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Abstract - The article describes geoinformation methods and algorithms for interpreting Earth remote sensing data based on 

forming an ensemble of shallow classifiers based on the Ensemble Learning methodology. The proposed solution can be used 

to assess the stability of geosystems and predict natural processes. The difference between the created approach is determined 

by the new organization scheme of the metaclassifier as a decision-making unit and the use of a geosystem approach to 

preparing data for automated analysis through deep learning models. The article shows that the use of ensembles built 

according to the proposed method makes it possible to carry out an automated operational analysis of spatial data for solving 

the problem of the thematic mapping of metageosystems and natural processes to provide conditions for the sustainable 

development of regions. At the same time, combining models into an ensemble based on the proposed architecture of the 

metaclassifier makes it possible to increase the stability of the analyzing system: the accuracy of decisions made by the 

ensemble tends to the accuracy of the most efficient monoclassifier of the system. 
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1. Introduction 
Progress in the field of technologies for digital mapping 

and analysis of geospatial data and remote sensing materials 

of the earth, as well as the development of methodological 

and algorithmic support for the process of analyzing land 

structure, have led to an increase in demand for geographic 

information [1]. The relevance of solving the scientific 

problem of developing new methods and algorithms for the 

intelligent analysis of spatial data based on machine learning 

technologies to support the process of making managerial 

decisions in the field of analyzing the state and structure of 

land use systems is determined by the need to transition to 

advanced digital technologies to ensure an effective solution 

of strategic tasks of sustainable spatial development and 

territorial planning [2].   

 

The purpose of the study presented in the article is the 

development and testing of methods and algorithms for 

constructing ensembles of machine learning models for 

solving the problem of analyzing the structure and state of 

metageosystems. The analysis of scientific publications 

shows that the methods and algorithms of machine learning 

can be effectively used to interpret geospatial data, which are 

characterized by the properties of spatial dependence, spatial 

heterogeneity and scalability [3, 4]. At the same time, 

applying methods and algorithms of deep machine learning 

to geospatial data analysis faces many open problems that 

require scientifically based solutions. Among the most 

relevant are the following [5]: 

• development of a system of methods and algorithms for 

integration and preliminary processing of spatial data 

based on new methods of machine learning and digital 

processing of data signals;  

• formation of methodological, algorithmic and software 

for building deep learning models that allow interpreting 

multidimensional arrays of spatial data;  

• development of a methodological approach to solving 

the problem of designing, iterative development and 

implementation of geoportal systems as access points to 

distributed arrays of spatial information and 

optimization, optimized for solving practical problems in 

land use systems analysis. 

 

As an object of systemic spatial analysis in modern 

science in the field of spatial data analysis, geosystems are 

defined as "... the earthly space of all dimensions, where the 

individual components of nature are in a system connected 

and, as a certain integrity, interact with the cosmic sphere 

and human society" [6]. The doctrine of geosystems has been 

developed not only in studying natural objects and processes 
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but also in analyzing their interaction with social and 

economic systems [28]. In such an extended interpretation, 

geosystems are "metageosystems", the digital models that 

should be used as the main tool for spatial analysis. 

 

2. Related works, Materials and Methods 
Machine learning models used to solve the problem of 

classification of metageosystems can have different 

architectures (artificial neural networks, decision trees, 

support vector machines) and hyperparameters [8, 9]. 

Moreover, they can successfully train on different data sets 

about the interpreted territory, which can be 

multidimensional and multimodel, including information 

about the dynamic spectral properties of the analyzed spatial 

area, invariant characteristics of geosystems, features and 

signs of its spatial organization, other attributive, spatial and 

temporary information [10-12]. 

 

In the past few years, the concept of deep machine 

learning has taken a significant place in the field of spatial 

data analysis. Multilayer neural network models are based, 

among other things, on convolutional neural network 

components. Achieving high interpretation accuracy, in this 

case, is possible by extracting complex hierarchical features 

and non-linear dependencies from spatially distributed 

information. However, using capacious deep neural networks 

encounters obstacles that make their implementation much 

more difficult [13-15].  

 

Firstly, such models can be effectively trained only on 

large sets of labeled spatial data, the formation of which 

requires serious time and economic costs, including 

significant amounts of field research and many hours of post-

processing [16, 17].  

 

Secondly, deep neural network models are not a panacea 

in choosing a tool for interpreting spatial data: representing a 

black box; they can be subject to the problem of overfitting, 

poor generalization of information and poor interpretability 

[18-20].  

 

Finally, training deep convolutional neural network 

models places high demands on hardware: experimental 

research on fine-tuning the model can be significantly 

delayed without using expensive GPUs [21-23]. 

 

The solution of the indicated problem points is possible 

with the simultaneous development of two directions: the 

design of methods and algorithms for integrating and 

extracting informative territorial features of reduced 

dimension and the introduction of lightweight models for 

their interpretation [24, 25]. Shallow neural networks are not 

only less demanding on computational resources but also 

more resistant to generalization and overfitting problems. 

The solution to the problem of interpreting spatial data on 

metageosystems should be based on understanding objective 

territorial characteristics. The invariant properties of 

geosystems are revealed when studying the morphometric 

parameters of the area, which change irreversibly over a long 

period, while the dynamic properties are revealed based on 

periodic remote monitoring data. 
 

The study presented in this article aims to solve the 

scientific problem of increasing the efficiency of using 

machine learning models (primarily artificial neural 

networks) in solving the problem of classifying 

metageosystems based on earth remote sensing (ERS) data. 

In particular, the focus of the study is on solving problems 

that are open and relevant from the point of view of the 

current state of research: 
 

• Development of a methodology for data preparation and 

construction of machine learning models that are 

protected from the problem of overfitting and weak 

generalization, showing high accuracy when working 

with limited sets of labeled data;  

• Formation of a system of recommendations for the 

effective expansion of the labeled data set on 

metageosystems through the use of automated, 

consolidated auxiliary data (including satellite imagery, 

digital elevation models, and digital landscape maps), 

along with the traditional use of a series of affine 

transformations;  

• Reducing the dimension of the analyzed spatial data and 

the capacity of machine learning models to solve the 

problem of increasing the stability of the classifier and 

weakening the requirements for the hardware platform 

of its operation;  

• Generalization of the transfer learning algorithm in the 

analysis of geosystems, in which the developed model, 

being trained on one labelled data, can adapt for reuse on 

new data sets. 
 

Modeling of the hierarchical system of taxa of 

geosystems is oriented towards the allocation of categories 

(distinguished by the features of the macro- and 

mesoclimate), classes (mapped by orographic features), 

groups (diagnosed by types of water and geochemical 

regime), types (determined by soil-biotic features), genera 

(reflects morphosculptural landforms and their constituent 

deposits on a regional scale of research) and species. 
 

To solve the problem of analyzing the structure of 

metageosystems, theEarth remote sensing data are of current 

importance. At the same time, digital maps systematized in 

regional and federal geoinformation systems are of great 

importance. As part of the implementation of the project 

"Digital spatial data infrastructures and models of territorial 

metageosystems for sustainable development", thematic 

maps (Fig. 1) of soil cover (a), aquifer (b), groundwater 

depth (c), bedrock and sediments (d), as well as an integrated 

digital landscape map (e). 
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To solve the problem of automated classification of 

metageosystems of a territory, it is important to use methods 

and algorithms of machine learning. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 1 Thematic maps of regional GIS 

An important direction in this area is using ensembles of 

classifiers built on the Ensemble Learning methodology, 

combining various models into a system, and increasing the 

accuracy and stability of machine learning models. 

 

Algorithm for designing ensemble monoclassifiers. 

Machine learning models used to solve the problem of 

classifying metageosystems can have different architectures 

and hyperparameters and be trained on different data sets. 

The ensemble of machine learning models 𝐸 is formed based 

on monoclassifiers 𝑀𝑖 (separately trained models) and the 

metaclassifier 𝑀𝐶, which makes the resulting decision when 

solving the problem of classifying a territorial object 𝑋𝑗 to 

determine whether it belongs to the class of metageosystems. 

The set of monoclassifiers of the ensemble 𝐵𝐶 consists of 

trained models 𝑀𝑖, which perform the function of 

determining whether a territorial object 𝑋𝑗 belongs to the 

class of metageosystems 𝑐𝑘. 

 

The difference between ensemble monoclassifiers can be 

their architectural and topological organization and the data 

used to train the model. When classifying a territorial object 

𝑋𝑗The monoclassifiers of the ensemble form a vector of 

hypotheses 𝑃𝑗 regarding the belonging of this object to a 

certain class of metageosystems 𝑐𝑘 from the nomenclature of 

classes ℂ with power 𝐾. 

 

At the same time, the trained monoclassifier 𝑀𝑖, when 

gaining experience in solving the problem of classifying 

metageosystems based on the quality measure Ρ, returns a set 

of Bayesian probabilities that determine the degree of 

confidence of the monoclassifier 𝑀𝑖 in the truth of the fact 

that the territory 𝑋𝑗 belongs to the class of metageosystems 

с𝑘. The decision 𝑌𝑖𝑗 of the monoclassifier 𝑀𝑖 about the 

belonging of a certain territorial object 𝑋𝑗 to a specific class 

of the metageosystem can be made by choosing the class с𝑖 

for which the calculated Bayesian probability is maximum. 

 

The resulting hypothesis 𝑌𝐸 about assigning the territory 

𝑋𝑗 to a specific class of metageosystems 𝑐𝑘 is made by the 

𝑀𝐶 metaclassifier of ensemble 𝐸. In this case, it is advisable 

to make the resulting decision based on the output data of 

deep learning models based on weighted voting, the 

generalized representation of which has the following form: 

 

𝑌𝐸𝑗 = argmax
𝑘

k∈[1,𝐾] (∑ 𝜑(Μ𝑖 , 𝑘) ∙

𝑁

𝑖=1

𝜓(𝑝𝑗𝑖𝑘)) 

 

In this formula, the parameter 𝜑(Μ𝑖 , 𝑘) is a weight 

coefficient, which is a measure of the efficiency of the 

monoclassifier 𝑀𝑖 in the detection of class 𝑘 

metageosystems. The function 𝜑 determines the 

transformation of the form 𝜑: Μ𝑖 → Λ𝑖𝑘, in which the weight 

coefficient and measure of efficiency Λ𝑖𝑘 are determined by 
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mathematical transformations of the experimentally obtained 

data of the error matrix Μ𝑖 of the monoclassifier 𝑀𝑖. 

 

The following algorithm for calculating the efficiency 

measure Λ𝑖𝑘 is proposed: 

 

1) Construction of the error matrix Μ𝑖 for each 

monoclassifier 𝑀𝑖 of the system. 

2) Calculation of absolute accuracy metrics for the 

classifier 𝑀𝑖 when determining metageosystems of class 

𝑘: hits (𝑇𝑃𝑖𝑘), true deviations (𝑇𝑁𝑖𝑘), errors I (𝐹𝑃𝑖𝑘) and 

II (𝐹𝑁𝑖𝑘) types. 

3) Calculation of the relative metric ℛ𝑖𝑘, which determines 

the classification accuracy of class k metageosystems, 

which makes it possible to carry out an integral 

assessment of the obtained error matrix Μ𝑖 with a 

number in the interval [0;1]. Thus, the estimate 𝐹𝛽, 

which comprehensively considers the indicators of 

precision and recall and, consequently, errors of types I 

and II, as well as the number of correct hits of the 

monoclassifier. In addition, the metric is tuned by 

configuring the parameter 𝛽, which allows you to 

emphasize the influence of accuracy and recall on the 

result. 

 

ℛ𝑖𝑘 = 𝐹𝑖𝛽𝑘 = (1 + 𝛽2) ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖𝑘

(𝛽2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑘) + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖𝑘

=
(1 + 𝛽2) ∙ 𝑇𝑃𝑖𝑘

(1 + 𝛽2) ∙ 𝑇𝑃𝑖𝑘 + 𝛽2 ∙ 𝐹𝑁𝑖𝑘 + 𝐹𝑃𝑖𝑘
 

 
If necessary, another metric can be designed that 

satisfies the requirements for building an ensemble. 

 

4) Deactivation of inefficient classifiers to the threshold 

value 𝜖 can be carried out according to the following 

principle: 

 

ℛ̃𝑖𝑘 = (ℛ𝑖𝑘 > 𝜖)?
ℛ𝑖𝑘 − 𝜖

1 − 𝜖
: 0 

 
As a result of the given conditional ternary operation, 

two problems are solved: first, the values of efficiency 

measures that are less than the threshold 𝜖 are reset to zero, 

removing inefficient monoclassifiers from the decision-

making system; secondly, the resulting value is again 

normalized in the interval [0;1]. When 𝜖=0, the possibility of 

refusing to use deactivation is implemented. 

 

5) Activation of the metric by implementing an additional 

non-linear normalized monotonic transformation Λ𝑖𝑘 =
𝜃(ℛ̃𝑖𝑘). 

 

The metric activation operation minimizes or accelerates 

the metric's growth at its boundary values. The logistic curve 

can be taken as an activation function 𝜃. Under the identical 

mapping idℛ̃𝑖𝑘
, the possibility of not using activation is 

realized. 

 

The resulting value of the metric Λ𝑖𝑘 can be used to 

determine the measure of the efficiency of the monoclassifier 

𝑀𝑖 for the detection of metageosystems of class k. 

 

The function 𝜓 for calculating the measure of the vote of 

a monoclassifier is a transformation of the form 𝜓: 𝑝𝑗𝑖𝑘 →

ℚ𝑗𝑖𝑘In which the Bayesian probability 𝑝𝑗𝑖𝑘, which 

determines the degree of confidence of the monoclassifier 𝑀𝑖 

in the truth of the fact that territory 𝑋𝑗 belongs to the class of 

metageosystems с𝑘, is transformed into a measure of vote 

ℚ𝑗𝑖𝑘. 

 

The measure of the vote can be determined by the 

"winner takes all" principle, in which the monoclassifier 𝑀𝑖 

puts 1 for the most likely solution and 0 for all the others. 

With the identical mapping id𝜓The voting will take into 

account the Bayesian probabilities that the territory 𝑋𝑗 

belongs to the class of metageosystems k. Finally, the ℚ𝑗𝑖𝑘 

the metric can be activated by implementing an additional 

non-linear normalized monotonic transformation 𝜃(ℚ𝑗𝑖𝑘), 

which changes the voting measure at the boundary values. 

 

The key to calculating the informative characteristics of 

territorial metageosystems analyzed using machine learning 

models gives an idea of geodiversity, defined as the diversity 

of the lithogenic basis of landscapes, soil and vegetation 

features, and the processes occurring in them and implicitly 

characterizes hydrological and climatic processes. At the 

same time, landscape diversity is a more complex concept. It 

determines the systemic organization of Spatio-temporal 

elements of different levels: classes, groups, types, genera 

and types of geosystems. The concept of landscape diversity 

makes it possible to consider a territory as a well-structured 

system with an organized subordination of natural-territorial 

complexes. 

 

Landscape diversity can be defined as a form of 

abstraction of the real world. The properties of territorial 

objects and processes are defined by numerical variables or 

qualitative concepts and can be systematized by classes. The 

calculation of landscape diversity metrics can be based on 

the identification of simple numerical indicators: color 

moments and histograms, heterogeneity parameters, and the 

number of contours or sections within a particular area 

analyzed based on remote monitoring. Finally, a significant 

amount of information about the study area is contained in 

synthetic digital landscape maps, which traditionally 

represent the final artifact of research activities and can 

potentially be used as input data for automated analysis. 
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Thus, the characteristics of the territory's landscape 

diversity should be considered a complex integral indicator 

containing information about the hierarchical organization of 

geosystems and their natural, social, and economic features. 

The extracted numerical parameters of landscape diversity 

have a much lower dimension than multidimensional remote 

monitoring materials and digital maps while maintaining 

high information content. Consequently, they can be 

successfully analyzed by robust, lower-capacity machine 

learning models. With all the advantages, using deep 

convolutional neural network models leads to contradictions 

that need to be resolved. First, their sustainable training 

requires expert labeling of significant training data, which is 

very time-consuming and resource-consuming. Secondly, 

deep convolutional models are very demanding on 

computational resources, which are not always available. The 

solution to the indicated problems is possible due to the 

introduction of lighter, for example, wide, fully connected 

(FC) models of small depth. The power of densely connected 

layers in the framework of the experiment was 20 and 10 

neurons. 

 

These systems are more resilient to overfitting, can be 

trained efficiently on significantly smaller datasets, and are 

potentially suitable for reuse based on transfer learning. 

However, such neural networks can efficiently analyze one-

dimensional data vectors rather than multi-channel images of 

the territory. For this reason, it is necessary to propose an 

algorithm for extracting information-intensive features of a 

territory of reduced dimension. 

 

The first group of features includes descriptors of the 

territory DERS, which can be calculated based on the 

territory's image in certain spectral ranges (for example, in 

the visible spectrum). Let us present an important limitation 

to the calculated parameters: they must have the property of 

visibility - cartograms built on their basis must be 

informative for specialists in data analysis and geosciences. 

 

Based on satellite imagery of the territory, the following 

descriptors of the DERS group were calculated in the 

experiment. 

 

1. Landscape metrics of heterogeneity based on the 

calculation of the informational entropy of the territory 

𝐸 and the spread Δ (characterizing the change in spectral 

brightness relative to the average value): 

 

𝐻 = 〈𝐸, Δ〉 = 〈∑
𝑛𝑖

𝑆

𝑅

𝑖=1

log (
𝑛𝑖

𝑆
) , √

1

𝑁
∑(𝑥𝑖 − �̅�)

𝑁

𝑖=1

〉, 

 

where 𝑅 – radiometric image resolution; 𝑛𝑖 – number of 

atomic territorial units of spectral brightness i in this 

neighborhood; 𝑆  – an area of the analyzed territory; 𝑁 – the 

number of pixels in the analyzed territorial system; 𝑥𝑖 – 

average value of the spectral brightness of an atomic region; 

�̅� – the average value of the spectral brightness of the 

analyzed territory. 

 

2. Intensity metrics based on calculating reliable and stable 

image parameters invariant to noise and unwanted 

distortions. Thus, the color moment characterizes the 

distribution of the spectral brightness of a territorial area 

and is defined as a set of mathematical expectations (𝐼)̅, 

dispersion (𝐷) and asymmetry (𝐴) of the brightness of 

an atomic area of a territorial system in a certain spectral 

range: 

 
𝑀 = 〈𝐼,̅ 𝐷, 𝐴〉

= 〈
1

𝑁
∑ 𝑐𝑗 ,

𝑁

𝑗=1

 √
1

𝑁
∑(𝑐𝑗 − 𝐼)̅

2
,

𝑁

𝑗=1

 √
1

𝑁
∑(𝑐𝑗 − 𝐼)̅

3
 

𝑁

𝑗=1

3

〉, 

 
where с𝑗  is the brightness of the 𝑗-th pixel in a certain 

spectrum. 

 

3. Hue histogram, which is an indicator built on the 

principle of histograms and characterizing the 

distribution of the number of image pixels of certain 

shades in 𝐴 groups. To calculate, it is necessary to define 

the vector of possible shades of pixels through τ. In this 

case, the number of groups 𝐴 can be selected manually 

to increase the information content of the metric or 

determined based on a rule. 

 

These metrics are different ways of numerically 

assessing the landscape diversity of territory and can be 

calculated for areas of different scales (geosystems of 

different hierarchical levels) based on different data (for 

example, the image of territory in different spectral bands). 

 

The most important source of information about the 

invariant properties of the territory is digital elevation models 

(DEMs), which can be consolidated from various sources, 

such as SRTM (Shuttle Radar Topography Mission), 3DEP 

(3D Elevation Program), GMTED (Global Multi-resolution 

Terrain Elevation Data). Regional geoinformation systems 

often become an important source of information about the 

relief of a territory. For the experiment, an algorithm was 

developed that aggregates data on the DEM of a classified 

area based on the use of third-party software interfaces 

(APIs). The original data set was expanded using the 

attribute parameters of the territory images containing 

information about the latitude and longitude of the analyzed 

area. 

 

Based on the digital terrain model analysis, the 

following descriptors of the DDEM group were calculated. 
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1. Metrics of the steepness of the territory, which 

objectively characterize such properties of the territorial 

system as surface runoff, erosion, and the amount of 

solar energy received, were calculated based on 

determining the parameters of the maximum, minimum, 

mathematical expectation, and deviation of the height 

difference between neighboring DEM points. The slope 

value 𝐴 can then be calculated based on the values of the 

height map. 

 

{
𝐴 = tan−1 (√𝛼𝑒

2 + 𝛼𝑛
2)

𝛼𝑒 = 𝜎(ℎ𝐸 − ℎ𝑊)
𝛼𝑛 = 𝜎(ℎ𝑁 − ℎ𝑆)

 

 

where 𝛼𝑒  – the steepness of the slope in the direction 

from east to west; 𝛼𝑛  – the steepness of the slope in the 

direction from north to south; hE,W,N,S  – east, west, north, 

south elevation; 𝜎 – DEM scale characteristic (distance 

between height map points). 

 

2. Slope exposure metrics is a morphometric parameter that 

objectively reflects the orientation of the study area to 

the flow of sunlight, as well as the probable direction of 

water runoff, calculated based on the parameters of the 

maximum, minimum, mathematical expectation and 

deviation of the DEM gradient map and characterizing 

the azimuth of the slope of the earth's surface: 

 

𝐹 = − tan−1 (
𝛼𝑒

𝛼𝑛
) 

 
3. Statistical characteristics (minimum, maximum, 

mathematical expectation, standard deviation) of the 

absolute and relative values of the heights of the 

territory's DEM also carry information that ultimately 

reduces the dimensionality of the analyzed data. 

 

Finally, digital landscape maps (DLM) generated in 

geographic information systems are also a significant source 

of information that makes it possible to improve the accuracy 

of metageosystem classification. Despite the fact that the 

scale of such maps is often smaller than the scale of the 

classified areas, they integrate a significant amount of 

information about the enclosing geosystems. Obtaining data 

on a landscape map area can be carried out by integrating the 

data preparation module with the GIS system APIs by using 

attribute information about the coordinates of the analyzed 

area. During the experiment, the descriptors of the DLM 

group were calculated based on the regional GIS "Mordovia" 

data by calculating metrics similar to those used to determine 

the descriptors of the DERS group. 

 

Additional sifting of non-informative features to reduce 

the dimensionality of the analyzed data can be performed 

based on an algorithm that assumes a random iterative 

selection of samples from a labeled training data set, 

followed by updating the significance parameter of each 

feature based on the difference between the selected sample 

and the two objects closest to it of the same or alternative 

class. If there is a sufficient difference in the values of a 

feature for a certain number of nearest neighbors of the same 

class, its importance decreases, and vice versa; if there is a 

difference between the values of a feature for objects of 

different classes, its importance increases. The feature weight 

decreases if its value differs more for the nearest objects of 

the same class than for the nearest objects from different 

classes; otherwise, the weight increases. 

 

Any reduction in the dimensionality of the analyzed data 

leads to the loss of a certain amount of information. 

However, suppose the resulting vector of parameters allows 

the identification of the territory with acceptable accuracy. In 

that case, the reduction in dimensionality makes it possible to 

approach the use of less deep and more resistance to the 

problem of overfitting machine learning models.  

 

3. Research Results 
The study was carried out on a system of test sites 

deployed in the Republic of Mordovia in the zone of 

interaction between forest types of geosystems of the Oka-

Don lowland and the forest-steppe of the layer-tier Volga 

Upland. Remote sensing data from the Sentinel-2 satellite 

were chosen as the initial data for systematization, allowing 

for the exploration of the territories of individual classes and 

categories of land. To test the methodology for increasing the 

efficiency of metageosystem classification, a set of labeled 

data was formed based on a system of test polygons. To 

expand the training data set, affine transformations were 

used, which, however, were applied, taking into account the 

preservation of key properties of spatial objects, such as 

slope exposure. 

 

At the first stage of the experiment, a neural network 

model was designed with two convolutional blocks (the 

number of filters is 32 and 16, the filter size is 3 by 3 pixels) 

and a decision-making module based on two densely 

connected layers, with a capacity of 30 and 10 neurons. The 

output data of convolutional and densely connected layers is 

fed to the input of the batch normalization block. The linear 

rectification operation (ReLU) was chosen as the activation 

function. To increase the stability of the model to overfitting, 

a subsampling block was introduced based on taking the 

maximum value with the dimension of the thinning areas 4 

by 4 pixels. Before the output, the Bayesian probability of 

belonging of the territorial system to a certain class is defined 

as the output of the layer of the generalized logistic function 

for the multivariate Softmax case. The decision on whether a 

territory belongs to a certain class is based on the “winner 

takes all” principle by selecting a hypothesis for which the 

estimated probability is maximum. Convolutional neural 

network models have widely established themselves as a tool 
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for classifying multidimensional spatially distributed data, 

the information in the cells distributed based on non-linear 

patterns. 

 

Training the model on 80% of the labeled data made it 

possible to obtain a high classification accuracy of spatial 

objects of heterogeneous classes, equal to 88%. When 

modeling a severe deficit of labeled data, the relative power 

of the training sample was reduced to 20%. In comparison, 

the classification accuracy on the validation data fell to 77%, 

while the accuracy of identifying some classes of 

metageosystems decreased by more than 20%. It is a natural 

result when using convolutional models - for sustainable 

learning, they require a large power of the training set. It 

should also be noted that deeper neural network architectures 

will improve classification accuracy due to the possibility of 

extracting complex hierarchical features. However, this will 

increase the requirements for the hardware on which the 

calculations are performed, or it will take a lot of time to 

conduct experimental studies. 

 

Fig. 2 shows the curves that characterize the dependence 

of the mathematical expectation of the classification 

accuracy on the validation data depending on the training 

epoch of the fully connected (FC) model. It can be seen that 

the combined analysis of features gives a significant increase 

in the accuracy of the classification of metageosystems. 

Accounting for descriptors calculated based on satellite 

imagery data of the territory (DERS group) made it possible to 

achieve an accuracy of 76%. Involvement of relief 

descriptors (DDEM group) increases the accuracy by 3%, and 

metrics calculated based on landscape maps (DLM group) by 

11%. Finally, the simultaneous analysis of descriptors of all 

categories leads to an increase in classification accuracy by 

almost 12%. 

 

As a result, the low-capacity FC model showed 

classification accuracy characteristics higher than that of a 

more cumbersome convolutional model trained on 

multidimensional spatial data. In particular, higher accuracy 

was achieved when detecting territories of the following 

classes: annual and perennial crops, herbaceous vegetation, 

highways and roads, industrial buildings and rivers. 

 

At the same time, a low-capacity model can be trained 

without involving a powerful GPU, making it convenient to 

fine-tune and optimise hyperparameters without access to 

heavy and expensive hardware. Thus, wide shallow machine 

learning models trained on the basis of a set of informative 

territorial descriptors can function and be further trained on 

relatively thin devices, such as unmanned aerial vehicles. 

 

The next important advantage of the FC model, trained 

on territorial descriptors, is a stable operation in the face of a 

shortage of labeled data. Reducing the proportion of the 

training sample to 20% did not lead to a significant decrease 

in the accuracy of the classification of metageosystems 

(while the accuracy of the convolutional neural network 

model fell by more than 10%). 

 

 
Fig. 2 Change in expectation of classification accuracy on validation 

dataset depending on the training epoch of the FC-model. 

This advantage is due to the sufficient informative load 

of the allocated territorial descriptors, their invariance to 

changes in the studied polygon, as well as the good ability of 

the model to generalize the analyzed data. Thus, the FC 

model can be reused in the framework of studying new 

territorial systems and retrained and fine-tuned based on a 

new labeled data set through transfer learning. 

 

During the experiment, three artificial neural networks 

(ANN) were designed and combined into an ensemble 

according to the described method. The first model is based 

on one densely connected layer of 10 neurons, and the 

second and third are based on two, with a capacity of 10-10 

and 10-20 neurons, respectively. The results of calculating 

the F1 metric based on the error matrix are shown in Fig. 3. 

 
Fig. 3. The F1 score for classifiers in the classification of geosystems 

It can be seen that an increase in the capacity of models 

does not lead to a clear improvement in the result since more 

powerful models can be more unstable to overfitting and also 

require more labeled data for training. When combined into 

an ensemble, the resulting hypothesis began to be applied on 

the basis of weighted voting based on the measure of 

efficiency, which made it possible to avoid gross errors in the 

classification inherent in each classifier separately. At the 
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same time, the ensemble only slightly loses accuracy to 

individual classifiers of the system while maintaining overall 

resistance to errors of the first and second kind, which are 

characteristic of an individual classifier when determining 

objects of a particular class of territory. 
 

To solve the problem of classifying the geosystems of 

the Inerka test site, spatial data from three different sources 

were used, which provided information on the dynamic and 

invariant properties of the study area. The data of remote 

space monitoring obtained from the Sentinel-2 satellite were 

chosen as the source of time-varying spectral characteristics 

of the territory. The analyzed image was obtained on August 

30, 2021 (according to the MGRS system, calculated based 

on the universal transverse Mercator projection, the shooting 

square is determined by the position of 38UNF), and the 

spatial resolution of shooting in the visible zones of the 

spectrum and the near-infrared range is 10 meters per 1 

atomic area. Data on the morphometric properties of the 

territory, characterizing its invariant (slow but irrevocably 

changing) state, was obtained on the basis of SRTM 

materials, corrected and distributed by Mapzen based on 

Amazon cloud application programming interfaces. The 

mean square error relative to the fixed height for the studied 

test area is measured within 1.4 meters, and the spatial 

resolution is 30 meters. The third source of information 

about the analyzed territory was the regional GIS 

"Mordovia" data, used to build a digital landscape map 

containing information about regional land use systems. Not 

characterized by high spatial resolution, they have a 

significant information capacity, storing synthetic indicators 

of the analyzed territory: classes of geosystems and land-use 

systems. 
 

The level 2A Sentinel-2 image preconditioning was 

based on the Sen2Cor processor. It included normalization of 

spectral brightness values, data correction based on 

atmospheric parameters, corrected for the reflectivity of the 

terrain and cirrus clouds. To improve the accuracy of the 

analysis, a set of territorial descriptors was calculated that 

characterize the properties of the surrounding neighborhood 

for an atomic site. The synthesized features included the 

local entropy of the enclosing geosystem (neighbourhood), 

the spread of spectral brightness relative to the average value, 

hue histograms, statistical data on elevation maps, exposure, 

and slope steepness. The calculation of territorial descriptors 

makes it possible to reduce the dimensionality of the 

analyzed data (in comparison with the analysis of a satellite 

imagery fragment) with the inevitable loss of a certain 

amount of information about the analyzed territory. At the 

same time, a balance was achieved between the maximum 

possible facilitation of the allowable capacity of the machine 

learning model, increasing its resilience to overfitting, and 

preventing a significant decrease in classification accuracy in 

the framework of the problem of classifying the geosystems 

of the test site. The calculated descriptors have the property 

of visibility: cartograms built on their basis are informative 

for specialists in the field of data analysis and geosciences. 

Before machine analysis, territory metrics were normalized 

by scaling the data vector by its standard deviation value. 

About a hundred labeled samples were prepared for each 

territorial class. 
 

Based on the spectral and morphometric properties of 

the territory, as well as synthetic descriptors of the enclosing 

geosystems, a parameter vector is formed that is suitable for 

training by artificial neural networks of low depth based on 

the use of densely connected layers. Unlike widely used 

convolutional networks, such models can be trained on a 

lower amount of labeled data, are characterized by resistance 

to the overfitting problem, and are less demanding on 

hardware. The operation of linear rectification (ReLU) was 

used as the activation function of the layers of the neural 

network. To increase the stability of the model to overfitting, 

a subsampling block based on taking the maximum value is 

introduced. To solve the problem of reducing the accuracy of 

classification and retraining, normalization layers are 

introduced into the structure of the neural network. The 

decision on belonging the territory to a certain class is based 

on the “winner takes all” principle, by selecting a hypothesis 

with which the estimated probability is maximum. The total 

number of fully connected layers is limited to two. 
 

The proposed methodology was tested in the course of 

design work on the analysis of the geosystems of the polygon 

«Inerka» (center coordinates: 54°03′ N, 45°53′ E), conducted 

to analyze the interaction of paragenetic systems of forest-

steppe geosystems of the erosion-denudation plain and 

intrazonal forest landscapes of the valley of the Sura River. 

The priority geoecological problem is the optimization of 

tourist and recreational development of the natural 

monument of republican significance, "Lake Inerka". The 

results of the classification of spatial data made it possible to 

identify the following types of geosystems on the territory of 

the Inerka polygon (Fig. 4). 

 
Fig. 4 Map of geosystems of the test polygon “Inerka” 
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Geosystems class 1 is the coast of the Sura valley with 

absolute elevations up to 265 m, composed of marls, flasks, 

and writing chalk with outcrops of bedrock on steep slopes to 

the day's surface. 

 

The following territorial classes represent the floodplain 

terraces: 2 – leveled surfaces composed of sands and sandy 

loams, with soddy-weakly podzolic soils under pine forests; 

3 – dune-like remnants of intra-floodplain terrace complexes 

with hollows with underdeveloped podzolic and soddy-

weakly podzolic soils under lichen, green moss, pine forests; 

4 – the lower parts of the floodplain terraces with low sandy 

ridges, the structure of the soil cover is characterized by a 

mosaic of sod-podzolic and sod-podzolic gley soils under 

pine, damp birch and aspen forests. 

 

The selected floodplains are decomposed into the 

following classes of territories: 5 – slightly undulating 

surfaces composed of loams with interlayers of sands, natural 

vegetation dominated by floodplain oak forests, and alder 

forests; 6 – complexes of large and small ridges with 

underdeveloped soddy sandy and soddy-meadow thin, light 

loamy soils, with bluegrass-meadow-fescue meadows; 7 – 

depressions between crests and old rivers with meadow-

marsh heavy loamy soils under sedge-mannic-canary 

meadows; 8 – riverine sandy, wet floodplains with meadows 

and willows; 9 – riverbed sandbanks (beaches); 10 – alder 

swamps with peaty-gley and peaty silt-loamy soils.  

 

Natural aquatic complexes are represented by the 

following classes of geosystems: 11 – natural aquatic 

complexes of Sura River; 12 – natural aquatic complexes of 

oxbow lakes. 

 

The process of transformation of the Sura channel is in 

the development stage. In this regard, the organization of 

monitoring of ecosystems in the Inerka region is relevant. 

Studies show that the lake is fed by melt, rain and 

groundwater. High floods of the Sura that could replenish 

and clean the lake, due to the interception of meltwater by 

numerous reservoirs, become very rare. Mapping of the 

geosystems of the Inerka test site shows their weak resistance 

to recreational development. The main limiting factors are 

the composition of Quaternary deposits, the Nature of the 

relief, the mechanical composition and soil moisture, the 

thickness of the humus horizon, and the genesis and 

vegetation composition. 

 

4. Conclusion 
Analysis of the effectiveness of the methodology for 

constructing classifiers ensembles to solve the problem of 

studying the structure of metageosystems of test sites allows 

us to draw the following conclusions. 

 

 

Using ensembles built according to the proposed method 

allows for rapid automated spatial data analysis to solve the 

problem of the thematic mapping of metageosystems and 

natural processes. Ensembles make it possible to approach 

the problem of preparing data for training models by 

integrating into a single system of models trained on various 

combinations of training and validation samples to reduce 

the impact of errors that occur during the formation of data 

sets. 

 

Combining models into an ensemble based on the 

proposed architecture of the metaclassifier makes it possible 

to increase the stability of the analyzing system: the accuracy 

of decisions made by the ensemble tends to tend to the 

accuracy of the most efficient monoclassifier of the system. 

The system's error in most cases does not exceed the error of 

the most efficient classifier while avoiding gross systematic 

errors made by individual monoclassifiers. 

 

The formation of a metaclassifier according to the 

proposed algorithm is an opportunity to add an element of 

predictability and control to using neural networks, which are 

traditionally a "black box". The integration of individual 

classifiers into ensembles makes it possible to approach the 

solution to the scientific problem of finding classifier 

hyperparameters through the combined use of models of the 

same type with different configurations. The construction of 

efficient ensembles can be based on models of relatively 

small width and depth, which makes it possible to design 

high-precision classifiers, the training of which is less 

demanding on computing power compared to classical deep 

models. 

 

The use of classical convolutional neural network 

models, which have proven themselves well in solving the 

problem of classifying territorial systems, is associated with 

some serious limitations: such models can be effectively 

trained on very large sets of labeled spatial data, but they are 

subject to the problem of overfitting, are characterized by a 

poor generalization of information and poor interpretability, 

and also the processes of their use, training and fine-tuning 

place high demands on the hardware. Suppose it is 

impossible to overcome the indicated limitations. In that 

case, it is advisable to switch to shallow wide, tightly 

coupled models trained on a set of informational territorial 

descriptors according to the methodology presented in the 

article. 

 

The calculation and consolidation of the territorial 

descriptors proposed by the authors simultaneously lead to a 

decrease in the dimension of the analyzed data (positive 

effect) and the inevitable loss of some information about the 

analyzed territory (negative effect). It is important to find a 

balance between the two indicated positions to maximise the 

allowable capacity of the machine learning model, increase 

its resistance to overfitting, and prevent a significant 
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decrease in classification accuracy within the framework of a 

specific problem being solved. 

 

Aggregate analysis of territory descriptors, integrated on 

the basis of data from different sources, significantly 

increases the accuracy of metageosystems classification. In 

the framework of the experiment presented in the article, 

taking into account the proposed system of descriptors 

calculated on the basis of satellite imagery data, a digital 

elevation model and an electronic landscape map made it 

possible to achieve an accuracy of 89%, which is much more 

than this parameter for a convolutional neural network 

model. At the same time, the analysis of relief descriptors 

increases the accuracy by 3%, and the metrics calculated 

based on landscape maps - by 11%. Specialists must well 

interpret the cartograms of the presented descriptors in the 

field of data analysis in geosciences. 

 

The developed technique for spatial data analysis made 

it possible to identify types of geosystems on the territory of 

the Inerka polygon. The priority geoecological problem is the 

optimization of tourist and recreational development of the 

natural monument of republican significance, "Lake Inerka". 

The process of transformation of the Sura channel is in the 

development stage, and in this regard, the organization of 

monitoring of ecosystems in the Inerka region is relevant. 

Studies show that the lake is fed by melt, rain and 

groundwater. High floods of the Sura that could replenish 

and clean the lake, due to the interception of meltwater by 

numerous reservoirs, become very rare. Mapping of the 

geosystems of the Inerka test site shows their weak resistance 

to recreational development. The main limiting factors are 

the composition of Quaternary deposits, the Nature of the 

relief, the mechanical composition and soil moisture, the 

thickness of the humus horizon, and the genesis and 

vegetation composition.  

 

The study carried out is a development of the experience 

gained earlier in the course of work on developing the 

regional water balance regulation concept based on the 

geosystem approach [29]. In particular, a methodology for 

calculating territorial descriptors and their joint analysis 

based on neural network algorithms is proposed. In addition 

to the previously developed land classification method based 

on the geosystem approach [27], various types of data on 

host geosystems have been proposed and systematized, the 

analysis of which makes it possible to improve the accuracy 

of neural network algorithms. 

 

Some advantages of the approach proposed in the article 

to improve the efficiency of machine learning models in 

solving the problem of classifying metageosystems include 

the stability of the developed solution in the face of a 

shortage of labeled data, as well as the possibility of reuse in 

the study of new territorial systems, subject to additional 

training and fine-tuning.  
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