
International Journal of Engineering Trends and Technology Volume 70 Issue 9, 280-289, September 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I9P228 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Analysis on Mutation Testing Tools for Smart Contracts

R. Sujeetha1, C. A. S. Deiva Preetha2

1,2Computer Science and Engineering or SRMIST Vadapalani, Tamil Nadu, India.

1Corresponding Author : sr7092@srmist.edu.in

 Received: 27 June 2022 Revised: 16 September 2022 Accepted: 26 September 2022 Published: 30 September 2022

Abstract - Smart contracts are codes for executing transactions over the blockchain. Smart contracts play a major role in

executing the transactions, which are immutable in nature, and avoid third-party involvement in transactions. Smart

contracts are developed in many languages. One of the most popular languages is solidity. This paper focuses on smart

contracts written using solidity. Smart contracts are vulnerable and have faced huge losses like with DAO attacks. Smart

contracts require exhaustive testing to avoid such loss. Testing is to be qualified; hence mutation testing is the right choice.

Mutation testing for smart contracts focuses on vulnerability detection by inserting faults in the code. Also qualifies the test

suite executed against a smart contract. The pros and cons of various tools available for this purpose are discussed in this

paper. Finally suggested improving the tools to perform the mutation analysis of smart contracts better.

Keywords - Mutation Operators, Smart Contract, Solidity.

1. Introduction
Mutation testing is an error seeding method used at the

unit testing level that helps evaluate the test suite

effectiveness for a source code. The mutation testing is

performed by making slight modifications in lines of code

like a syntactic change or an operator change etc., using

mutation operators [1]. The operators are applied to the

original code, and the modifications are called mutants.

Once the mutants are generated, the program is revised to a

new version known as the mutated version of the original

code. Afterwards, the mutated program is tested against the

test suite created for the original code. The results are

analyzed. If the Tester finds the results vary from the

original code tested, he makes inferences that there are

syntactic errors in the code; if the results are the same

compared to the original code testing, there is a need to

improve the test cases.

One of the white-box testing techniques is mutation

testing, which received numerous opinions for the huge

investment involved. Several studies have proved that

mutation testing is effective in testing the individual

application units for the boundary or coverage. It concludes

that mutation testing is most effective compared to branch

and statement coverage test cases [4]. The strongest

comparison of mutation testing with data flow concluded

that mutation testing is the strongest [5]. The real program

size with errors is difficult to identify appropriately [6].

Researchers started to induce faults to create faulty versions

of correct code. These faults are induced manually or even

automatically. The automatic version is a coding variant that

applies operators to the program. These operators are

called mutation operators; the variant resultant is known as

mutants and named mutation generation or just mutation.

The steps involved in identifying which test suite is faulty

and analyzing the mutation failures are called mutation

analysis. The mutation generation is advantageous as it

helps generate more mutants to produce a statistically

significant result.

Proposed 7 research questions and answered those

through their experimental analysis [6]. They compared the

cost-effectiveness of coverage criteria, like minimal

required level of coverage, comparing the coverage criteria

to random test suites. The results showed that mutation

analysis could assess and differentiate new testing

techniques if any. In terms of cost, this study concludes that

removing mutants based on their predictive performance by

a set of validation suites aids in attaining significant results.

Mutation testing can be used at the unit testing level,

integration testing level and also at the specification level. It

can also be used at the programming level in other software

development life cycle phases, like design. Using a design

level encourages the designers to improve the design quality

by applying Finite state machines, state charts, Petri Nets,

Network Protocols, and Web services, to name a few.

The blockchain is featured with special code that helps

automatic triggering of lines of code mentioning the action

to be taken when the condition is met, called a smart

contract. The smart contract plays a major role in the

development of dApps used in many domains like

healthcare, education, government services etc., The

development of smart contracts is processed separately and

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

281

deployed over the blockchain network. The nature of

blockchain and smart contracts are immutable; hence once

the deployment is done, it cannot be modified for versions.

Needed to deploy a new smart contract where the older one

is of waste. The smart contract to be deployed should be

defect free.

The smart contract with defects caused a huge financial

loss of $16 billion in the DAO attack that happened in the

year 2016. This is caused due to a source code vulnerability

in smart contracts. Such attacks must be avoided by

performing exhaustive unit and integration testing.

One such test is mutation testing which helps identify

the defects in source code. Currently, many research works

are carried out in smart contracts to provide secured smart

contracts with good quality source code. Vulnerability

detection is a field of work done in this domain. The smart

contract development standards are required as having for

software development SDLC.

The research on mutation testing for smart contracts is

available from 2019. Various tools are developed for this

purpose. The tools are developed to be specific to the

language used for developing smart contracts and use a

limited set of mutation operators specific to solidity

language and traditional operators.

There is a need for the generic use of mutation

operators that can be applied to any smart contract. The

selection of mutation operators is not effective in identifying

the defects. While executing all the operators, some might

not provide effective smart code under test. There is a need

for a technique to select the mutation operators.

This paper is organized as follows: section 2 analyses

the outcomes and discusses the tools available by prior

studies to offer an updated picture of the existing research.

Section 3 presents the smart contracts and requirements for

testing the smart contracts and also lists the vulnerabilities

present in smart contracts and issues associated with them.

A description of the tools that are available for mutation

testing of a smart contract is presented in section 4. Section

5 provides the results and discussion on the tools available,

and finally, section 6 finishes the main conclusions of this

study.

2. Related Work
2.1. Mutation Testing in SDLC

Mutation testing applications are discussed in detail.

The mutation testing can be used as an assessment tool

and involves test case generation, prioritization, unit test

level, and structural testing levels [7]. Mutation testing

most probably begins with the presumption of the

“Competent Programmer Hypothesis” (introduced by

Demillo et al. [8] in 1978): “The competent programmers

create programs that are close to being correct.”

According to this supposition, the bugs that qualified

programmers put into their codes are straightforward

errors that can be fixed with a few straightforward

syntactical changes.

Following the previous idea, mutation testing

frequently modifies the source code in a minor syntactical

way; therefore, the introduced flaws are minor and bear a

resemblance to errors made by “competent programmers”.

In terms of defect revealing capabilities, many

experimental and observational investigations have

demonstrated that mutation testing is substantially more

efficient than other test adequacy criteria [9], [10], and

[11]. The review provided by [7] inspired a much more

detailed discussion of how mutation testing can be applied

in various testing activities and what works are being

contributed by other researchers for the equivalent mutant

detection and cost reduction methods. Also, the

characterization data of mutation operators help classify

and compare the operators used in experiments.

2.2. Mutation Testing Process

 The mutation process introduces minor modifications to

lower the errors occurred during coding. Mutation operators

are a form of rules that compares the data and provides a

suitable environment to generate mutants. There are three

types of mutations: decision, value and statement. The

process is performed as given in below Fig. 1.

Fig. 1 Mutation Process

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

282

The process includes the following steps. Firstly, faults

are introduced into the actual code -producing variants called

mutants. Every mutant with one fault makes the mutant

unsuccessful and validates the efficiency of test cases. Next,

the test cases are executed on the mutated program, and the

actual code finds the faults. Once the errors are detected, the

actual and mutant code outputs are compared. If the output

of actual and mutant code is not similar, then mutant is

executed by the test cases. If it is similar, its syntactically

different, operationally the same, or the test case is

insufficient to identify mutants.

2.2.1. Mutation Operators

The cost of computing mutation score becomes very

large when performed with more mutation operators

generated automatically [12]. Hence the author advised

identifying a minimal number of mutation operators

sufficient for determining the test suite's success. Employed a

statistical approach to identify a selection of mutation

operators and a linear model that accurately predicted

mutation scores. Addresses the challenges of mutation

analysis, like a time-consuming and computational cost

while using many lines of code [13]. Concentrates on

reducing the generated mutants by using a reduced but

required set of mutants for mutating COR and ROR

operators. Also proposes an optimized execution flow that

uses redundancies and execution time differences of test

cases to order it again and split the respective test suite. The

combination of no redundant operators and prioritization

information about the execution and coverage of tests thus

reduces the cost involved in mutation analysis greatly by

65%.

2.2.2. Mutant Selection Techniques

The mutation testing generates a greater number of

equivalent and redundant mutants. Equivalent mutants are

unkillable and hence are no different from the original code,

whereas redundant mutants are killed largely. The greater

number of mutants generated by mutation testing makes

industries avoid its use. The researchers indicate redundant

mutants are less likely to affect the work effort of the test

engineers, whereas equivalent mutants are more likely to

affect the work effort linearly. A minimal number of

operators is sufficient for measuring the mutation score [14].

Predictor variables help to predict a required variable for

selecting the subset of operators.

Statistical techniques such as greedy algorithms like

forwarding selection and least angle regression can predict

such subsets. Other methods like elimination-based

correlation analysis and cluster analysis can also be used for

subset selection. An evaluation method like cross-validation

is used to evaluate the statistical method chosen for subset

selection. The cross-validation procedure helps researchers

to estimate the effectiveness of the test suite for a code with

the subset of mutants instead of considering all mutants.

2.2.3. Cost Reduction Techniques

Mutation Sampling

Mutation sampling takes a tiny sample of the

mutations created and performs mutations depending on

that sample set. Mutant sampling is a cost-cutting method

aimed at reducing the number of mutants. It comprises a

subset of the mutants created and performed at random

[18]. Sahinoglu and Spafford [19] proposed a sampling

method based on the Bayesian consecutive frequency ratio

test to calculate the mutant ratio. This novel method

selects a selection of mutations to be analyzed randomly

until a mathematically appropriate number of observations

is reached.

Random Selective Mutation

Random Selective Mutation (RSM) [15] reduces the

number of mutation operators from the total mutants

generated, assuming that the mutants selected the small

number of operators would produce a small count of

mutants which will be enough to conduct the required

testing. RSM is carried out in two steps. It starts by

selecting an application and calculating a mutation score

for each operator. Finds the operators with less than 50%

of mutation scores to consider only the test effective

operators and puts them into subset 1. Other operators are

discarded.

In the next step, the application size is computed

based on it, and the operators are selected from subset 1

and filled in subset 2. Mutants are generated from subset

2. This approach is compared with strong mutation and

selective mutation. Results showed that the mutation score

got using selective mutation, strong mutation, and RSM

are similar to the use of 10 operators on average by the

RSM method.

RSM Method saves the mutation cost while

maintaining a similar mutation score and test

effectiveness. Evaluated the savings using the percentage

of saving measures. RSM demonstrates that a limited

number of mutation operators can be used for mutation

testing. It's also likely that the mutation operator used

impacts mutant detection effectiveness.

Do-Fewer, Do-Smarter, Do-Faster Approach

The do-fewer approach runs a small number of mutants

without considering any information loss. Selects a

subgroup of mutants derived from the created mutants. This

strategy is followed by preferential mutation and mutant

sampling [16]. Developing a series of cost-cutting

algorithms, the do-faster technique seeks to produce and

execute variants as quickly as possible. [18]. Two strategies

for getting things done faster are mutation analysis based on

the schema and independent compilation. Finally, the do-

smarter strategy aims to spread processing costs across

multiple implementations [17]. The do-smarter technique is

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

283

well-exemplified by weak mutation and distributed

architectures. According to previous research, commonly

used mutation operators produce 40% to 60% of all mutants

[19]. Test cases that kill other mutation operators frequently

kill mutants created by these operators as well. This novel

technique presents a strategy for identifying a smaller subset

of mutation operators that saves the most money while

maintaining full mutation effectiveness.

3. Smart Contract
Smart contracts are computer code automatically

executes full or part of terms in an agreement and saves on a

blockchain platform like Ethereum. The code controls the

transaction execution that is trackable and irreversible. Smart

contracts can be used for fund transfers between the parties.

They are a more efficient, cost-effective, and secure method

of executing and administering agreements. Smart contracts

have several flaws that must be addressed for them to receive

widespread adoption.

Fig. 2 Smart Contract Working

These include the technical complexity of making

updates and the incapacity to process complex transactions.

Large organizations can use smart contracts, including

medicare, logistics management, and banking sectors.

3.1. Working of Smart Contract

Computing protocols known as smart contracts enable

the electronic assessment, management, and implementation

of contracts. The blockchain technology underpinning smart

contracts conducts every transaction in a contract without

the use of a mediator. Smart contracts are written using

simple if/then phrases. Once the predefined parameters are

met and accepted, the operations are carried out by a

dispersed network, as shown in Fig. 2. These tasks include

sending alerts, releasing payments to the right recipients,

and issuing a ticket. When a transaction occurs, the

blockchain is updated, so it can't be changed, and the results

are only available to those who have been assigned access.

There might be as many requirements as necessary in a

smart contract to satisfy the parties that the job will be

executed correctly.

3.2. Testing for Smart Contract

The development of smart contracts aids in the

automatic facilitation, verification, and enforcement of

many untrustworthy parties’ negotiations and agreements.

On the other hand, smart contracts raise several worries

about security threats, weaknesses, and legal challenges.

After the DAO attack, it became a challenging task for the

developers even to create a simple, smart contract. Unit tests

and formal specification for smart contract verification is

becoming mandatory.

The unit test coverage is not always satisfactory, and

formal specification becomes complicated, similar to

implementation. To ensure the quality of the smart contract,

it is required to check everything in the code using mutation

testing. We review the major flaws that could cause big

issues in smart contract applications. Vulnerable patterns in

smart contract execution and code are caused by reentrancy

concerns, difficulties with temporal constraints, failure

managing, and transaction ordering dependencies. Before

launching their live Ethereum or other blockchain platform

contracts, developers should be aware of these

vulnerabilities and rigorously undertake quality assurance

test cases.

The below table1 tabulates a few of the vulnerabilities

associated with attacks and security issues related to that

vulnerability. The tools like securify, Oyente, MAIAN, and

Zeus are used as security analysis tools for smart contracts.

These tools identify the vulnerabilities present in the source

code by performing static and dynamic analysis and formal

verification.

3.3. Challenges in Smart contract testing

The smart contract provides solutions for organising

cryptocurrencies, sensitive data and valuable assets. The

complexity of the blockchain platform makes it difficult to

validate and verify smart contract-based software [23]. It is

necessary to ensure the reliability of the smart contract

code. Deploying secure and quality contracts is the biggest

concern for smart contract developers. The following are

critical things to be considered in testing smart contracts.

High stakes- the contracts execute valuable or sensitive data

in the such scenario; if testing is not done properly, this

may cause unknown behavior leading to financial loss, or

attackers can drain out the cryptocurrencies after its

deployed in the blockchain.

3.3.1. Complex Interaction Dynamics

Smart contracts communicate between the blockchain

and the real world, providing data exchange. The smart

contract performance depends on external computations,

the outcome of legacy systems, and off-chain data sources.

While performing testing, the association between smart

contracts and interaction with outside components must be

taken into account for the derivation of test cases. This is a

challenging job because the computing execution of a

blockchain application relies not just on the internal

operations and states of the system but also on the

network's state. There is a chance that many programmers

aren't accustomed to evaluating their software in this

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

284

situation. For instance, the lack of software checks in the

smart contract code led to assaults like the Parity Wallet

and Decentralized Autonomous Organization (DAO) hacks,

which cost millions of dollars each.

3.3.2. State Setting and Exploration

Due to their stateful nature, Smart Contracts present a

number of testing challenges. As a result, different pre-

states may result in drastically different test results.

Although most testing frameworks allow the user to

construct a contract, doing so is frequently laborious and

time-consuming. The amount of gas used during setup

procedures is another thing that Ethereum developers need

to be careful of. For instance, the well-known Truffle2

framework for Ethereum offers the developer various test

hooks that are each processed as a separate transaction to

perform setup and teardown actions.

A testing campaign conducted in a lab setting cannot

completely replicate the intricate interactions in real life. As

a result, serious problems and vulnerabilities could bypass

the pre-release stage and appear only after the program has

been installed on the primary network. Unfortunately, it is

difficult to continue testing in the live environment due to

the immutability of the transactions. There is a definite

demand for organized testing methods that can explore

important execution states and boost testing efficiency.

3.3.3. Lack of Testing Procedure

Deploying dependable code is difficult due to the lack

of established best practices and guiding methods for

testing Smart Contracts. Indeed, these programmes'

unconventional lifecycle is not considered by the test cases

and best practices currently in use for standard software

systems.

It would be beneficial to look at how switching to a

different blockchain platform affects these patterns and

whether they can be modified to account for the special

nature of smart contracts. New testing methodologies

should also be developed expressly for Smart Contracts,

considering the characteristics of the execution

environment underneath.

Although certain works already published [24, 25, 26]

suggest and analyse best practices for blockchain-based

applications, these mainly focus on the design and

implementation stage. A recent set of security practices for

Daps that includes addresses software lifecycle testing and

deployment was put forth by Marchesi et al. [27]. In order

to determine whether all pertinent patterns were

implemented in the under consideration Smart Contract, the

authors also present the user with various vulnerability

scanning questionnaires.

Guidelines and standardised best practices are crucial to

the testing process for smart contracts because of the nature

of the blockchain environment. These guiding policies

should also specify the testing techniques and equipment to

use. Given the wide range of testing tools and platforms

available today, this would be incredibly helpful for

developers of Smart Contracts.

3.3.4. Test Suite Adequacy Assessment

There are currently no commonly used approaches or

tools for evaluating the suitability of Smart Contract test

suites [28]. Test engineers frequently use static analyzers,

compute branch and statement coverage, or even do manual

test inspections to enhance test effectiveness. The research

group soon began paying more attention to stronger test

suite sufficiency evaluation methods like mutation testing

due to the business-critical nature of smart contracts.

Mutation testing is one of the best ways to enhance the

effectiveness of a test suite, but it is rarely used in practice

because of its high computing costs [23]. It is required to

look into cost-reduction and performance analysis further to

promote this technology's use in actual Smart Contract

development environments.

Additionally, there aren't any tools for mutation testing

that include built-in assistance for regression testing

activities. Smart Contracts go through a number of changes

during development, just like conventional software (i.e.,

code refactoring, bug fixes, new features). Existing tools

should gradually update the mutation score on developing

Smart Contracts to speed up mutant execution.

In the next session, the available tools for assessing the

effectiveness of the test suite in finding defects in the

source code of smart contracts are briefed, and their pros

and cons are discussed.

4. Existing Tools
The tools for automatically creating and testing Solidity

mutants are covered in this section.

4.1. Musc

Regarding the Solidity programming language, Musc

provides a set of mutation operators considered for the

mutation analysis. To some extent, the outcome aids in

exposing smart contract flaws [21]. The truffle project

provides the tool with a test suite and smart contract as

input. The smart contract code is converted into AST files

for mutants’ generation. Solidity-parser-antlr solidity parser

is used for transforming the source file into AST files. AST

file is mutated and is stored as a line number where the

mutant is generated. This method of storing the mutants

helps reduce the storage space greatly.

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

285

Table 1. List of vulnerabilities and associated security issues

Vulnerabilities Mechanism Associated Attacks Software Security

Issues

Reentrancy Problem Recursive call from fallback

function

DAO attack Failure in storing

and protecting data

Transaction Ordering Inconsistent transactions- orders

based on time of

invocations

- Race conditions

Exception handling Fails to check the return values

on a function call

DAO Attack, Integer overflow

or Underflow attack

Failure to

handle errors

Integer overflow /

Underflow attack

Subtracting positive integers from

zero results

Integer overflow or Underflow

attack

Integer range errors

No restricted write Writes to storage variables are

restricted by the modifier private.

The DAO Attack, Multisig

wallet Attack

Failure to store and

protect data.

Musc provides the user interface to view the mutants.

Figure 3 gives the architecture of the tool in which it carries

out the test suites by first launching the smart contract

across the blockchain. User-defined testnet is supported by

Musc. During the execution of the test, compilation errors

causing mutants are avoided. The outcomes are recorded,

and a report that includes the mutation score and test

findings for each mutant run can be generated. The

performance of the tool is evaluated against smart contracts

like Skincoin. The mutation operators used in Musc are

effective, as per the authors.

The altered files are then run through the test suites, with

the results being logged and shown at the end. Mutants that

use Relational Operator Replacement and Solidity Specific

Operators are likely to be alive, according to the results of

the analysis. The manual analysis made changes to the

original test suite and was executed again, and no new

errors were discovered; thus, mutation testing helps improve

the test suite's quality.

4.2. Regular Mutator

This research provided a method for increasing the

stability of smart solidity contracts via mutation analysis

[19]. They discovered frequent mistakes committed by

contract developers based on the product. Results help in

improving the test suite quality and, in turn, identify the

defects present in code for smart contracts. The paper also

points out the disadvantages of using source code lines as

metrics to qualify the test suite. The source code lines

have no connectivity with the test suite quality and do not

help identify the defects. The main advantage of this metric

is its simplicity, and the computation time is much less.

Mutations deals with errors made by coders, which

helps identify the new test cases that were not taken into

account earlier and thus initiates the creation of test cases

for the newly identified ones. The test suite quality can be

measured using the mutation concept. The ratio of the

number of killed mutants to all is used as the metric for

quality assessment.

Only those mutation operators that can be represented

as regular expressions are considered from the common

errors identified. The mutants are added to the source code

using the regular expressions library, and the mutated

source code is tested against the test suite to assess its

quality of the test suite.

4.3. SuMO

Proposed a smart contract tool to assess a test suite's

fault detection potential. The tool used 44 mutation

operators considering the solidity documentation and

various other mutation tools to help animate the errors

made by developers [20]. Reported evaluation of tools on

freely available projects with test suites. The tool uses the

mutation strategy, such as customizing the operators for

the mutation process, which was achieved by reducing the

number of mutants generated. The other strategy was to

limit the redundant mutants by combining the mutants that

are producing the redundant mutants. Also, the tool limited

the stillborn mutants by removing those operators like

those of semantic errors that are injected as faults in code

which causes compilation errors.

The tool's implementation uses solidity- parser-antlr to

produce the code's AST. The AST is then mutated with the

selected mutation operators. Complies with the mutated

code and tests each mutant generated by executing the test

suites. Finally, the mutation score and the coverage values

are logged into a file. On careful analyses of the survived

mutants, some mutations are not reached by the test suites.

The tool addresses wrong addresses assignment, address

balances and event parameters not concentrated by other

tools [20]. The tool requires deep analysis on how to reduce

stillborn mutants. All the novel mutation operators were not

evaluated by the tool. In future, experiments are further

required to assess if the surviving mutants lead to

identifying the faults to concentrate on the evaluation

process [20].

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

286

4.4. Deviant

Deviant is a mutation testing tool for the Ethereum

smart contract, designed with an objective to produce

mutants of a given contract code spontaneously, to execute

the tests against each mutant [24] instinctively. Deviant

contributes mainly to solidity-specific features in addition

to the traditional operators. The results of deviant display

that the statement coverage and branch coverage of contract

codes do not mandatorily guarantee code quality.

As shown in figure 3, the design selects one program at

a time and converts it into AST, after which the user

selected Mutation operators are applied, and mutants are

generated. The Mutation operators are based on a thorough

solidity language defect model. According to the tool, each

mutation operator generates one or more mutants. Only one

mutation is copied and compiled into bytecode from the

project code. The tests are conducted against the generated

bytecode.

Fig. 3 Architecture of Deviant

The process is repeated for each mutant, culminating in a report that includes a mutation score, a count of died mutants,

and a count of live mutants. The tool takes time to iterate for every mutant. Deviant provides a wide range of operators used

to mutate the smart source contract, which other related tools do not consider.

4.5. Vertigo

The Vertigo framework for smart contracts was developed to assess the feasibility of mutation testing in the area of

smart contracts built on the Ethereum platform. As shown in Fig. 4, users can launch mutation testing using the user's

command line interface (CLI) [25].

 2 4

Fig. 4 Vertigo Architecture

Tests Solidity

Program

Parse AST Mutate

Mutation

Operators

Mutants

Compile
EVM

Bytecode

Exec Tests Test

Report

1
3

CLI

Mutation Campaign

REPORT

Mutation Runner Mutation Generator

Truffle CLI

5

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

287

The command line parameters can be used to configure the Ethereum networks that will be used for the test runs.

Using the mutation method, vertigo can also be sampled. Vertigo, by default, alerts all mutants who a mutation campaign

has impacted. Instead, a thorough report with all of the additional mutations can be saved to a file.

Table 2. Comparison of Mutation tools for Smart Contract

Tool Name Methodology Used Demerits

Musc Source code is converted into AST and then mutated

with the user-selected mutation operators. Then it’s

compiled into EVM bytecode, and tests are executed.

Several operators are missing, which could lead

to serious contract risks. The operators are

designed based on known bugs. The mutation

score is not published by the authors.

Deviant Source code is converted into AST and then mutated

with the user-selected mutation operators. Then it’s

compiled into EVM bytecode, and tests are executed

against one mutant at a time. The process is repeated

for every mutant generated by the mutation

operators.

Although the majority of non-equivalent

mutants aren't eliminated, they pass the branch

and statement coverage checks. Produces a large

number of mutations with a high computational

cost.

Regular

Mutator

Source code is converted into Regular Expression

and then mutated with the user-selected mutation

operators. Then it’s compiled into EVM bytecode,

and tests are executed.

The compilation error causing mutants is

avoided while calculating the mutation score.

SuMO Source code is converted into AST using solidity-

parser-antlr and then mutated with the user-selected

mutation operators. Then its compiled into EVM

bytecode and tests are executed against each mutant

generated.

More research is needed to see if the surviving

mutants can also lead to the discovery of

important flaws. All of the proposed novel

operators could not be evaluated by the tool.

ContractMut Implement the four solidity-specific and general

mutation operators derived from the minimal

standard Mothra set. Used selective mutation

techniques to reduce stillborn mutants’

generation.

Concentrated primarily on the four-solidity

language-specific mutation operators.

The area for mutation assessment, which consists of

three connected parts, is where most of the work is done.

These elements carry out everything, from creating mutants

to managing the testing procedure. The vertigo tool can be

optimized with the tool able to detect specific tests that

execute the line of code to which syntactic changes are

done instead of executing a test suite for each mutant.

The above-discussed tools are available tools for

mutation analysis of smart contracts that can provide the

test suite quality assessment. The demerits are discussed in

the next session.

5. Results and Discussion
5.1. Result Analysis

Table 3 shows the data obtained from various tools like

Musc, Vertigo and Sumo. Fig. 5 compares existing tools

with the parameters: number of mutants killed, number of

mutants survived, number of mutants generated and the

mutation score achieved by each tool.

The available tools are executed for the smart

contract, and the results are compared with the parameters

mentioned earlier. The tools show variations in Fig. 5 in

generating mutants and killing and surviving mutants.

The surviving mutants are those that are not detected by

the test suite; hence, it can be inferred that test suite quality

is to be improved, or the surviving mutants may cause risks

like unidentified defects. The tool must be capable of

generating effective and killable mutants. The surviving

mutants can be equivalent, yet another direction for future

research. The mutation testing tool provides a mutation

score as the final result, which determines the quality of the

test suite of the smart contract under test.

Table 3. Analysis of Results of Mutation Testing Tool

Tool

No. of

mutants

generate

d

No. of

mutants

Killed

No. of

Mutants

survived

Mutation

score

Achieved

Musc 184 44 140 24%

Sumo 681 584 97 39%

Vertigo 391 303 30 92%

Deviant 397 147 150 37%

Regular

Mutator
871 25 110 18.50%

Based on the mutation score, the test suite can be

improved to provide defect-free smart contracts before

deploying on the blockchain platform.

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

288

Fig. 5 Comparison of results of Existing Tools

Table 2 compares the tools available for evaluating

smart contract mutations. The technique used by each tool is

provided in columns 2 and column 3, giving the research

gaps that can be addressed for future research that helps to

provide better performing mutation testing tools for

assessing the test suite quality.

6. Conclusion

On Ethereum, there are more than 34000 vulnerable

smart contracts. Thus the paper demonstrates the

requirement for having a better performing mutation

analysis for the smart contracts. Needs developing an

alternate method for mutation insertion such that they do not

cause compilation errors. The high computational cost due

to the increase in mutants generated and the undecidable

equivalent mutant problem restricts the process of full

automation of equivalent mutation analysis. The key benefit

of employing mutation testing is that it is a good substitute

for real problems, indicating the test suite's capacity to

identify the faults introduced. The tools like musc, vertigo,

sumo and deviant help the smart contract developers to

qualify their test suites. Smart contract with mutation

analysis helps developers to deploy bug-free ESC in the

blockchain. In future, a new tool will be developed for

assessing the test suite quality that considers the gaps

addressed in this paper in generating the mutants and

selecting the mutation operators for the smart contract.

References
[1] Munawar, H, “Mutation Testing Tool For Java,” 2004.

[2] Jefferson Offutt, Jie Pan, Kanupriya Tewary, Tong Zhang, “An Experimental Evaluation of Data Flow and Mutation Testing,” Software—

Practice & Experience, vol. 26, no.2, pp.165-176, 1996.

[3] Patrick Joseph Walsh, “A Measure of Test Case Completeness (Software, Engineering),” Ph.D. Dissertation. State University of New

York at Binghamton, Binghamton, NY, USA, 1985.

[4] J. H. Andrews, L. C. Briand, Y. Labiche and A. S. Namin, “Using Mutation Analysis for Assessing and Comparing Testing Coverage

Criteria,” In IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608-624, 2006, doi: 10.1109/TSE.2006.83.

[5] Zhu Q, Panichella A, Zaidman A, “A systematic literature review of how mutation testing supports test activities,” PEERJ Preprints 4:e2483v1

https://doi.org/10.7287/peerj.preprints.2483v1, 2016.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the practicing programmer,” Computer, no. 4, pp. 34–41, 1978.

[7] P. Mathur and W. E. Wong, “An empirical comparison of data flow and mutation-based test adequacy criteria,” Software Testing,

Verification and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

R. Sujeetha & C. A. S. Deiva Preetha / IJETT, 70(9), 280-289, 2022

289

[8] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses VS mutation testing: an experimental comparison of effectiveness,” Journal of

Systems and Software, vol. 38, no. 3, pp. 235–253, 1997.

[9] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four unit test criteria: Mutation, edge-pair, all-uses and

prime path coverage,” in Software Testing, Verification and Validation Workshops, 2009. ICSTW’09. International Conference on,

pp. 220–229, IEEE, 2009.

[10] Siami Namin, J. Andrews and D. Murdoch, "Sufficient mutation operators for measuring test effectiveness," 2008 ACM/IEEE 30th

International Conference on Software Engineering, 2008, pp. 351- 360. doi: 10.1145/1368088.1368136.

[11] R. Just, G. M. Kapfhammer and F. Schweiggert, "Using Non-redundant Mutation Operators and Test Suite Prioritization to Achieve

Efficient and Scalable Mutation Analysis," 2012 IEEE 23rd International Symposium on Software Reliability Engineering, 2012, pp.

11-20. doi: 10.1109/ISSRE.2012.31.

[12] Falah, B., Akour, M., & Bouriat, S, “RSM: Reducing Mutation Testing Cost Using Random Selective Mutation Technique,”

Malaysian Journal of Computer Science, vol.28, no.4, pp.338–347, 2015. Retrieved from

https://ejournal.um.edu.my/index.php/MJCS/article/view/6885.

[13] Maryam Umar, “An Evaluation of Mutation Operators for Equivalent Mutants,” Master Thesis. King’s Colledge, London, United

Kingdom. Advisor Mark Harman, 2006.

[14] Hong Zhu, Patrick A. V. Hall, and John H. R. May, “Software unit test coverage and adequacy,” ACM Computer Survey, vol. 29,

no.4, pp. 366-427, 1997.

[15] Moohebat, M., Raj, R.G., Kareem, S.B.A., Thorleuchter, D., “Identifying ISI-indexed articles by their lexical usage: A text analysis

approach,” Journal of the Association for Information Science and Technology, vol. 66, no. 3, pp. 501–511. doi: 10.1002/asi.23194.

[16] M. Sahinoglu and E. H. Spafford, “A Bayes Sequential Statistical Procedure for Approving Software Products,” In Proceedings of the

IFIP Conference on Approving Software Products (ASP’90). Garmisch Partenkirchen, Germany: Elsevier Science, pp. 43–56, 1990.

[17] A.J. Offutt, and R.H. Untch, “Mutation 2000: Uniting the Orthogonal‖, Mutation Testing for the New Century,” W.E. Wong (Ed.)

Kluwer, 2001.

[18] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang and Z. Chen, “MuSC: A Tool for Mutation Testing of Ethereum Smart Contract,” 2019 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1198-1201, 2019. doi:

10.1109/ASE.2019.00136.

[19] Y.Ivanova A.Khritankov, “Regular Mutator: A Mutation Testing Tool for Solidity Smart Contracts”, Science Direct, Procedia

Computer Science, vol.178, pp.75-83, 2020.

[20] M. Barboni, A. Morichetta and A. Polini, "SuMo: A Mutation Testing Strategy for Solidity Smart Contracts," 2021 IEEE/ACM

International Conference on Automation of Software Test (AST), pp. 50-59, doi: 10.1109/AST52587.2021.00014.

[21] P. Chapman, D. Xu, L. Deng and Y. Xiong, "Deviant: A Mutation Testing Tool for Solidity Smart Contracts," 2019 IEEE

International Conference on Blockchain (Blockchain), pp. 319-324, 2019. doi: 10.1109/Blockchain.2019.00050.

[22] Honig J.J., Everts M.H., Huisman M, “Practical Mutation Testing for Smart Contracts,” In: Pérez-Solà C., Navarro-Arribas G.,

Biryukov A., Garcia-Alfaro J. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM 2019, CBT 2019.

Lecture Notes in Computer Science, vol.11737, 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-31500-9_19.

[23] M. Barboni, A. Morichetta and A. Polini, "Smart Contract Testing: Challenges and Opportunities," 2022 IEEE/ACM 5th International

Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 21-24, 2022. doi: 10.1145/3528226.3528370.

[24] Qinghua Lu, Xiwei Xu, Yue Liu, and Weishan Zhang, “Design pattern as a service for blockchain applications,” In IEEE

International Conference on Data Mining Workshops (ICDMW). IEEE, 128–135.

[25] Vijay Rajasekar, Shiv Sondhi, Sherif Saad, and Shady Mohammed, “Emerging Design Patterns for Blockchain Applications,” In

ICSOFT. ScitePress, 242–249.

[26] Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber, “A pattern collection for blockchain-based applications,” In

Proceedings of the 23rd European Conference on Pattern Languages of Programs, pp. 1–20.

[27] Lodovica Marchesi, Michele Marchesi, Livio Pompianu, and Roberto Tonelli, “Security checklists for ethereum smart contract

development: patterns and best practices,” arXiv preprint arXiv:2008.04761.

[28] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach D Le, Xin Xia, Yang Feng, Zhenyu Chen, and Baowen Xu, “ Smart

contract development: Challenges and opportunities,” IEEE Transactions on Software Engineering.

[29] G. Petrović, M. Ivanković, G. Fraser and R. Just, "Does Mutation Testing Improve Testing Practices?," 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE), pp. 910-921, 2021. doi: 10.1109/ICSE43902.2021.00087.

admin
Text Box

