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Abstract - Because of its importance in disease diagnosis, medical image analysis has been a prominent research topic for 

over a decade. Advancements in deep learning methodologies made computer-aided disease diagnosis feasible from 

medical images. Object semantic segmentation is the primary activity in medical image analysis. Various deterministic 

deep learning models for semantic segmentation of objects (organs) from medical images are introduced. Generally, the 

medical image objects (i.e., kidneys) contain the routine shape, size, and brightness which help the deterministic models for 

efficient segmentation. In the case of chronic diseases such as cancer, the objects in medical images contain tumors, which 

appear with a high degree of uncertainty in object properties. Due to the uncertainty in object shape, size, and brightness, 

former deep learning models performed less accurately in diseased object segmentation. In this paper, we proposed a 

hybrid semantic segmentation model with stochastic feature mapping techniques for the accurate segmentation of medical 

image objects under uncertainty. The location-dependent split method is used for seeded region marking and approximating 

object location. Stochastic neural networks with feature mapping techniques are introduced to localize the target objects 

without deterministic modeling. The recursive block-wide segmentation process is used to lineate the target objects from 

boundary elements. We tested the proposed stochastic segmentation model and its deep learning counterparts on a human 

kidney tumor MRI dataset. The experimental results show that the proposed stochastic segmentation model outperformed 

the segmentation of diseased kidney tumor objects with high accuracy and reliability. 

Keywords - Stochastic Feature Mapping, Block Segmentation, Kidney Object Segmentation, Deep Neural Networks, 

Medical Image Analysis. 

1. Introduction  
Medical imaging equipment (such as X-rays, CT 

scans, and MRIs) scans the body's internal organs and 

generates medical images for clinical analysis and disease 

diagnosis. Deep learning-based Computer-Aided 

Diagnosis (CAD) has been an efficient methodology for 

performing Medical Image Analysis (MIA) for over a 

decade. Object (organ) segmentation is the fundamental 

task in computer vision applications, which designs the 

computation models to lineate the objects from the images 

or video frames. Before the medical image analysis, the 

image should get segmented into various objects based on 

their properties and features. 

 

According to the world kidney day theme "2020 WKD 

Theme [1]," 850 million people worldwide suffer from 

non-communicable kidney diseases. Chronic kidney 

disease affects one out of every ten senior citizens, and 

treatment costs approximately 2-3 percent of the country's 

annual health budget. The GBD Chronic Kidney Disease 

Collaboration published an article [2] in 2020, estimating 

that global kidney transplantation will reach 5.4 million by 

2030, indicating the need to prevent kidney diseases at 

early stages. MRI [3] has recently proven to be the best 

imaging method for kidney scanning, with high 3D 

resolution and a clear separation of normal and diseased 

tissues. Medical MR images contain various objects 

(organs) that must be segmented accurately with 

boundaries for further analysis. For example, abdominal 

and pelvic MRI frames contain organs such as the liver, 

kidneys, pancreas, spleen, and adrenal glands. To 

scrutinize the organs and extract the features from them, 

the objects of MRI should be segmented. This 

segmentation will group a set of interrelated pixels (as an 

object) to draw separation boundaries and label it for 

further image analysis tasks. Many computer vision 

applications extensively use object segmentation 

extensively, such as face recognition, medical image 

analysis, text recognition, image search, and self-driving 

technology. 

 

In recent times, deep learning emerged as a promising 

technology for computer vision applications (i.e., medical 

image analysis), which works at the pixel level to produce 

accurate and reliable results. Popular object segmentation 

models in computer vision include edge-based 
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segmentation, region-based segmentation, threshold-based 

segmentation, and deep neural networks-based 

segmentation. 

 

Choi [4] et al. proposed CNN based deep learning 

model for automated striatum segmentation from brain MR 

images. At first, using the global CNN model, they 

identified the approximate striatum region (location) 

information and extracted the bounding boxes from the 

input MR volumes. Later the global CNN-generated 

bounding boxes and the cropped MR regions were 

evaluated using the local CNN model for accurate 

segmentation of the objects and the labeling process. Guo 

[5] et al. proposed the combination of deep feature 

learning and sparse patch matching method for the MRI 

prostate localization process. Initially, they used the 

Stacked Sparse Auto-Encoder (SSAE) model to extract 

hidden knowledge, which is used to localize deformable 

prostate objects in MR images. Later, the sparse patch 

matching method is used to label the new images based on 

the inter-patch matching results from SSAE. Ibragimov [6] 

et al. used the deep CNN models to segment the organs 

from head and neck Computed Tomography (CT) images. 

They trained the CNN models with positive and negative 

intensive patches around the voxels to find consistent 

intensity patterns, which aids in drawing boundaries 

around various organs in CT images. They passed the 

training patches through network layers to find the edges, 

corners, border points, and location information for 

accurate localization of the object of interest for efficient 

segmentation. Kline [7] et al. used the widely known CNN 

architecture U-Net [8] to segment polycystic disease 

kidney images from MR images. To handle the deformable 

shapes and volumes of the diseased kidneys, they captured 

the local and global contexts of images and applied the 

contracting path and symmetric expanding paths for voxel-

level accurate classification of the kidney images.  

 

In general, healthy kidney images that appear in the 

form of a bean with a regular size are located in a standard 

location of the MR images. The diseased (especially 

cancer) kidney images, on the other hand, have an irregular 

shape, size, and location due to the disease's severe effect 

on the kidneys. Most of the former segmentation models 

[4, 5, and 6] were designed to lineate the objects from 

various MR images using deep learning classification 

models. Due to some intrinsic limitations (discussed in 

section II), segmenting diseased kidney objects from MR 

images is more complex than other segmentation 

operations. These limitations include uncertainty, 

irregularity, and chaotic behavior of the object properties. 

Although many researchers [7, 9, 10, and 11] concentrated 

on diseased kidney object segmentation from medical 

images using various deep learning modalities, they are 

still suffering from several limitations that are i) uncertain 

Shape and volume of the diseased kidneys ii) indivisible 

boundary points (i.e., similar intensities) iii) overlapped 

objects and iv) unclear boundary points of the object. 

 

 

To address the above limitations in diseased kidney 

object segmentation from MR images, we proposed a 

hybrid semantic model for MRI kidney object 

segmentation using Stochastic Feature mapping Neural 

Networks (SFMNN) in this paper. Initially, the seeded 

regions will get identified using the location-dependent 

split method to mark the approximate location of the target 

kidney object. Later the seeded regions are fed into the 

stochastic feature mapping neural networks for target 

object mapping. SFMNN uses the image features 

variability and probability distribution functions for 

diseased kidney object detection to overcome uncertainty 

and irregularity issues in segmentation. Finally, the 

recursive block-wide segmentation process will get applied 

to SFMNN localized target objects for an accurate 

segmentation process. Experimental results on tumor 

kidney MR images proven that the SFMNN-based 

segmentation model recorded high accuracy in 

segmentation compared to the traditional deep neural 

network architectures.   

 

2. Related Work 
2.1. Background 

Biomedical imaging with ultrasound, CT, and MRI 

technologies has become reliable and is now playing a 

vital role in disease diagnosis. Because of the high contrast 

imaging with greater clarity and the lack of harmful dye 

for contrast, MRI has become a better and safer option, 

particularly for kidneys. Kidney stones, 

glomerulonephritis, polycystic kidney disease, and cancer 

tumors are certain chronic kidney diseases that can lead to 

death in humans. According to health organization 

recommendations [1 and 2], it is critical to diagnose these 

kidney diseases at an early stage to prevent people from 

ailments and mortality within a low budget. Traditional 

methods for diagnosing kidney disease and monitoring 

growth from medical images require more human 

resources and a time-consuming process.  

 

For the past few years, various deep learning 

modalities [4, 5, 6, 8, and 9] have been demonstrated as 

reliable mechanisms to deal with automated kidney disease 

diagnosis from medical images. Figure 1 depicts 

abdominal medical images such as CT and MRI that 

include several other objects besides kidneys. They are 

segmented accurately from medical images to extract 

disease information and parameters from kidneys. Kidney 

segmentation is a process of locating, mapping, and 

labeling kidney objects from medical images. 

Segmentation returns the prominent features (size, volume, 

and intensity) of the object of interest, which aids in the 

object localization process for locating diseased lesions. 

 

2.2. Limitations 

As stated in section 1, kidney object segmentation 

becomes too complex due to several inherent limitations in 

medical images. Figure 1 defines four abdominal 

cancerous kidney MR images that depict the issues 

involved in kidney object segmentation. From these 

images, we observed that the shape and volume of cancer-
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diseased kidney images are different (non-uniform) from 

each other. Unlike the healthy kidney images, the 

cancerous images contain tumors and appear in an 

irregular shape. Template matching [12 and 13] is a widely 

used model to recognize the objects from the image based 

on the trained templates. In case of shape and volume 

inconsistency, the kidney object detection [14], 

recognition, and labeling process become too complex and 

return inaccurate results. Tumors are a type of kidney 

object that exists in and around the kidneys in various 

sizes. Apart from the shape and volume, the intensity 

contrast (brightness) is also different at various locations 

of the kidney image. In Figures 1a and 1b, the brightness 

of the tumor pixels is different from the actual kidney 

tissues. This variation in pixel brightness values [5] causes 

ambiguity in determining the boundaries of the kidney 

object with tumors. Because of variations in brightness, 

deep learning models [4, 6, and 9] frequently fail to extract 

the kidney object as well as its tumors. In general, 

boundary points help determine the semantic boundaries 

between the objects in medical images. The irregular shape 

and volume of kidney objects in Figures 1a and 1d made 

the bounding points unclear and harder to detect. 

Similarly, the connected and overlapped objects 

surrounding the kidney image in Figures 1a and 1c will 

result in inaccurate lineation. Inconsistent location of the 

kidney object and the intensity contrast in local and global 

contexts of the MR images are the other hurdles we found 

in the segmentation of kidney cancer images. 

 

 
Fig. 1 Representing kidney objects from abdominal MR images 

 

2.3. Image Segmentation Techniques 

Different types of segmentation models are available 

in image processing to segment the objects from the 

images. Pixel similarity-based segmentation models [15], 

object structure-based segmentation models, boundary-

based segmentation models, and stochastic features-based 

segmentation models are reliable segmentation models. 

Pixel similarity-based segmentation model marks the 

regions [16] of an image based on the threshold values. 

With the help of the feature similarity techniques, the 

objects are identified and lineated from the marked 

regions. The pixel similarity model is best suitable to 

separate the backgrounds and identify various regions from 

the images. For object detection and segmentation, an 

object structure-based segmentation model [17] has given 

training using target object features such as size, shape, 

pixel density, and location values. This model is optimal 

for the images' standard or consistently shaped object 

detection. Boundary-based segmentation model [18] is 

similar to the edge detection model and evaluates the 

pixels' dissimilarity for the object segmentation process. 

This model is suitable for the segmentation of noisy and 

inconsistent objects from images as it does not require any 

prior information about the target object. The stochastic 

feature-based segmentation model [19] uses the distinct 

patches of the target object for the segmentation process. 

This model depends only on discrete features of an image 

for segmentation. So, this model is the fastest and most 

lightweight compared to its counterparts in segmentation. 

Supervised and unsupervised deep image learning 

algorithms illustrate the stochastic segmentation models. 

These models are efficient and adaptive to process the 

high-volume images due to cost and time-saving. 

3. Hybrid Semantic Segmentation Model With 

Stochastic Features and Edge Detection 

Techniques 
Irregular-shaped or diseased kidney object 

segmentation from the MR images differs from the 

regular-shaped kidney object segmentation. Section-1and 2 

thoroughly discussed the hurdles involved in diseased 

kidney segmentation. As the diseased kidneys are 

inconsistent, varied, and irregular in shape, size, contrast, 

and patches, none of the individual segmentation 

techniques (discussed in section 2) are adequate for 

accurate segmentation. Pixel-based segmentation models 

[15, 16] are unsuitable for kidney segmentation because 

they can only concentrate on selecting regions of interest 

rather than specific objects. Pixel-based segmentation 

models [15 and 16] are unsuitable for kidney segmentation 

because they focus only on region selection rather than 

specific objects. Likewise, object structure-based 

segmentation models [17] are unsuitable because diseased 

kidneys with tumors have irregular structures. Boundary-

based segmentation models [18] are adaptable for diseased 

kidney segmentation, but they are not enough for the 

whole segmentation process. Similarly, stochastic feature-

based models [19] are incapable of performing the entire 

segmentation process accurately. 

 

The object segmentation process is generally 

categorized into three sequential stages: image 

classification, object localization, and boundary lineation. 

Initially, the medical image is classified into various 

regions in this process (i.e., background separation or 

target area mapping). Later the target objects are localized 
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based on the feature analysis. Finally, the edge detection 

methodologies are applied to accurately line the target 

objects. None of the individual technology alone can 

perform this whole object segmentation process from the 

medical images. We proposed a "hybrid semantic 

segmentation model with stochastic features and edge 

detection techniques" to address the limitations of diseased 

kidney image segmentation from medical MRI images. 

First, the location-dependent split method is applied to 

identify the seeded region containing the target diseased 

kidney object. Later the stochastic feature mapping 

techniques are applied using the deep learning algorithms 

to localize the target object. Finally, the boundary 

detection methodologies would be used to accurately 

lineate diseased kidney object with tumors. 

 

3.1. Location-Dependent Split Method 

Object detection from the bio-medical image is 

possible with the image analysis using the traditional 

image segmentation methods like seeded region growing 

[22 and 23] and region-splitting and merging [21]. These 

methods will use the supervised seeded points from the 

training knowledge to adjoin the neighbors (pixels) with 

similar features to outline the regions from the images. But 

in our diseased kidney segmentation model, the seeded 

points are hard to detect due to the inconsistent brightness 

values of kidney images with tumors. Hence it is required 

to analyze the whole image with random seeded points, 

which requires a high amount of memory and processor 

resources [21].       

 

To address processing level infrastructure limitations 

and simplify the processing load, we used the location-

dependent split method, which evaluates and extracts the 

possible region for the presence of the kidney object. 

Instead of detecting seeded points, we encircle seeded 

regions on medical images using supervised training 

knowledge from ground truth labels, as discussed in the 

seeded region detection algorithm. 

 

Algorithm-1: Seeded Region Detection Algorithm 

// local seeded region detection 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐺𝑖 𝑓𝑟𝑜𝑚 𝐺 

 𝑋𝑏 = 𝑋𝑏𝑒𝑔𝑖𝑛 𝑎𝑛𝑑  𝑋𝑒 = 𝑋𝑒𝑛𝑑   

𝑌𝑏 = 𝑌𝑏𝑒𝑔𝑖𝑛 𝑎𝑛𝑑  𝑌𝑒 = 𝑌𝑒𝑛𝑑 

 𝑋𝑐 =  
𝑋𝑏+ 𝑋𝑐

2
  and  𝑌𝑐 =  

𝑌𝑏+ 𝑌𝑐

2
 

𝐶𝑖 = (𝑋𝑐, 𝑌𝑐) 

𝑉1 = (𝑋𝑏,  𝑌𝑏) 𝑎𝑛𝑑 𝑉2 = (𝑋𝑒,  𝑌𝑒) 

 𝑉3 = (𝑋𝑏,  𝑌𝑒) 𝑎𝑛𝑑 𝑉4 = (𝑋𝑒 ,  𝑌𝑏) 

𝑑1 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 , 𝑉1), 𝑎𝑛𝑑 𝑑2 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 , 𝑉2) 

𝑑3 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 , 𝑉3) 𝑎𝑛𝑑 𝑑4 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 , 𝑉4) 

𝑅𝑖 = max (𝑑1, 𝑑2, 𝑑3, 𝑑4) 

𝐺. 𝑎𝑑𝑑 {𝐺𝑖(𝐶𝑖 , 𝑅𝑖)} 

end 

// global seeded region detection 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐺𝑖(𝐶𝑖 , 𝑅𝑖) 𝑓𝑟𝑜𝑚 𝐺 

𝐴𝑏 =  𝐶𝑖 − 𝑅𝑖  
 𝐴𝑒 =  𝐶𝑖 + 𝑅𝑖   
end 

𝐺𝑐 =  
min(𝐴𝑏) + max (𝐴𝑒)

2
 

𝐺𝑟 = max[(𝐺𝑐 − min(𝐴𝑏)), (max(𝐴𝑒) − 𝐺𝑐)] 
𝑟𝑒𝑡𝑢𝑟𝑛  (𝐺𝑐 , 𝐺𝑟)   

 

Inspired by the seeded points-based region exploration 

process [22] and the split and merge-based image 

segmentation process [21], we proposed the seeded region-

based object detection and segmentation method. The main 

aim of the seeded region detection algorithm is to encircle 

the approximate region of the medical image in which the 

target kidney object has existed. Instead of analyzing the 

whole image for kidney object detection, our proposed 

method analyzes only the seeded region. As a result, the 

processing load is reduced by more than half, and object 

detection will get completed at high speed. As discussed in 

algorithm -1, our method learns about the object location 

from the random ground truth labels in a supervised 

manner to outline the seeded region for object detection. 

Encircling the seeded region from medical images is 

accomplished in two phases: local seeded region detection 

and global seeded region detection. Local seeded region 

detection will encircle the object region at each ground 

truth label level before integrating the complete local 

information to encircle the global seeded region, where the 

test image kidney objects will have appeared. 

 

The group ′𝐺′ is a collection of ground truth labels 

containing the manually segmented kidney images for the 

training dataset. Each label 𝐺𝑖 will get presented on a 

graph as part of the local seeded region detection process, 

and the kidney object-related most significant quad points 

are collected as 𝑋𝑏, 𝑋𝑒 , 𝑌𝑏, and 𝑌𝑒, which are the kidney 

object-related beginning and endpoints of X and Y-axis 

(shown in figure 2. A and 2. B). The median of the 𝑋 and 

𝑌 axis related quad points 𝑋𝑐 𝑎𝑛𝑑 𝑌𝑐 are used to find the 

object centroid as 𝐶𝑖 = (𝑋𝑐 ,  𝑌𝑐). We configured the four 

vertices 𝑉1to 𝑉4  and evaluated the distance from 𝐶𝑖 to 𝑉𝑖 

using the centroid 𝐶𝑖 of the kidney object ground truth 

label, and the quad points 𝑋𝑏, 𝑋𝑒 , 𝑌𝑏, and 𝑌𝑒, and the 

maximum distance is selected as the object encircling 

radius 𝑅𝑖 for the label 𝐺𝑖. The same process is iteratively 

executed with all ground truth labels from 𝐺1 𝑡𝑜 𝐺𝑛 (as 

shown in figure-2), and finally, the local seeded region 

information 𝐺𝑖(𝐶𝑖 , 𝑅𝑖) is added to ′𝐺.' 
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Fig. 2 Seeded Region Detection from the Ground Truth Labels 

 

Each label-related local seeded region value 𝐺𝑖(𝐶𝑖 , 𝑅𝑖) 

is extracted iteratively from 𝐺, adding their beginning and 

end points distance from the local centroid 𝐶𝑖 to the arrays 

𝐴𝑏 and 𝐴𝑒 to encircle the global seeded region. Now the 

global centroid value 𝐺𝑐 is evaluated from the min(𝐴𝑏) 

and max(𝐴𝑒) values from the arrays. Finally, the global 

radius 𝐺𝑟  will get calculated using the global centroid 

𝐺𝑐 , min(𝐴𝑏), and max(𝐴𝑒) values as shown in algorithm-

1. The seeded region of the medical image is now in hand, 

and the next step is to apply stochastic feature mapping 

techniques to the seeded region for object detection and 

further lineation.  

 

3.2. Stochastic Feature Mapping Neural Networks 

(SFMNN) 

In recent years, stochastic feature modeling [24, 25] 

has gained popularity in the medical image object 

segmentation process to deal with the target object's 

inherent uncertainty, inconsistent measures, and 

ambiguous boundaries. Stochastic models are widely used 

in image feature extraction, segmentation, and restoration 

activities due to their low classification error value, 

uncertainty handling, and low computational complexity. 

In image processing, standard deterministic classification 

models are limited to extracting the results with exact 

matches, whereas stochastic models are able to extract the 

results from the uncertain (inconsistent) data using the 

features variability and probability distribution.     

 

In this research, we used the Stochastic Feature 

Mapping Neural Networks (SFMNN) to localize and 

segment the target kidney object from the seeded regions 

of the MR images. Unlike the pixel-based traditional 

supervised segmentation models (i.e., U-Net, DCN, and 

FCNN), our model uses the discrete pixel group (features) 

mapping for localization and segmentation of the target 

kidney object from the seeded regions. In contrast to 

traditional neural networks that predict only one 

admissible hypothesis, our SFMNN predicts multiple 

allowable hypothesis predictions, making it well suited to 

simultaneously predicting both kidney and tumor tissue. 

To accomplish this, the SFMNN gets trained using a 

training dataset with mask information, and then the 

trained model knowledge maps the input image seeded 

region features against spatial domains of the trained 

objects. 

 

3.2.1. Training 

MRI image set ′𝑇′ with its associated manual ground 

truth (mask) images set ′𝑀′  is given as training data to 

train the SFMNN. Each binary image 𝑡𝑖 ∈ 𝑇 contains K 

pixels with values ranging from 0 to 255. Based on the 

metadata from 𝑀,  label the regions of 𝑡𝑖 as either 0 or 1, 

where 𝑡𝑖 = 0  means non-target object and 𝑡𝑖 = 1   is the 

target object. After the labeling process, the training image 

gets divided into a  𝑆 𝑋 𝑆 grid, where each cell is a set of 

discrete pixel groups termed a feature, which is randomly 

extracted [26] from the masked regions and their 

surroundings of 𝑡𝑖 to train the model with both positive and 

negative classification capability. It allows us to determine 

the object regions in both directions, which enhances the 

prediction capabilities of the low-contrast medical image 

under uncertainty. Each feature extracted from 𝑡𝑖 is labeled 

into different classes 𝑡𝑖(𝐶) = {�̅�𝑖}
𝐶 and stored in vector as 

where class label set 𝐶 = {𝑐𝑖 … 𝑐𝑛}. After the feature 

extraction and vector class labeling processes, the 

redundant classes in the vectors get eliminated, and the 

remaining classes are grouped as positive (�̅�)  or negative 

(�̅�) vectors. This grouping is done based on feature 

logistic probabilities and correlations, which aids in 

overcoming overfit issues when using neural networks for 

classification. Now, these vector classes have to be ordered 

with weights 𝜔 = [0, 1] to maximize the prediction 

capabilities of the likelihood information [27] from testing 

data. After assigning the initial base weights to 0, they will 

be adjusted around the iterations based on the distance 

between the label target values (0, 1) and the feature 

logistic values (𝜀), using the log function with gradient 

ascent [28] is as shown 
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𝐿 =  𝑙𝑜𝑔 ∏ 𝑃(�̅�𝑖 =  𝜀𝑖 ∗ �̅�𝑖)

𝑉𝑖∈ 𝑇

 𝑜𝑟 ∑ log 𝑃(�̅�𝑖 =  𝜀𝑖 ∗ �̅�𝑖)

𝑉𝑖∈ 𝑇

 

 

Partial derivatives [37] play a vital role in assessing 

the border directions and their extents based on color 

intensity variations along the curves. To evaluate the 

partial derivatives in uncertain images, their underlying 

pixels behavior should be modeled before. The SFMNN 

performs stochastic simulations for each 𝑡𝑖 ∈ 𝑇 to evaluate 

the partial derivatives from the feature logistic values (𝜀) 

of the image class label vector �̅�. The partial derivatives of 

the likelihood are modeled in our SFMNN using the log 

function 𝐿, and the weights are defined as follows: 

 
𝜕𝐿

𝜕𝜔𝑖
=  ∑ ∑ 𝑃(𝑄�̅� = �̅�𝑖 ∗ 𝜀𝑖 | �̅�𝑖 =  𝜀𝑖 ∗ �̅�𝑖 )

�̅�

∗  𝜎(−�̅�𝑖

𝑉𝑖∈ 𝑇

∗  ∑ �̅�𝑖 ∗ �̅�𝑖∗𝑥

𝑥<𝑖

)   

 

Across the iterations of the learning process, the 

labeled vector class weights are risen by the proportional 

average of the positive class vectors 𝜎(−�̅�𝑖 ∗  ∑ �̅�𝑖 ∗𝑥<𝑖

�̅�𝑖∗𝑥) and gradient ascents [28]. Labeled vector classes are 

ordered as deterministic feature vectors  �̅�, based on tuned 

weights to evaluate the local maxima of the likelihood 

information. This fine-grained training knowledge now 

applies to the seeded region containing target object 

localization and lineation. 

 

3.2.2. Processing 

After completing the training process, the SFMNN 

neural networks will map the test (seeded region) image 

random features  {𝑥0 … 𝑥𝑛} against the trained label class 

vectors to determine the output  {𝑦0 … 𝑦𝑛}. The test images 

are divided into 𝑆 𝑋 𝑆  grids for this purpose, and each grid 

is a set of pixels containing the spatial information known 

as feature space. SFMNN randomly selects the feature 

grids from the seeded input vector set �̅� with input 

values {𝑥0 … 𝑥𝑛}, where each feature space has spatial grid 

properties uth row, vth cell, weight 𝜔, global centroid 𝐺𝑐 

and global radius 𝐺𝑟 as 𝑥𝑖 = {𝑥𝑢,  𝑥𝑣, 𝑥𝜔, 𝐺𝑐 , 𝐺𝑟}. SFMNN 

chooses a test image-related seeded vector �̅�𝑖 with feature 

space inputs {𝑥0 … 𝑥𝑛}  as the main input, and each input 

xi is mapped against the labeled class vector  �̅� with 

the probability 𝑃(𝑥𝑖|�̅�) calculated as follows. 

 

𝑃(𝑥𝑖|�̅�) =  
𝑃(𝑥𝑖) ∗ 𝑃(�̅�)

𝑃(�̅�)
       𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑃(𝑥𝑖|�̅�)  ≤ 1 

 

Similarly, the probabilities 𝑃(𝑥𝑖|�̅�) are identified with 

all feature space inputs of �̅�𝑖, and the probabilities that are 

equal or greater than the threshold value (𝛿) are added to 

the intermediate positive results vector �̅�𝑃, while the 

probabilities that are less than the threshold (𝛿) are added 

to the intermediate negative results vector 

�̅�𝑁 simultaneously, as follows: 

 

 

∀ 𝑥0 … 𝑥𝑛 ∈   �̅�𝑖  𝑖𝑓 𝑃(𝑥𝑖|�̅�) ≥ 𝛿 𝑡ℎ𝑎𝑛 �̅�𝑃 . 𝑎𝑑𝑑(𝑃(𝑥𝑖|�̅�)) 

 

∀ 𝑥0 … 𝑥𝑛 ∈ �̅�𝑖 ,    𝑖𝑓 𝑃(𝑥𝑖|�̅�) < 𝛿 𝑡ℎ𝑎𝑛 �̅�𝑁. 𝑎𝑑𝑑(𝑃(𝑥𝑖|�̅�)) 

 

 
Fig. 3 Stochastic Features Mapping with seeded regions of MR 

images  

 

The positive results vector probabilities �̅�𝑃 are 

mapped against the ordered positive labels vector �̅� 

containing feature probabilities, and the negative results 

vector �̅�𝑁 probabilities are mapped against the ordered 

negative labels vector 𝐻 ̅̅ ̅containing feature probabilities. 

Figure 3 presents the stochastic probabilities obtained from 

the positive (red) and negative (white) result vectors and 

their mapping against the seeded regions of the MR 

images. The intermediate results vector elements are 

ranked into  𝑃𝑚𝑎𝑥, 𝑃𝑚𝑖𝑑 , 𝑎𝑛𝑑 𝑃𝑚𝑖𝑛 based on the 

probabilities of �̅� and 𝐻 ̅̅ ̅with respect to �̅�𝑃 and �̅�𝑁. An 

element �̅�𝑃 of rank  𝑃𝑚𝑎𝑥 indicates that this element 

recorded the maximum similarity with the positive 

likelihood information. Likewise, an element of �̅�𝑃 of rank 

𝑃𝑚𝑖𝑛 specifies that the element recorded the minimum 

similarity with the positive likelihood information. The 

similarity chances of the likelihood information are 

uncertain in the case of rank  𝑃𝑚𝑖𝑛 elements of the 

intermediate results vector, and the variability of the 

features is high. Our SFMNN interprets the location-based 

conditions for accurate classification of the seeded region 

features to overcome the ambiguity in feature similarity 

decision-making when the rank is  𝑃𝑚𝑖𝑛. For this, the 

feature element 𝑥𝑖 ∈ �̅�𝑃 𝑜𝑟 �̅�𝑁 position from the centroid 

𝐺𝑐 is identified, and the distance is compared to 𝐺𝑟. If the 

feature element 𝑥𝑖 with rank  𝑃𝑚𝑖𝑛 is outside the circle area 

of (𝐺𝑐 , 𝐺𝑟), it simply indicates that the xi does not 

belong to the likelihood area; otherwise, the xi may 

belong to the likelihood area, as confirmed by the 

surrounding neighbor elements. In this way, the features of 

the seeded region are mapped with the likelihood area of 

localizing the target object. 

 

3.3. Boundary Segmentation 

Soon after the target object localization process 

completes, the boundary segmentation [30] begins to 

lineate the target object from uncertain seeded image 

regions. For this, we used the recursive block-wise 

segmentation process [38], which is independent of object 

properties and capable of detecting boundaries with a low-

intensity variation of border pixels. Instead of scanning the 
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whole image pixels for boundary segmentation, our block-

wise segmentation model identifies the border blocks or 

elements from �̅�𝑃 and �̅�𝑁 vectors based on their 

probability ranks. As shown in figure-4, it begins labeling 

some border blocks as boundary blocks based on their 

feature probability variation with neighbors. 

  

 
Fig. 4 Recursive block wise boundary segmentation (a) boarder blocks labeling (b) boundary blocks detection (c) adjacent boarder (gray) pixels 

detection (d) boarder pixels presentation 

 

After labeling the boundary blocks from the seeded 

region, the pixels level scanning will execute to identify 

the actual pixels that are part of the boundary. The process 

will be done recursively with all blocks inter-connected to 

the borderline. Finally, adjacent blocks with inter-

connected border pixels are highlighted to show the 

boundaries and finish the segmentation process. 

 

4. Experiments 
In this section, we discuss the results of the 

experiments conducted on our proposed stochastic 

segmentation model SFMNN in detail. A set of 30 human 

kidney tumor MR images from the TCGA-KIRC dataset 

[32] is selected with their respective ground truth labels for 

experiments. The images and ground labels of the dataset 

with size 350 x 350 pixels are further classified into the 

training set, and test set for model learning and results 

from evaluation. To execute the segmentation process, a 

system with hardware resources Intel i5-4590K 3.70 GHz 

processor, 8 GB Ram, 1 TB hard disk, and NVIDIA GTX 

Titan Xp GPU is utilized in experiments. The proposed 

stochastic segmentation model SFMNN prototype was 

implemented and executed using python Keras (2.4.3) and 

TensorFlow (2.3.0) libraries.  

 

We chose the prominent deep convolutional 

architecture U-Net [8] to compare the results of our 

SFMNN-based segmentation. U-Net is selected as a 

counterpart because this is a baseline (core) project for all 

advanced semantic segmentation models. To uncover the 

differences between the two models, we used the same 

dataset, software, and hardware setups to train them. We 

used three evaluation indicators [39] linked to 

segmentation to determine the performance of these 

models: Pixels Segmentation Accuracy (PSA), Intersection 

over Union (IoU) with Jaccard Index [34], and Dice 

Coefficient (DCE) with F1 score [35]. Pixel segmentation 

accuracy evaluates the percentage of the pixels classified 

correctly from the test images over the ground truth labels. 

Although this statistic indicates pixel classification 

accuracy, it may be influenced by class imbalance 

difficulties when segmenting small-sized target objects. 

Intersection over Union (IoU) [34] is the most reliable and 

commonly used Jaccard index-based model designed for 

evaluating the object segmentation accuracy. IoU evaluates 

the overlapped (intersection) area of the prediction image 

and ground truth images, which is divided against the 

union area the both, for IoU calculation as follows: 

𝐼𝑜𝑈 =  
𝐼𝑃

𝑖 ∩ 𝐼𝐺
𝑖

𝐼𝑃
𝑖  ∪  𝐼𝐺

𝑖
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Here the 𝐼𝑃
𝑖  is ith the prediction image, and 𝐼𝐺

𝑖  is the ith 

the ground truth image, which are evaluated using the 

union and intersection mnemonic values. As illustrated 

above, the confusion matrix connected to TP, TN, FP, and 

FN values is used to implement the same in reality. 

Similarly, the Dice Coefficient (DCE) with an F1 score is 

used to assess segmentation accuracy in a different 

dimension. The twofold overlapped area is divided by the 

entire pixel count of the prediction and ground truth 

images in DCE [35]. The following is the DCE 

formulation with mnemonic and confusion matrix-related 

truth labels: 

𝐷𝐶𝐸 𝑜𝑟 𝐷𝐼𝐶𝐸 =  
2|𝐼𝑃

𝑖 ∩ 𝐼𝐺
𝑖 |

|𝐼𝑃
𝑖 | + |𝐼𝐺

𝑖 |
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

The images are reshaped into 320x320 pixel size with 

3x3 kernels to make U-Net convolutions possible, and the 

sigmoid activation is applied with 1x1 convolutions for 

hidden feature extraction. Similarly, the SFMNN images 

are changed with the same configuration, and the 

stochastic networks are designed with gradient ascent and 

partial derivatives for object semantic segmentation that is 

not dependent on properties. Figure-5 presents the kidney 

object with tumors segmentation from MR images using 

the U-Net and SFMNN. All images that appeared in the 

first column are the original input images given for testing, 

the second column with their ground truth mask images, 

the third column with U-Net segmented kidney objects, 

and the fourth column presenting the proposed SFMNN 

segmented kidney objects. 

 

We can observe from figure-5 that the U-Net shows 

efficient segmentation accuracy under the routine shape 

and size of kidney objects (1 and 2) with low variations. 

While processing the MR images (3 and 4) with irregular 

shapes and sizes, the U-Net is unable to segment the
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Fig. 5 MRI Kidney object segmentation results using U-Net and SFMNN 

 

kidney objects with tumors properly. Contrary to U-Net, 

our SFMNN model efficiently segmented the kidney with 

tumors, regardless of variability in object properties like 

shape, size, and location. Table 1 presents the evaluated 

segmentation metrics on U-Net and SFMNN with 

respective statistics values. 
 

Table. 1 MRI Kidney Object Segmentation Metrics Comparison 
 

    PSA IoU DCE 

MRI-1 U-Net 91.12% 85.11% 89.07% 

  SFMNN 92.42% 86.05% 90.80% 

MRI-2 U-Net 96.44% 93.08% 90.54% 

  SFMNN 95.02% 92.76% 90.03% 

MRI-3 U-Net 81.47% 78.07% 80.74% 

  SFMNN 86.95% 85.14% 83.43% 

MRI-4 U-Net 75.60% 72.74% 70.95% 

  SFMNN 88.94% 87.18% 86.03% 
 

 

5. Conclusion 
Due to the uncertainty, irregularity, and chaotic nature of 

the object properties, Diseased medical image object 

segmentation is a rather complex operation compared to 

routine objects. Traditional deep learning models provide 

less accuracy when segmenting diseased objects (i.e., 

kidneys with tumors). Inconsistent shape, volume, 

brightness, overlapping, and location issues made the 

segmentation of diseased objects more complex than 

routine objects. This paper proposed a stochastic feature 

mapping-based semantic segmentation model with hybrid 

technologies. Location-dependent split method, stochastic 

feature mapping neural networks, and recursive block-wise 

segmentation methods are integrated to accomplish the 

object segmentation from the uncertain medical images. A 

real-life medical dataset with kidney MR images is 

selected for conducting the experiments using the proposed 

stochastic model. Popular deep learning architecture U-Net 

was selected for results comparison with SFMNN. Union 

over Intersection (IoU) and Dice Coefficient (DCE) 

standard metrics are selected to evaluate the segmentation 

results. The analysis results show that the proposed 

SFMNN outperforms the U-Net when segmenting the 

diseased MR kidney image with tumors. 
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