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Abstract - Carrying out calibration properly is the important phase to enhance the model's credibility. Due to unique features 

to support decisions about alternative management strategies regarding soil erosion, distributed watershed models have been 

used quite effectively in a few watersheds. The execution of the Soil and Water Assessment Tool in simulating soil erosion and 

sensitivity analysis of landscape parameters concerning soil erosion via partial least square regression (PLSR) is put forward 

in this work. Model run for 2014 and 2005 is carried out in this work; each model holds 10 years of calibration and 5 years of 

validation by placing soil erosion as a dependent parameter. SIMCA-P and SUFI-2 algorithms were used to evaluate the 

sensitivity of basin parameters. The use of the SUFI-2 algorithm uplifted model efficiency for monthly and daily scales by 

displaying NSE>0.60 and R²>0.60. Within the watershed, on the scale of the sub-watershed, the soil erosion severity zone was 

organized effectively. The SWAT parameters recognized to be highly sensitive toward soil erosion are placed in higher orders 

after the evaluation done through the SUFI-2 method. In contrast, PLSR parameters that are highly sensitive toward erosion 

are placed in a higher order after the evaluation done through weight analysis. The PLSR technique introduced in this work is 

valuable, as it provides a unique pattern through which the association between soil erosion and land cover pattern can be 

recognized closely, also determining highly sensitive parameters towards soil erosion through SWAT-CUP will allow working 

effectively towards watershed management practices at erosion hotspot in Upper Bhima Sub-Basin. 

Keywords - Soil characteristics, Hydrologic response, Spatial configuration, Land Use Pattern, SUFI-2 algorithm.  

1. Introduction  

Over the last decade, increased human activities and 

drastic climate change have distributed the hydrological 

cycle to some extent, leading to land degradation worldwide. 

Soil acts as a transit medium between the ecosystem and 

humans, where the benefits of the ecosystem are delivered to 

human beings. The disintegration of soil present in natural 

form is sloth full process. Also, factually, it is proved soil 

played an important role in the creation of earth splitting and 

the hauling technique of soil particles is observed in erosion 

caused by water. The disintegration of runoff recorded at 

peak rate is important to decrease soil erosion. Also, social 

programs like land management, construction of soil and 

water conservative structure and study of soil and climatic 

condition of several aspects present in watersheds play a vital 

role. To overcome these problems, researchers are working 

on the movement of debris from watershed land to the outlet 

of the stream network. Past studies have shown concern over 

the increase in the capacity of sediment transportation of a 

stream network from watershed to sea. Because of poor 

management of land resources and water in many areas drop 

in human health and welfare is observed.  

 

The ability of the empirical model to select a proper 

characteristic approach toward parameter specification was 

recognized by a few researchers and is thoroughly used in the 

research work (Petter). The best soil quality supports 

agriculture productivity and climate regulation (Elirehema). 

The catchment characteristics are represented as an equation 

variable in the physical model. The association between 

dependent and independent variables can be studied through 

this model. This model follows conservation regulation of 

density and energy for sediment yield simulation. Also, these 

models consider rainfall events as an independent variable 

during the modeling process. The necessity of an enormous 

quantity of samples is the deficiency of this model(Wu and 

Chen). For better investigation of the hydrology and soil 

erosion processes, advanced technique is needed; also, the 

technique should be relevant for executing proper measures 

over the issues related to soil erosion. The present 

technology available in the market includes hydrological and 

soil erosion models and geographic information systems. 

Using this advanced technique accelerates the conservative 

soil programs, which lead to the control of soil quality and 

quantity damage in a watershed. The most affected erosion-

prone area of the catchment can be defected by adopting a 

https://www.internationaljournalssrg.org/
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computer hydrological model merged with the GIS database. 

The computer-based hydrological model is very popular due 

to its user-friendly nature. This model can also design 

policies concerning the deterioration of loose by suggesting 

conservative schemes within watersheds(Zhu and Kuang). 

Hydrological models have been made popular in the last 

several decades. Its configuration and satellite data can bring 

more accuracy to the soil erosion modeling work. This kind 

of model's key benefit is truthfully working with the spatial 

irregularity of catchment attributes. To study erosion, water 

resources and sedimentation processes, multidisciplinary 

models have been produced in the last few years. The 

strategies governing the makeover of runoff via precipitation 

are regulated through these models, while physical laws in 

the natural landscape regulate the soil erosion modeling 

(Onori and Grauso).  

 

Through proper judgment, PLSR reads the relation 

among the parameters and properly understands the 

framework set for the real parameters (Feng et al.). Through 

the perception of landscape ecology, the hydrological 

connectivity technique is arranged through the pattern of 

LULC; also, the landscape parameters show the sensitivity 

toward soil erosion (Boongaling et al.). A study by  (Shen et 

al.) explored the influence of landscape configuration on 

watershed parameters and found lulc related to erosion. From 

the landscape point of view, a detailed study of the 

association between landscape patterns and soil erosion is 

important to achieve rescheduling and management of 

watersheds. Also, it is essential for executing of landscape in 

the watershed. It highlights the impact of landscape patterns 

over the entire watershed (Palang et al.). The impactful 

nature of landscape patterns towards soil erosion was 

identified through PLSR by (Shi et al.); in this work, PLSR 

successfully identified controlling the watershed soil erosion. 

Few authors evaluated four landscape metrics of the PLSR 

model, which were responsible for hillside and stream bank 

erosion. 

 

The existing SWAT includes the new features 

unavailable in the old version; it is also included in pre-and 

post-processing software, which also consists of ArcGIS 

SWAT, available in ArcGIS software, where farming had the 

upper hand (Oeurng et al.). Some authors have displayed 

SWAT in the assessment-based analysis, which can predict 

soil erosion in the large complex watershed. The 

performance check of the SWAT model is successfully done 

by running the program in SWAT-CUP software  

(Abbaspour et al.; Rane and Jayaraj). The SUFI-2 method in 

SWAT-CUP software is used at a large scale to evaluate 

parameter sensitivity and uncertainty in watershed 

modelling. Using a minimum number of model simulations 

in the SUFI-2 technique is a good quality of calibration and 

uncertainty results. The model calibration technique is a 

difficult process, which relies on input parameters, model 

complexity and few iterations. Using SA and UA techniques, 

uncertainties imposed on model parameters and structure can 

be reduced. The model potential is assisted through 

sensitivity analysis, calibration and validation. Few 

researchers previously promoted soil erosion analysis work 

daily using SWAT-CUP to overcome this gap. The objective 

of this study is a) soil erosion estimation by SWAT model at 

watershed scale b) Soil erosion output obtain by SWAT 

model through SUFI-2 algorithm c) Identification of 

watershed parameter, having influence over soil erosion d) 

Finding out the relationship between landscape matrix and 

soil erosion using partial least square regression. 

 

2. Study Area  

 
Fig. 1 Bhima Sub-Basin map 

 

The present study is carried out in the Upper Bhima 

Sub-basin (Fig.1), considered the widest sub-basin among 

other basins located between 16º0'N and 18º0'N latitude and 

73º40'E and 75º0'E longitude. It covers a 3533 Km² area. The 

region depletes to the Bhima river, a tributary to the Karha, 

Kukadi and Nira rivers. Every year the Upper Bhima Sub-

basin experiences a monsoon from June to September, and 

the rainfall ranges from 540 mm to 160 mm; 30 to 70 rainy 

days are recorded annually in a basin. Also, it is observed 

that 90% of rain occurs during the wet season. The central 

water commission has monitored the Sediment yield at 

Takali Gauge in the watershed. Sediment data from 1990-

2014 (24 yrs) has been collected for this work. 
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Fig. 2 Methodology flow chart(Desai and Ukarande) 

 

3. Methodology  

3.1. Upper Bhima Sub-Basin DEM 

The study area digital elevation model (DEM) was 

accessed from the US Geological Survey Webpage. The 

elevation representing the 350-1475m range is recorded in 

the study area. The slope map and flow accumulation map 

were developed through multi-function elements available in 

DEM. 

 
Fig. 3 Digitized view of the study area 

 

3.2. Analysis of SWAT Model 

SWAT is ownership gained by a public graphical user 

interface program assigned a work of watershed modeling. 

Using the threshold for land use, soil type and total slope 

watershed are discriticized into Hydrological Response Units 

(HRUs) which are considered the smallest part of a 

watershed. The below equation is used during modeling 

simulation: 

𝑆𝑊𝑡 =  𝑆𝑊𝑜 +  ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)              (1)𝑡
𝑛=1             

Where 𝑆𝑊𝑡  is Soil water at time 't' (mm), 𝑆𝑊𝑜  is the 

supplement of water to plant (mm), 𝑅𝑑𝑎𝑦 is rainfall amount 

(mm), 𝑄𝑠𝑢𝑟𝑓 is flow from the surface (mm), 𝐸𝑎 is the amount 

of evapotranspiration (mm), 𝑊𝑠𝑒𝑒𝑝 is detriment (mm), 𝑄𝑔𝑤 is 

low flow (days).   

3.3. Input Data   

Daily rainfall, temperature (high/low), sunshine duration 

and wind speed of 24 years (1990-2014) is applied in this 

work. The stream network is digitized within a DEM to 

locate the main outlet of a watershed. 

Fig. 4 Soil classification of the study area 
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The Upper Bhima Sub-Basin soil map is digitized 

through the ERDAS program before use in the model. The 

soil record is received from NBSS & LUP, Nagpur. The soil 

data is also placed in a text file in the GUI of SWAT. After 

completing the entire process, four types of clay, One type of 

Sandy-Loam-Clay, two types of Clay-Loam, and three types 

of Loam, are recognized and displayed over the map. 

Fig. 5 LULC classification of the study area 

The current topographical scenario is projected through 

a Land Use map. The nomenclature of LULC was also 

placed in text file format in the GUI of SWAT. After 

completing the entire process, the study area is combated 

through barren land, water, range land, forest, pasture and 

agriculture. Also, most of the watershed is covered in an 

urban area. 

Fig. 6 Slope classification of the study area 

Slope Map: The slope tool inbuilt in Arc-GIS Software is 

used to develop a slop map. A slope from 0.01 to 1.23 is 

placed through the radio button in the GUI of SWAT. 

 

3.4. Delineation of Basin and HRU definition 

Fig. 7 Delineated Upper Bhima Sub-basin 

In the preliminary stage, 29 sub-basin were acquired 

through delineating DEM, while in the next stage, 

topographical aspects were overlaid to establish a hydrologic 

response unit (HRU). HRU classifies soil, slope and land use 

into the small unit, which allows multiple configurations of 

these features. 141 HRUs were generated by skipping land 

use and soil by 5% and slope by 10%. In the final stage, a 

simulation of soil erosion is carried out by running the 

SWAT model on a daily and monthly scale by ignoring the 

early few years as a trial run. 

 

3.5. SWAT-CUP Model Details 

The ability of SUFI-2 algorithms, such as providing the 

largest irrelevant specification unpredictability interval of 

model parameters, made it to use in this work. SWAT-CUP 

having a built SUFI-2 algorithm is used in this study. SUFI-2 

algorithm helps in resolving uncertainty between actual and 

simulated parameters. It considers all sources of uncertainties 

in a watershed, including parameters and driving variables. 

The distinct characteristics of SUFI-2, i.e., the dry year and 

wet year, are distributed equally throughout the simulation in 

the calibration and validation phase. The model's merit is 

listed based on 3 indices, as below. 

 
𝑅2

= {
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)(𝑌𝑖
𝑠𝑖𝑚 − 𝑌𝑝𝑟𝑒_𝑚𝑒𝑎𝑛)𝑛

𝑖=1

[∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1 ]0.5[∑ (𝑌𝑖
𝑠𝑖𝑚 − 𝑌𝑝𝑟𝑒_𝑚𝑒𝑎𝑛)2𝑛

𝑖=1 ]0.5
}

2

(2) 

 
NSE

= 1 −
∑ (Yi

obs − Yi
sim)2n

i=1

∑ (Yi
obs − Ymean)2n

i=1

                                                                (3) 

 

PBIAS

=  
∑ (Yi

obs − Yi
sim) ∗ 100n

i=1

∑ (Yi
obs)n

i=1

                                                                (4) 

 

 



Pravin V. Desai & Suresh K. Ukarande  / IJETT, 70(9), 298-318, 2022 

 

302 

Yi
obs is the actual data at ith stage Yi

sim is the predicted 

data at the ith stage, Ymean  is recorded data at an average 

scale, 𝑌𝑝𝑟𝑒_𝑚𝑒𝑎𝑛 is prediction at an average scale. 

A period from 1995-2007 is for calibration for model 2014, 

from which early 3 years are drawn for the warm-up period. 

Twelve parameters were established through SWAT-CUP 

via objective function to operate calibration, through iteration 

near to 500 times. A unique component, i.e. the sensitivity 

technique integrated with SWAT-CUP, improves the model's 

performance, which also depends on the quality of model 

input. Validation of it was administrated to investigate the 

performance of the model for which five years of data (2007-

2014) was used. 

 

A period from 1990-2002 is for calibration for model 

2005, from which the early few years are drawn for a warm-

up period. Twelve parameters were established through 

SWAT-CUP via objective function to operate calibration, 

through iteration near to 500 times. A unique component, i.e. 

the sensitivity technique integrated with SWAT-CUP, 

improves the model's performance, which also depends on 

the quality of model input. Validation of it was administrated 

to investigate the performance of the model for which five 

years of data (2007-2014) was used. 

 
Table 1. Details of SWAT-CUP Parameters 

Sr.No. Parameter Description 

1 SPCON.bsn Max amt of sediment 

examined. 

2 OV_N.hru Flow with the help of 

Manning' n.'  

3 PRF_BSN.bsn Peak controlling factor 

4 USLE _P.mgt Practice factor 

5 SURLAG.bsn Surface runoff lag time 

6 V_CH_COV2 Channel Erodibility factor 

7 CH_EQN.rte Sediment routing method 

8 HRU_SLP.hru Slope steepness  

9 SPEXP.bsn To avoid sediment re-

entrained 

10 USLE_K 

(..).sol 

Erodibility factor of soil 

11 CH_K1.sub Hydraulic conductivity 

12 CN2 Curve Number of Runoff 

 

3.6. A brief discussion of Partial Least-Square Regression 

USGS website is used for downloading high-precision 

landscape maps of the study area for the years 1985, 1995, 

2005 and 2014. Landscape metrics are figured out through 

the proper arrangement of multiple landscape maps. Multiple 

landscape metrics have been proposed to examine and carry 

out landscape patterns or features, and multiple landscape 

metrics have been proposed; pattern layouts and mapping 

units are created through these metrics. 

15 metrics were recognized to exhibit land use land cover 

features in this study (Table 2). The researcher uses these 

metrics to associate the relationship between soil erosion and 

land cover pattern (Jordan et al., 2005; Nie et al., 2011). With 

the support of metrics, the PLSR method is employed to 

check the influence of soil erosion. To determine the matrix, 

we utilized the program called FRAGSTATS, which is an 

approved and extensively used tool for landscape metrics 

quantification (McGarigal et al.). The relationship between 

two variables is effectively recognized through the PLSR 

technique. 

 

Compared to other methods, PLSR endeavors to 

distinguish a unique relationship between two variables 

integrating each other. The significance of land cover 

patterns in the distribution of erosion is the fundamental aim 

of PLSR. This study implements programs like SIMCA-P to 

run the PLSR procedure. 

 

The design of parameters related to landscape is done in 

the PLSR model. In the PLSR algorithm, soil erosion act as 

dependent variable and landscape metrics function as an 

independent variable. After a few simulations of PLSR 

models, the addition and exemption of some variables are 

accomplished to select the PLSR model. A matrix such as 

Simpson's diversity index (SIDI) displayed a good relation 

with Aggregation Index (AI). Also, Interspersion and 

juxtaposition index (IJI) showed good relation with 

Shannon's diversity Index (SHDI). 
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Table 3. PLSR analysis landscape metrics correlation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metrics ED LSI PD LPI 
AREA_ 

MN 

SHAPE_ 

MN 

PARA_ 

MN 
PAFRAC 

ENN_ 

MN 
CONTAG IJI COHESION SIDI SHDI AI 

ED 1                        
  

LSI -0.13 1                       
  

PD 0.74 -0.63 1                      
  

LPI 0.29 -0.97 0.57 1                     
  

 AREA_MN  -0.42 0.64 -0.6 -0.77 1                   
  

 

SHAPE_MN  
-0.54 0.72 -0.76 -0.55 0.60 1                 

  

 PARA_MN  0.64 0.43 0.4 -0.53 0.25 0.64 1               
  

 PAFRAC  -0.4 -0.68 -0.11 0.76 -0.44 -0.84 -0.95 1             
  

 ENN_MN  -0.12 0.93 -0.41 -0.98 0.75 0.98 0.67 -0.86 1           
  

 CONTAG  0.77 0.21 0.59 -0.33 0.12 0.45 0.97 -0.86 0.5 1         
  

 IJI  0.92 -0.94 0.93 0.93 -0.89 -0.73 0.80 0.88 -0.74 -0.96 1       
  

 

COHESION  
0.23 0.55 0.15 -0.73 0.42 0.82 0.97 -0.49 0.84 0.88 -1 1     

  

 SIDI  -0.4 -0.67 -0.11 0.75 -0.43 -0.84 -0.96 0.59 -0.86 -0.86 0.99 -0.69 1   
  

 SHDI  0.11 -0.14 0.26 -0.51 0.04 -0.05 -0.12 0.03 0.19 -0.09 0.21 -0.06 0.79 1 
  

 AI 
-0.85 0.91 -0.96 -0.44 0.79 0.71 -0.77 -0.85 0.74 0.83 -0.76 0.83 -0.62 -0.53 1 
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4. Results and Discussion 
4.1. Classification of Erosion Zone 

 
                Fig. 8 Classification of Soil erosion zone in the study area 

 

To provide a phase-wise execution, all the sub-

watershed are prioritized based on soil erosion rate (Singh et 

al.), as shown in table no 4. 

 
Table 4. Erosion classification 

Sediment loss 

(tons/ha/yr) 

Soil Erosion Class Percentage of Area 

21-40 Very High 8 

11-20 High 18 

6-10 Moderate 25 

0-5 Slight 49 

 

The sub-watershed is rated between Low to Very High 

Soil Erosion class. Only Four watersheds have shown signs 

of very high soil erosion, and a larger percentage of the 

watershed had acquired a slight to moderate erosion class. 

Three sub-watershed showing a sign of high soil erosion 

were found on the left bank of the Bhima river. Eventually, 

all sub-watersheds were ranked likewise by adopting similar. 
 

4.2. Sensitivity Analysis 

At a preliminary stage, the value obtained through 

SWAT output had a disturbance in the 95 PPU graph. To 

reduce this disturbance, adjustments are done in SWAT-CUP 

parameters such as (CN2) value is adjusted between 79.32 

and 79.67 every month in 2014 and 2005 models, 

respectively, as well as setting the value of the same 

parameter at 76.5 and 77.84 for daily basis in 2014 and 2005 

model respectively, the main function of this parameter is to 

increase runoff. (SURLAG) was adjusted between 1.82 and 

1.71 monthly in the 2014 and 2005 models, respectively as 

well as setting the value of the same parameter at 2.49 and 

2.91 on a daily basis in the 2014 and 2005 models 

respectively; the main function of this parameter is to record 

lag time of runoff towards an outlet. (USLE_P) was fitted at 

0.43 and 0.45 monthly in the 2014 and 2005 model, 

respectively as well as setting the value of the same 

parameter at 0.37 and 0.34 daily in the 2014 and 2005 model 

respectively which minimizes the involvement of human 

endeavor over LULC of the basin (USLE_K) was adjusted 

with 0.16 and 0.18 value for monthly basis in 2014 and 2005 

model respectively, same parameters were fitted with 0.22 

and 0.28 values for daily basis in 2014 and 2005 model 

respectively, the main function of this parameter is to control 

sediment formation. Mean slope steepness (HRU_SLP) is 

used to control channel erosion; in work, it was fitted with 

0.25 and 0.20 values on a monthly basis in the 2014 and 

2005 model, respectively, while the same parameter was 

fitted with 0.10 for a daily basis in both the 2014 and 2005 

model. The (SPCON) who's the main function is to control 

sediment deposition and is fitted with 0.0003 on a monthly 

basis in both the 2014 and 2005 models, and the same 

parameter was fitted with 0.0002 on a daily basis in the 2014 

model. The channel erodibiltiy factor (CH_COV2), whose 

main function is to get linear influence over soil loss, was 

fitted with 0.11 monthly in the 2014 model. The same 

parameter was fitted with 0.083 daily in the 2014 model. The 

(SPEXP) whose function is to represent a non-erosive 

channel at the outlet of the watershed, was fitted with 1.1 

monthly in the 2014 model. (OV_N), which contributes 

directly to surface runoff generation, was fitted with 9.1 and 

7.9 daily in the 2014 and 2005 models, respectively. 

(PRF_BSN), whose main function is to adjust the effect of 

peak flow on sediment routing, was fitted with 1.58 and 1.31 

daily in the 2014 and 2005 models, respectively. The 

(CH_K1), which controls the losses at the river bed, is fitted 

with 27 and 28.33 daily in the 2014 and 2005 models, 

respectively. The sediment routing method (CH_EQN), 

which summarizes the channel's physical characteristic, 

which affects sediment transport, is fitted with 11 and 11.56 

for daily basins in 2014 and 2005, respectively. The channel 

erodibility factor (CH_ERODMO), which controls the bank 

material, is fitted with 0.25 daily in the 2005 model. 

 

The remark of t-stat and p-value is used to decide the 

sensitivity of every parameter, and their ranks are allotted as 

given in table no 1,2,3,4. The remark of less p-value higher 

the sensitivity is assigned for the parameters ranking system. 

The parameters such as Curve Number of Runoff (CN2) and 

Support practice factor (USLE_P) were listed on top of the 

ranking within the parameters which are part of sensitivity 

performance criteria in the monthly basis model for the years 

2014, and 2005 whereas (SURLAG) and (COV2) stays at the 

bottom in the sensitivity performance criteria in monthly 

basis model for the year 2014 and (SPCON) and (SURLAG) 

stays at the bottom in the sensitivity performance criteria in 

monthly basis model for the year 2005. The parameters like 

(OV_N) and support practice factor (USLE_P) were enlisted 

at the first two places within the parameters engaged with 

sensitivity performance criteria in the daily basis model for 

2014. Parameters like (HRU_SLP) and (OV_N) were at the 
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top two within the parameters which are engaged in the 

sensitivity performance criteria in the daily basis model for 

the year 2005, parameters like erodibility factor of soil 

(USLE_K) and (CH_K1) were enlisted at the bottom in the 

sensitivity performance criteria in daily basis model for the 

year 2014 while, (SURLAG) and (PRF_BSN) stays last in 

the sensitivity performance criteria in daily basis model for 

the year 2005. 

  
Table 5. Sensitivity Analysis of SWAT parameters (Monthly Basis) (2014) 

Parameters Low Range High Range Best. Value t-stat. P-value Rank 

V_CN2.mgt 65 80 79.32 6.66 0.00 1 

V_USLE_P.mgt 0.3 0.5 0.43 8.40 0.00 2 

V_USLE_K.sol 0.1 0.2 0.16 12.11 0.00 3 

V_HRU_SLP.hru 0.2 0.3 0.25 32.22 0.00 4 

V_SPCON.bsn 0.0001 0.0004 0.0003 0.82 0.24 5 

V_SURLAG.bsn 1 3 1.82 2.10 0.32 6 

CH_COV2.rte 0.00 0.3 0.11 -2.36 0.41 7 
 

Table 6. Sensitivity Analysis of SWAT parameters (Monthly Basis) (2005) 

Parameters Low Range High Range Best Value t-stat. P-value Rank 

V_CN2.mgt 65 80 79.67 18.72 0.00 1 

V_USLE_P.mgt 0.3 0.5 0.45 4.68 0.00 2 

V_USLE_K.sol 0.1 0.2 0.18 16.34 0.00 3 

V_HRU_SLP.hru 0.2 0.3 0.20 4.19 0.00 4 

V_SPCON.bsn 0.0001 0.0004 0.0003 0.64 0.14 5 

V_SURLAG.bsn 1 3 1.71 2.15 0.29 6 
 

Table  7. Sensitivity Analysis of SWAT parameters (Daily Basis) (2014) 

Parameters Low. Range High. Range Best Value t-stat. P-value Rank 

V_CN2.mgt 65 80 76.5 -2.53 0.126 6 

V_USLE_P.mgt 0.3 0.5 0.37 -4.34 0.049 2 

V_HRU_SLP.hru 0.1 0.2 0.10 -4.93 0.03 5 

V_USLE_K.sol 0.2 0.3 0.22 -1.27 0.33 11 

V_SPCON.bsn 0.0001 0.0004 0.0002 0.96 0.43 10 

CH_COV2.rte 0.00 0.5 0.083 -2.36 0.14 7 

SPEXP.bsn 1 1.2 1.1 1.61 0.24 8 

PRF_BSN.bsn 1.1 1.6 1.58 -3.47 0.073 3 

V_OV_N.hru 1 10 9.1 5.38 0.032 1 

V_CH_K1.sub 20 33 27 0.33 0.76 12 

V_CH_EQN.rte 10 20 11 1.52 0.26 9 

V_SURLAG.bsn 2.1 3 2.49 3.03 0.093 4 
 

Table 8. Sensitivity Analysis of SWAT parameters (Daily Basis) (2005) 

 

 

 

 

 

 

 

 

 

Parameters Low Range High Range Best Value t-stat. P-value Rank 

V_CN2.mgt 75 85 77.84 -9.73 0.00 3 

V_USLE_P.mgt 0.3 0.5 0.34 -2.28 0.08 6 

V_USLE_K (..).sol 0.2 0.3 0.28 -2.43 0.07 5 

V_HRU_SLP.hru 0.1 0.2 0.1 -8.93 0.0008 1 

V_PRF_BSN.bsn 1.1 2 1.31 0.39 0.71 9 

V_CH_K1.sub 20 30 28.33 2.52 0.06 4 

V_CH_ERODMO 0.1 0.3 0.25 0.55 0.60 8 

V_CH_EQN.rte 10 15 11.16 -0.77 0.47 7 

V_OV_N.hru 1 10 7.9 7.87 0.001 2 

V_SURLAG.bsn 2.1 3 2.91 -0.25 0.81 10 
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4.3. Evaluation of Model Calibration 

In the beginning, in the 2014 model, calibration was 

performed using thirteen years of data, i.e. (1995-2007) 

which involved warm-up for 3 years period, i.e. (1995-1998), 

in the form of input, the simulated sediment concentration 

was analyzed in front of sediment concentration obtained at 

gauge station. The monthly scale and daily scale were upheld 

during calibration. The monthly scale model of 2014 ran 

successfully in the range of 95 PPU line, but most of the 

observed peak values were under-predicted by simulated 

values. In the daily model of 2014, the predicted value had 

followed the flow of observed value adequately in large 

sections, but in some sections over prediction of simulated 

value concerning observed value was recorded. The scatter 

plot displays the model's performance to be good for daily 

scale R²= 0.62 and monthly scale R²= 0.67. The analysis 

standard like NSE= 0.65 for the daily scale and NSE= 0.66 

for the monthly scale, PBIAS= 33.9 for the daily scale and 

PBIAS= 7.6 for the monthly scale, r-factor=0.27 for daily 

analysis and r-factor=0.4 for monthly analysis, p-factor=0.18 

for daily analysis, p-factor=0.56 for monthly analysis had 

shown positive reflection towards the performance of a 

model in calibration for both the scale. 

 

In the 2005 model, calibration was performed using 

twelve years of data, i.e. (1990-2002) which involved 3 years 

of the warm-up period, i.e. (1990-1992), in the form of input, 

the simulated sediment concentration was analyzed in front 

of sediment concentration obtained at the gauge station. The 

monthly scale and daily scale were upheld during calibration. 

The monthly scale model of 2005 had run successfully in the 

range of 95 PPU line, but most of the observed peak values 

were under-predicted by simulated values. In the daily model 

of 2005, the predicted value had followed the flow of 

observed value adequately in a large section. Still, in some 

sections over, prediction of simulated value to observed 

value was recorded. The scatter plot performed well for daily 

analysis R²= 0.6 and monthly analysis R²= 0.72. The analysis 

standard like NSE=0.62 for daily analysis and NSE= 0.7 for 

monthly scale, PBIAS= 34.1 for daily scale and PBIAS=15.1 

for monthly scale, r-factor= 0.43 for daily analysis and r-

factor= 0.25 for monthly analysis, p-factor= 0.23 for daily 

analysis and p-factor=0.14 for monthly analysis had shown 

positive reflection towards the performance of the model in 

calibration for all analysis. 

 

4.4. Validation analysis 

Implementing 70% of inputs for calibration, the rest of 

the data is carried forward for validation in the SWAT-CUP 

model, in which measured and simulated sediment 

concentration was examined. Model 2014 and 2005 undergo 

a validation process on both scales. In the validation stage, 

the observed value was under-predicted by the simulated 

value in both scales; still, the momentum of the observed 

value was followed by the value of simulation. The scatter 

plot displays the model's performance to be good for daily 

scale R²= 0.74 and monthly scale R²= 0.71. The analysis 

standard like NSE= 0.74 for daily analysis and NSE= 0.68 

for monthly analysis, PBIAS= 23.9 for daily scale and 

PBIAS= 12.7 for monthly scale, r-factor=0.23 for daily 

analysis and r-factor=0.6 for monthly analysis, p-factor=0.12 

for daily analysis, p-factor=0.45 for monthly analysis had 

shown positive reflection towards the performance of the 

model in calibration for both the scale. 

 

For model 2005, in the validation phase, the simulated 

value traced a close path towards the observed value on a 

monthly scale. However, most of the simulation remains 

under-predicted for observed value. In contrast, some 

sections found over-prediction of observed value by 

simulated value on the daily scale. However, a large 

percentage of simulation remains under-predicted compared 

to the observed value on the daily scale. The scatter plot 

displays the model's performance to be good for daily scale 

R²= 0.69 and monthly scale R²= 0.68. The analysis standard 

like NSE= 0.61 for daily analysis and NSE= 0.67 for 

monthly analysis, PBIAS= 39.1 for daily scale and PBIAS= 

15.3 for monthly scale, r-factor=0.44 for daily analysis and r-

factor=0.34 for monthly analysis, p-factor=0.24 for daily 

analysis, p-factor=0.13 for monthly analysis had shown 

positive reflection towards the performance of a model in 

calibration for both the scale. 
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Fig. 9 95 ppu plot of observed vs simulated soil erosion for monthly scale (2014) 

  

 
 

Fig. 10 95 ppu plot of observed vs simulated soil erosion for monthly scale (2005) 
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Fig. 11 Daily observed (blue) and simulated (red) soil erosion for the calibration and validation period (2014) 

 

 

 
Fig. 12 Daily observed (blue) and Simulated (red) soil erosion for the calibration and validation period (2005) 
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Fig. 13 Comparison of scatter plot between measured and simulated monthly soil erosion for calibration (2014) 

 

 

 

 
Fig. 14 Comparison of scatter plot between measured and simulation monthly soil erosion for validation (2014) 
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Fig. 15 Scatter Plot comparison between measured and simulation daily soil erosion for calibration (2014) 

 

 

 
Fig. 16 Scatter Plot comparison between measured and simulation daily soil erosion for validation (2014) 
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Fig. 17 Scatter Plot comparison between measured and simulation monthly soil erosion for calibration (2005) 

 

 

 
Fig. 18 Comparison of scatter plot between measured and simulation monthly soil erosion for validation (2005) 

 



Pravin V. Desai & Suresh K. Ukarande  / IJETT, 70(9), 298-318, 2022 

 

312 

 
Fig. 19 Scatter Plot comparison between measured and simulation daily soil erosion for calibration (2005) 

 

 
Fig. 20 Scatter Plot comparison between measured and simulation daily soil erosion for validation (2005) 
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Table 9. Appraisal of statistics performed by the model (2014) 

Parameter 

Soil Erosion 

Observed Simulated 

Daily Monthly Daily Monthly 

Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. 

Avg (mg/l) 1277.40 1117.3

5 

1846.78 1691.67 868.48 850.76 1706.08 1476.66 

SD 1539.06 1529.0

9 

1536.58 953.65 1370.78 1230.01 1357.15 921.81 

PBIAS     33.9 23.9 7.6 12.7 

r-factor     0.27 0.23 0.40 0.60 

p-factor     0.18 0.12 0.56 0.45 

NSE     0.65 0.74 0.66 0.68 

R²     0.62 0.71 0.67 0.74 
 

 

Table 10. Appraisal of statistics performed by the model (2005) 

Parameter 

Soil Erosion 

Observed Simulated 

Daily Monthly Daily Monthly 

Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid. 

Avg (mg/l) 1482.20 1426.25 1865.72 1422.70 1156.50 1104.34 1583.82 1205.15 

SD 1679.61 1624.42 1858.34 1584.65 1518.31 1461.46 1635.77 1303.57 

PBIAS     34.1 39.1 15.1 15.3 

r-factor     0.43 0.44 0.25 0.34 

p-factor     0.23 0.24 0.14 0.13 

NSE     0.62 0.61 0.70 0.67 

R²     0.60 0.68 0.72 0.69 
 

 

4.5. Pattern Analysis of Landscape metrics 

Initially, for the model 2014, parameters like (SHDI), 

(SIDI), Area ratio in average form (AREA_MN), (ED), 

(LSI), and (PD) are placed on negative weight loading as 

shown in (Fig.5.32). Additionally, a VIP value of less than 1 

has been displayed, and these outcomes illustrate that matrix 

used here is getting the least influence over soil erosion. 

Parameters like (SHAPE_MN) and Mean Euclidian nearest 

neighbor distance (ENN) represents negative weight indices 

but still find VIP value greater than 1. Hence they had a 

medium impact on soil erosion. Parameters like area ratio in 

average form (PARA_MN) and Interspersion and 

Juxtaposition index (IJI) are positioned in positive weight 

analysis. Also, they have more than 1 VIP value, which 

greatly impacts soil erosion. 

For the model 2005, parameters like (PAFRAC) and 

(AI) are placed on negative weight loading as shown in Fig. 

(5.32); additionally, VIP value less than 1 has been 

displayed; these outcomes illustrate that matrix used here is 

getting the least influence over soil erosion. Parameters like 

the Largest patch index (LPI) represent negative weight 

indices, but they find VIP values more than 1; hence they 

had a medium impact on soil erosion. Parameters like 

(SHDI) and (SIDI) are positioned in positive weight analysis. 

Also, they have a VIP value of more than 1, which provides 

a high impact on soil erosion. 
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Fig. 21 Loading of landscape matrix for soil erosion (2014) 

 

 
Fig. 22 Parameters of landscape pattern for soil erosion (2005) 

 

 
Fig. 23 Graph of VIP vs Parameter (2014) 
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Fig. 24 Variable Importance for Projection (2005) 

 

Table 11. Performance Index of landscape matrix (2014) 

 Metrics Dependent Variable 

VIP w' [1] w' [2] 

SHAPE_MN 1.6 -0.32 -0.45 

IJI 1.4 0.15 -0.5 

ENN_MN 1.3 -0.33 -0.45 

PARA_MN 1.2 0.31 0.3 

 
Table  12. Landscape metrics soil erosion results (2005) 

 Metrics Dependent Variable 

VIP w' [1] w' [2] 

SHAPE_MN 1.6 -0.32 -0.45 

IJI 1.4 0.15 -0.5 

ENN_MN 1.3 -0.33 -0.45 

PARA_MN 1.2 0.31 0.3 

 

 
Fig. 25 Soil Erosion Sensitivity of Upper Bhima Sub-Basin (2014) 
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The fig.(5.36) shows that PD, LSI, SIDI, COHESION, IJI, CONTAG, AI, ED, LPI and SHDI have negative sensitivity 

towards soil erosion, whereas ENN_MN, PARA_MN, SHAPE_MN,  PAFRAC, AREA_MN,  and are having positive 

sensitivity towards soil erosion. 

 

 
Fig. 26 Soil Erosion Sensitivity of Upper Bhima Sub-Basin (2014) 

 

The above figure shows that LSI, IJI, COHESION, 

SHDI, SIDI, AI, LPI, ED, SHAPE_MN, PARA_MN, 

PAFRAC and ENN_MN have negative sensitivity toward 

soil erosion. In contrast, PD, CONTAG, and AREA_MN 

have positive sensitivity towards erosion. 

 

5. Discussion 
The prime objective of this work was to calibrate and 

validate soil erosion parameters in the Upper Bhima Sub-

basin watershed. The functioning of both models was 

determined using SA, model calibration and validation. (Van 

Griensven et al.), Calibrated the SWAT for the discharge and 

sediment concentration in the Honey Creek basin and 

concluded that within ten parameters, CN2 along with 

USLE_P were the most sensitive parameters. (de Medeiros et 

al.) performed sensitivity analysis in Epitacio Pessoa Dam, it 

was discovered that CN2, CH_K2, SPCON and EPCON 

were among the top 4 sensitive parameters. (Gull et al.) 

calibrated SWAT for the Lolab watershed of Pohru 

catchment; among four highly sensitive parameters, CN2 

was the first, followed by SPCON, CH_EROD and SPEXP. 

Very close to the above result in this work, 12 parameters 

were used in the sensitivity analysis as CN2, USLE_P, 

HRU_SLP, and PRF_BSN are observed to be the most 

sensitive parameters. 

 

The peak value in July 2004 (calibration) for the model 

2014 does not fall under 95 PPU; the same condition was 

observed for July 1996 (calibration) for the model 2005. 

Some extreme event cannot be predicted by SWAT; such 

condition was also observed in the work of (Worqlul et al.). 

With the help of R² and the NSE involving observed and 

simulated values, their good performance (R²>0.6) uplifted 

the quality of the model (Bouslihim et al.; Zeckoski et al.; 

Moriasi et al.). The ability of PBIAS to display poor model 

performance is used as a supplementary option for showing 

the effective model performance (Biondi et al.). Time series 

and scatter plots had equal importance for displaying model 

performance. This work's scatter plots displayed good 

collinearity between observed and simulated sediment data. 

 

This research claims that land cover patterns influence 

soil erosion within the watershed. PD and ED reproduced the 

magnitude of forest fragmentation. Thus its ineffectiveness 

was observed in reducing erosion from the agricultural area. 

In this work, negative sensitivity was featured by 

COHESION and AI metrics with soil erosion. The model's 

performance proposed that soil erosion will occur more in 

distributed land cover patches. SHAPE_MN and PARA_MN 

displayed positive sensitivity to soil erosion in the 2014 

model, which indicates small land use land cover patches 

increase soil erosion. A similar result was observed in the 

work of (Boongaling et al.). (Lee et al.) PD, ED and SHDI 

are positively related to water quality and CONTAG and AI 

are negatively related to water quality. Also, in the work of 

(Miller et al.) CONTAG, LPI and COHESION had shown 

high influence over runoff, and a strong relationship was 

observed by (Sertel et al.) between PD, NP, LPI and 

landscape. The above example reveals the use of landscape 

metrics in other aspects of the watershed where the author 

had applied similar models in this work. The negative 

sensitivity of IJI towards soil erosion reflects human 

domination of land use, such as agricultural land and urban 
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area (Lechner et al.), also found the same result in their 

study. In our work, SHDI has negative sensitivity to soil 

erosion, indicating that the watershed has a thick land cover 

type that prohibits soil erosion. This scenario was repeated in 

the work of (Lee et al.). 

 

6. Conclusion 
The results illustrate that metrics like SOL_AWC, 

SFTMP, ALPHA_BF & SOL_K had displayed the highest 

sensitivity towards soil erosion. The algorithm, namely 

SUFI_2 in-built in SWAT-CUP, develops realistic outputs 

regarding UA, calibration and validation of the SWAT 

model. In this work, SWAT-CUP proved to be effective in 

capturing uncertainty in the modeling and evaluating the 

impact of watershed aspects. Features of SWAT-CUP to 

support distributed hydrological modeling, which is an 

important aspect of watershed management practices, were 

revealed through this study. The sensitivity investigation was 

used to select the watershed aspects for calibration; the 

criteria for selecting the parameter was NSE value should be 

greater than 0.70 for a daily soil erosion simulation, and 

similar criteria were followed for the validation period. The 

results of SWAT-CUP featuring sensitivity and uncertainty 

analysis reflect the appropriate benefit of the model for soil 

erosion prediction in the Upper Bhima Basin. The calibration 

and validation results reflect that the model has closely 

followed the observed soil erosion. Evaluating soil loss is 

mandatory to examine the soil erosion consequences; it is 

also important to implement conservative soil measures in a 

catchment. 

 

A steady transformation was observed in the landscape 

from 2005 to 2014, leading to notable changes in the 

hydraulic function of the watershed. The strong correlation 

between landscape features and soil erosion was revealed 

through this study. Land use planners can get good inputs on 

efforts taken on landscape metrics through this study. It is 

recommended in the future to expand this study for a better 

understanding of the complex nature of landscape matrix 

with soil erosion. The strategies implemented within this 

work display the contribution of land use changes towards 

soil erosion; this materialistic information will help 

stakeholders select the right land use for better water 

resource management. Through this study, zoning regulation 

and planning practices need to be carried out to minimize the 

adverse effects of land use. The investigation of the effect of 

landscape patterns on soil erosion through PLSR was 

conducted in this study. In the presence of remote sensing 

and GIS technology, the land cover aspect can be studied 

deeply using landscape pattern metrics. PLSR effectively 

explored land use land cover for sensitivity analysis through 

the SIMCA-P model. In contrast, climatic and watershed 

parameters were effectively used by SWAT-CUP for the 

simulation of soil erosion modeling in the Upper Bhima Sub-

Basin. 
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