliding 

window. This method, rather than using a stationary window, 

use a window which can shrink or expand based on data 

attitude. All of these tasks are carried out using this 

windowing strategy in this Adaptive Windowing 

(ADWIN)[15]drift detection method. In this method, a fixed-

size window of size W is maintained for longer until there 

is no change in the incoming data stream labels. The drift d is 

detected by calculating the difference between the actual 

estimation (e) and the expected estimation (ē).  As a result, 

Window is used to track the failure rate of each model. A 

threshold value is maintained to keep an upper limit on the 

error; if the error rate increases, the model is updated to 

account for the changes and, in some cases, rebuilt if 

required. 

Gama, Medas, and colleagues presented the Drift 

Detection Method (DDM)[16], a novel technique for 

identifying drift. The model's error rate is calculated using 

the binomial distribution, and it has shown promise in 

identifying abrupt drift. This error rate is calculated by 

comparing the probability distribution (Ṕ) of the incoming 

observations (Ṍ) to the error rate of the prediction model (ἐ). 

The DDM has two phases. First, if the results differ, the 

model activates and saves samples of the incoming instances 

for future reference. It is regarded as a warning, and an 

alarming level is set. A drift level is detected for upcoming 

instances if the change in incoming instances exceeds the 

threshold. It is an alarm to delete the rehabilitation of the 

existing model and bring in a new model with previously 

saved instances from the warning bell. It is important to 

create a new model to adapt to the new notion because the 

present examples are connected to new ideas. 

 

Manuel Baena-Garca1 et al. [17] created an advanced 

version of DDM known as the Early Drift Detection Model 

(EDDM), which can handle gradual drift in a data stream. As 

DDM employs a simple error calculation formula, this model 

could not handle gradual drift in data streams because the 

error rate of gradual drift increases slowly. To address this 

issue, EDDM was created using an advanced error 

calculation technique. EDDM considered the distance 

between two errors rather than just the number of errors. It 

has been observed that this method detects both gradual and 

sudden drift with greater accuracy. 

3. Datasets and Experiments 
Data stream (DS) can be described as a continuous flow 

with multiple instances as below: 

 

DS ←Ʃ (Ni,Yi) 

 

Ni ← (n1, n2,n3…...ni) attributes of stream mapped to class 

outcome Yi. In the case of data stream classification accuracy 

of the prediction model decreases if the new arrival of the 

stream has different distribution than that of the learning 

samples. This concept drift problem hampers the 

performance of the prediction model. 

 

3.1. Datasets 

Data stream experiments make use of a standard data set 

that is divided into two categories. Many synthetic datasets 

are used in the literature. This research uses eight standard 

data sets, each belonging to a different drift category. This 

study uses five synthetic data streams and three real datasets 

as a benchmark. The stream generator can create a stream by 

adding noise, specifying the number of classes and attributes, 

or using a sigmoid function. For comparisons, the majority of 

data stream classification algorithms used Random RBF and 

Hyperplane, SEA[18], Sine and waveform synthetic streams, 

and Electricity, Cover type and Poker hand real data 
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sets[18]–[20]. These streams are produced using the Massive 

Online Analysis [21] java framework. 

1. Electricity: The Electricity dataset contains 45,312 

instances and eight attributes from the Electricity Market 

of Australia.  These prices get updated every five 

minutes, and the class label indicates how the price has 

changed with a 24-hour moving average. Here the 

challenge is to forecast whether the price will rise or 

fall.  

2. Random RBF Generator (Radial Basis Function): It 

generates complex concept drifts by randomly 

generating x number of centroids. Each center is 

assigned randomly, with a single standard deviation, a 

class label, and a weight. It has a lot of classes in it, but 

there isn't any noise in it. It has a gradual drift pattern. 

3. Hyper Plane: Continuous addition changes the position 

and orientation of a hyperplane in d-dimensional space. 

It is divided into two classes and contains 5% noise. It is 

an incremental concept drift type with noise added. 

4. SEA: This dataset is an example of significant concept 

drift. Three attributes are used to generate it, of which 

only the first two are relevant. Here values of attributes 

range from 0 to 10. 

5. Sine: The dataset contains two related attributes, each 

with values uniformly distributed between zero and one. 

As a sine wave, all values are positive for the first 

interval and change for the next cycle, becoming 

reversed. 

6. Waveform: The waveform comprises a stream with three 

decision classes, and 40 different attributes describe the 

instances. It is an example of gradual concept drift. 

7. Cover Type: This data set consists of information of 30 

x 30-meter cells obtained from the US Forest Service, 

Region 2 Resource Information System. It is made up of 

581, 012 instances and 54 attributes. It has appeared in 

several papers on data stream classification. 

8. Poker Hand: Every instance of this dataset represents a 

card game hand made up of five playing cards drawn 

from a 52-card deck. In this case, a card is identified by 

two parts: its suit and its rank. It is to forecast a total of 

ten attributes. 

 

3.2. Experiment Setup 

In the above experiment, all three data streams are 

generated with 1 lack, 2 lacks and 5 lacks. It has a sampling 

frequency of 1000 and a window size of 1000. 

 

Hoeffding tree, naïve based, and our newly proposed 

boosting-based ensemble classifier methods were each 

considered for the experiment in 3 separate ensembles with 

10 base classifiers [22].  Our recent paper covers the 

construction concept of the new Boosting-based ensemble 

classification approach [23]. For ADWIN drift detector 

window's delta value is set to 0.02 by default. The minimum 

number of instances is set to 30 with a warning level of 2 and 

an output control level of 3. A basic classification 

performance evaluator with a sampling frequency of 1k and a 

window width of 1k is used to assess classifier accuracy. The 

evaluate prequential method is used, which tests and trains 

the classifier with each example in order. The behavior of all 

these drift detection methods is tested using different data 

streams of different sizes. Some data sets have noise added to 

them. The experiments are run on core i5processor with 4GB 

Ram, Windows OS. All these methods are run in MOA[21] 

framework; similarly, our proposed method is also 

implemented in java and plugged in with MOA code. 
 

4. Comparative Analysis 
Three different ensemble classifiers are used in the 

experiments: naive Bayes, Hoeffding trees, and our proposed 

enhanced boosting-based ensemble classifier[22]. These 

methods are subjected to a test to compare the effectiveness 

of the three drift detector techniques. All three drift detection 

methods, i.e. ADWIN, DDM and EDDM, were run on the 

same data sets, and their accuracy and kappa measures were 

calculated. These three drift detector algorithms are available 

on MOA[21]framework. Following are the results of the 

experiments. This section concentrates on the efficacy of the 

drift detector approach. Therefore, only the Hoeffding tree 

ensemble classifier is used to compare the performance of 

the three drift detectors. 

4.1. Accuracy Analysis 

The calculation of accuracy is as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁 ) ∗ 100               (5) 

Where,  N ← Total Instances 

Table 1 shows the accuracies observed for each drift 

detector technique on artificial and real datasets using the 

Hoeffding tree as the base classifier. Bold values highlight 

the best outcomes. The average of multiple runs on real and 

artificial datasets with 1 lakh, 2 lakh, and 5 lakh instances is 

calculated and placed for reference. 

 

A sudden drift occurs when a new concept entirely 

substitutes an old one. SEA and Sine datasets are examples 

of this type of drift. As shown in table 1, ADWIN and DDM 

obtained approximately the same 88.00+ percent and 98.00+ 

percent accuracy for the SEA and Sine datasets, respectively. 

Similarly, EDDM's accuracy for these two datasets is near-

perfect. As mentioned in EDDM [17], both the DDM and 

EDDM are designed to detect slow progressive changes 

because longer references are required for drift detection. 

In contrast, the Window-based approach (ADWIN) is good 

at identifying rapid changes. While windowing approach, 

ADWIN has completely failed to recover from identifying 

drift in a Cover type data set where values are projected 

based on 54 attributes. In contrast, the DDM method 

recovers quickly and with greater accuracy. 
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The occurrence of drift in the Electricity dataset is 

unknown in advance because it is a real-world dataset. The 

price variances on a one-day average are only shown at the 

class level, removing the impact of longer-term price 

patterns. As a result, this is a data input for a short-term 

forecast. Electricity is a binary dataset, and as shown in table 

1, DDM is more responsive to this dataset and outperforms 

other approaches. 
 

When there is noisy data, as in Poker hand and RBF 

Generator datasets, EDDM seems more accurate than the 

other two methods, allowing it to identify changes and 

improve performance. 
 

Each instance of the poker hand dataset's 10 attributes is 

created using a hand-drawn at random from a deck. The 

change in prediction is unknown; therefore, memorizing the 

results for longer periods is not recommended. As a result, 

EDDM has demonstrated its high accuracy in identifying 

changes. As shown in Table 1, the EDDM method accuracy 

for the poker hand dataset is 4 percent more than the DDM 

method. 

 

When analyzing the RBF generator dataset with 

incremental concept drifts, EDDM again has the highest 

accuracy, followed by DDM and ADWIN. The progressive 

modifications in this dataset take twice as long to complete. 

As a result, all drift detectors took longer to notice a change 

and took time to recover. 

 

ADWIN performed admirably on the hyperplane dataset, 

which has complex drift. In real-world datasets, however, 

ADWIN has performed poorly. According to the findings, 

abrupt drift identification accuracy of ADWIN and DDM is 

the same in the SEA and Sine. To summarise, the ADWIN 

window method and error prediction between consecutive 

instances of DDM is ideal for detecting rapid drift. 

 

DDM and EDDM work on error calculation mechanisms 

to detect drift, although their criteria differ. In the case of 

realistic data sets, both DMM and EDDM produce excellent 

results, such as DMM for cover type and EDDM for poker 

hand. In the case of RBF generator drift, EDDM has shown 

good accuracy. 

 

The kappa measure: It is a second performance matrix 

that is used to examine the difference between the system's 

real accuracy and its random accuracy. Throughout the 

process, it is used to predict model performance.  
 

Table 2 shows the kappa measures for three drift 

detection techniques on all eight datasets with the Hoeffding 

tree as the base classifier. For complex types of drift, 

ADWIN performance remains steady since it is high for 

hyperplane; however, for real data sets, once the drift has 

occurred, it is impossible to recover from it; hence ADWIN 

throughout performance remains low for these datasets. 

 DDM and ADWIN have recovered quickly from abrupt 

types of drift, such as SEA and Waveform datasets, and their 

performance metrics have never dropped. However, EDDM 

has outperformed gradual types of drift (RBF generator).  
 

Table 1.  Accuracy comparison of ADWIN, DDM and EDDM Methods 

with Hoeffding classifier 

Datasets Drift Detector Method 

ADWIN DDM EDDM 

Hyper plane 54.30 89.14 86.56 

SEA 88.02 88.10 87.71 

Sine 98.46 98.72 98.14 

Waveform 81.11 81.76 80.92 

Cover Type 22.41 85.38 83.905 

 Electricity 43.44 86.70 85.72 

Poker Hand 53.49 72.76 78.9 

RBF Generator 84.07 90.68 91.58 
 

Fig. 1 Accuracy comparison of Drift Detection methods on real and 

synthetic datasets. 

 
 

Table 2. Kappa measure for ADWIN, DDM and EDDM Methods using 

Hoeffding Tree classifier 

Datasets 
Drift Detector Method 

ADWIN DDM EDDM 

Hyper plane 11.70 78.29 77.52 

SEA 74 74.50 72.77 

sine 97.43 97.53 96.48 

Waveform 74.13 74.75 72.06 

Cover type 1 76.58 73.77 

Electricity 1.31 63.84 70.82 

Poker Hand 9.8 56.32 62.49 

RBF Generator 72.77 81.33 83.14 
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The efficiency of drift detectors on drifted datasets is 

depicted graphically in Fig. 1. The model performance on 

various datasets is compared using the kappa metric in Fig. 

2. As shown in figs. 1 and 2, the window-based approach 

(ADWIN) of drift identification performed well for sine 

datasets. In contrast, the performance of ADWIN for an RBF 

generator, cover type, and poker hand is lower than the other 

two methods, as shown in fig. 2. This is related to the data 

stream's nature and the drift detector's needs for operation. 

 

In most datasets, especially real datasets, error-based 

drift detection algorithms have demonstrated good results. 

The probabilistic error has failed in the case of gradual drift.  

 

The primary goal of this paper is to evaluate the 

effectiveness of coupling different classifiers with different 

drift detectors to offer a robust solution to the data stream 

concept drift problem. The most popular base classifiers, 

Hoeffding trees and Naive bayes, and a proposed enhanced 

boosting-like classifier, are the ones that are focused on here. 

 
Fig. 2 Kappa comparison of Drift Detection methods on the real and 

synthetic dataset using Hoeffding tree classifier. 

Table 3 shows the detailed accuracy calculation of all 

three drift detectors using the Hoeffding tree and the naive 

bayes base learner. In the gradual drift of the RBF generator 

dataset, the Hoeffding tree showed a higher recovery rate 

than Naive Bayes for all three drift detector techniques. 

 

 

 

In the case of complex drift like in the Hyperplane 

dataset, a naive Bayes works consistently and achieves 

excellent results in all three drift detector methods. In this 

case, the independence of the naive predictor rule had a 

significant effect on classification. 

 

Both classifications provided nearly identical accuracy 

in the case of all three real-world data sets. There is no 

discernible difference in the performance of these drift 

detectors. Only in the case of the poker hand and the 

electricity data set did DDM and EDDM improve their 

accuracy. It could be because of the size of the data sets. 

In the SEA and Waveform datasets, which are examples of 

abrupt and gradual drift, respectively, the prediction accuracy 

of both classification methods is the same. None of the three 

drift detectors for these datasets ever fall below the standard 

level. 

 

Both the SEA and Sine data sets exhibit abrupt drift 

behavior, but according to the observations, the Hoeffding 

tree captures and recovers from drift more accurately than 

the naive Bayes. 

 

A statistic based on the nonparametric Bonferroni 

correction is applied to the results of two methods 

simultaneously to supplement the accuracy analysis. The 

results are shown in Table 4. For this test, a null hypothesis 

was created that stated, "All methods are statistically equal." 

If the results fail to reject the null hypothesis, there is no 

difference between the two methods. If the null hypothesis is 

rejected, there is a significant difference between the two 

methods. 

 

The parameter alpha is initially set to 0.05 for 

comparison, but because there are three methods to compare, 

the value of benoferrial alpha is changed to 0.016666667. 

When comparing ADWIN and DDM, the holms value is 

=0.05. When comparing ADWIN and EDDM, the holms 

value is =0.025, much greater than the t-test value, indicating 

a significant difference between these two methods. 

 

The DMM and EDDM holms value are 0.016666667, 

which is very low compared to the t-test value, which rejects 

the null hypothesis and proves that these two methods are the 

same. Thus, even if the results of classifiers are similar in 

some methods, all drift detection methods are distinct.

Table 3. Accuracy comparison for ADWIN, DDM and EDDM Methods using Naïve Bayes  and Hoeffding Tree classifiers 

  Naïve Bayes classifier Hoeffding Tree Classifier 

Datasets ADWIN DDM EDDM ADWIN DDM EDDM 

Random RBF Generator 

(1L) 
71.85 71.85 71.71 81.26 81.26 81.11 

Random RBF Generator 

(2L) 
72.06 72.06 71.71 83.97 83.97 81.50 
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Random RBF Generator 

(5L) 
68.96 68.96 71.71 86.98 86.98 82.60 

Hyper plane (1L) 92.92 92.92 92.92 53.34 89.14 88.76 

Hyper plane (2L) 93.34 93.34 93.34 55.79 89.03 83.93 

Hyper plane  (5L) 93.70 93.70 93.70 55.79 89.26 87.00 

SEA (1L) 87.94 87.94 87.53 87.37 87.62 87.49 

SEA (2L) 88.05 88.05 88.22 88.01 88.01 88.22 

SEA  (5L) 88.14 88.14 87.42 88.67 88.67 87.42 

Sine (1L) 92.55 92.55 92.8 97.93 97.9 97.90 

Sine (2L) 92.83 92.83 98.65 98.46 98.45 97.86 

Sine  (5L) 93.14 93.14 98.72 98.98 98.99 98.65 

Waveform(1L) 80.42 80.48 80.48 80.52 80.24 80.08 

Waveform (2L) 80.51 80.51 80.78 80.52 81.23 80.78 

Waveform  (5L) 80.50 80.50 80.90 82.28 82.08 81.90 

Cover Type (1L) 21.51 80.88 81.40 21.51 83.52 82.20 

Cover Type (2L) 22.41 84.45 83.75 22.41 86.29 83.75 

Cover Type  (5L) 22.24 86.43 84.89 23.1 87.24 84.89 

Poker Hand (1L) 54.18 75.42 79.18 54.18 75.42 79.18 

Poker Hand (2L) 54.11 74.45 79.08 53.18 74.45 79.08 

Poker Hand  (5L) 53.18 68.42 78.41 53.1 68.42 78.41 

Electricity (1L) 43.44 82.48 85.72 43.44 86.70 86.19 

Electricity (2L) 43.44 82.48 85.72 43.44 86.70 86.19 

Electricity  (5L) 43.44 82.48 85.20 43.44 86.70 86.19 
 

Table 4. Comparison results for ADWIN, DDM and EDDM Methods using Bonferroni Correlation Method 

Compared Methods 
Base classifier - Hoeffding Tree 

T-test Bonferroni P-Rank Holm 

ADWIN DDM 0.00044755 0.016666667 3 0.05 
 

ADWIN EDDM 0.000455139 0.016666667 2 0.025 

DDM EDDM 0.877068374 0.016666667 1 0.016667 
 

4.1.1. Data Drift Analysis 

The behavior of all three drift detectors is depicted 

graphically for three types of drift: abrupt, complex, and 

gradual. It shows how to change detectors react when they 

encounter a change in concepts. 
 

As shown in Figure 3, the ADWIN technique cannot 

recover after encountering the first drift after 5000 instances 

of examination. As can be seen from the graph, ADWIN's 

performance has steadily declined.DDM and EDDM had a 

lower performance at 5000, 10000, and 15000 instances, but 

after continuous training, the model adapted to changes and 

the accuracy of both methods improved further. 
 

Figure 4 compares drift detector reactions for a real-

world data set Poker hand. In this dataset, all three methods 

react differently because the drift is unknown in advance, and 

each method's recovery rate differs. 

 
 

Fig. 3 Performance of Drift Detection methods for Hyper Plane dataset. 
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The probability-based error calculation method, EDDM, 

is the winner here. The graph clearly shows that the drift 

occurs regularly; after training with around 15000 instances, 

the accuracy of DDM and EDDM never falls below a certain 

level. In comparison, the ADWIN method is incapable of 

dealing with frequent changes. 

 

Fig. 4 Performance of Drift Detection methods with Nave bayes 

classifier for Poker Hand dataset 

Fig. 5 Performance of Drift Detection methods with Hoeffding tree 

classifier for Waveform dataset 

Finally, Figure 5 depicts the reaction to a waveform 

dataset with gradual drift. As shown in the graph, changes in 

concepts began at the beginning and have continued to 

change, resulting in the performance of all three methods 

gradually degrading. DDM and ADWIN have gradually 

recovered their performance, but the EDDM method has 

consistently degraded throughout the experiment.  

4.2. Comparative Analysis 

A Boosting-based ensemble method is proposed[22] by 

changing the instance selection strategy in the exiting 

Boosting-based online ensemble method (BOLE)[24]. This 

proposed method is tested in this research using various drift 

detectors to select a suitable drift detector for all types of 

drifted datasets. The comparison of this proposed boosting-

based technique with Hoeffding trees and Naive Bayes 

classifiers is shown in table 4 below. Five distinct datasets 

are chosen for comparison, including the real-world datasets 

of electricity and the hyperplane with gradual drift and sine 

with rapid drift. The experiment uses one lakh, two lakh, and 

five lakh instances of synthetic datasets, and the averaged 

findings are shown in table 4. 

 

It has been found that ADWIN's drift detector's accuracy 

for the Hyperplane data set is lower than that of other drift 

detection methods. Unlike the stagger dataset, this provided 

an accuracy of 99.95% to 99.96% for all three classifiers and 

all three drift detectors. Considering SEA datasets, the 

proposed method outperformed all others with a DDM drift 

detector accuracy of 88.41%, whereas the Hoeffding 

methods with ADWIN had the lowest accuracy. 

 

For the analysis of the performance of drift detectors, 

classifier accuracy is considered. The proposed boosting 

ensemble approach for the ADWIN drift detector has 

demonstrated good performance for the electricity and sine 

datasets with 74.97% and 98.80%, respectively, as shown in 

figure 6. 

 

The average performance on all five data sets for 

ADWIN using the proposed boosting ensemble approach, 

naive bayes, and Hoeffding trees is 89.42%, 83.52%, and 

76.83%, respectively, as shown in figure 6. Except for Hyper 

plane data, all datasets with the DDM drift detector method 

with the proposed boosting ensemble approach have 

performed well. As depicted in figure 7, for the proposed 

boosting ensemble technique, naïve bayes, and Hoeffding 

trees, DDM recorded the highest average accuracy with 

93.40%, 91.33%, and 92.51%, respectively. 

Table 5 shows that our proposed boosting-based ensemble 

method has the highest average accuracy of 89.42%, 93.40%, 

and 93.02% in ADWIN, DDM, and EDDM drift detectors, 

respectively when the average results of all three classifier 

techniques are considered. 

As in figure 8, the EDDM drift detector with the 

proposed boosting ensemble approach produced accuracy 

nearly on par with that of the DDM method but required 

more time. While EDDM has achieved outcomes of 91.62%, 

92.69%, and 93.02% for Hoeffding trees, naïve bayes, and 

the proposed boosting ensemble approach, respectively. 

The DDM drift detector performs better for all types of 

drifted data with less time than the other two approaches, as 

shown in figure 9. It might be related to the drift detector's 

error calculation formulation. 
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Table 5. Accuracy for ADWIN, DDM, and EDDM drift detectors for Hoeffding tree, Naïve Bayes and Proposed Boosting Ensemble method 

 
ADWIN DDM EDDM 

 DataSets 
Hoeffding 

Tree 

Naïve 

Bayes 

Proposed 

Method 

Hoeffding 

Tree 

Naïve 

Bayes 

Proposed 

Method 

Hoeffding 

Tree 

Naïve 

Bayes 

Proposed 

Method 

Hyper plane 54.3 93.32 85.4 89.14 93.32 88.47 86.56 93.32 87.71 

Sine 98.46 92.84 98.8 98.72 92.84 98.8 98.14 96.72 98.8 

Stagger 99.95 99.95 99.95 99.88 99.96 99.97 99.96 99.95 99.97 

Electricity 43.44 43.44 74.97 86.7 82.48 91.34 85.72 85.72 91.00 

SEA 88.02 88.04 88 88.1 88.04 88.41 87.71 87.72 87.63 

Average Performance 76.83 83.52 89.42 92.51 91.33 93.40 91.62 92.69 93.02 

Fig. 6 Accuracy comparison of ADWIN Drift Detection methods for 

three different classifiers. 

 

Fig. 7 Accuracy comparison of DDM Drift Detection methods for three 

different classifiers. 

 

 

 

 

Fig. 8 Accuracy comparison of EDDM Drift Detection methods for 

three different classifiers 

Fig. 9 Accuracy comparison of proposed Boosting ensemble method 

with three drift detectors. 
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Fig. 10 Performance of proposed method with 3 different drift detectors 

for Electricity dataset 

 
Fig. 11 Performance of proposed method with 3 different drift detectors 

for Hyperplane dataset 

Fig. 10 and 11 demonstrate how to drift detectors help 

detect drift in data and how a strong ensemble construction 

policy aids in recovering from drift and improving classifier 

performance. The window-based approach cannot recover its 

performance in both cases of drift occurrence, whereas the 

error-based approach never degrades its performance during 

the process. 

5. Conclusion   
 This paper presents a systematic analysis of drift 

detection methods for improving real-world data analysis 

performance. The most recent ensemble-based approach, 

which is most powerful in dealing with massive amounts of 

the data stream, is also discussed, implemented, and studied. 

The primary goal of this study is to demonstrate the utility of 

drift detectors in stream classification using real-world data 

sets. A large amount of data generated by IoT sensors, 

medical devices, and social media must be accurately 

analyzed in light of the large volume, change in concept, and 

velocity.  

  

 The results of this experiment reveal that error-based 

drift detection systems are extremely effective at identifying 

all types of drift. Whereas in the case of the window-based 

approach, the most important task is to determine the 

window size; a window that is too small will not detect 

progressive drift, while a window that is too large will miss 

out on abrupt drift. As a result, arranging a correct size or 

changeable size window is a solution. 

 

This research will aid in the creation of a new ensemble 

using the drift detection technique. A suitable method can be 

employed based on the application's data drift type. This 

study shows that DDM is always good for all types of drift 

and that a small change in the error calculation span can 

increase its performance. 

 

Based on a thorough examination of various data sets, it 

is clear that the difference between the two results - Error 

based and window-based methods - has demonstrated its 

applicability in different types of drift. As a result, these 

methods will be more useful in online data stream analysis. 

For future work, a combination of EDDM and DDM by 

modifying its parameters with an ensemble classifier should 

be tested to see if better results can be achieved. 
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