
International Journal of Engineering Trends and Technology Volume 71 Issue 10, 94-104, October 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I10P209 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Impact and Analysis of Environment Temperature on

MQTT Performance using Raspberry PI 3

Bouchra Allaoui1, Ahmed Mouhsen2, Mohamed Lamhamdi1, Rachid Dakir3

1Laboratory of Radiation-Matter and Instrumentation, Hassan First University of Settat, Faculty of Sciences and Technology,

Settat, Morocco.
2Laboratory of Engineering, Industrial Management and Innovation, Hassan First University of Settat, Faculty of Sciences and

Technology, Settat, Morocco.
3LabSIV Laboratory, Ibn Zohr University of Ouarzazate, Polydisciplinary Faculty, Ouarzazate, Morocco.

1Corresponding Author : b.allaoui@uhp.ac.ma

Received: 17 June 2023 Revised: 02 August 2023 Accepted: 13 September 2023 Published: 03 October 2023

Abstract - This study aims to present and discuss the impact of increasing the environment temperature on CPU usage, memory

usage, processor temperature, and response time when the number of clients increases. In this work, the MQTT protocol with

different QoS levels is used. A testbed system comprises a laptop, a Raspberry Pi 3 Model B, an air conditioner, a DS18B20

thermometer, and a WiFi access point. The two first hardware functions as multiple MQTT clients and an MQTT broker,

respectively. Note that the Raspberry Pi is chosen because the community widely accepts it, whereas the purpose of collecting

the MQTT clients in a single machine is to increase their number up to 201 automatically. For each number of clients, metrics

such as the environment temperature, CPU usage, memory usage, and processor temperature continue to be measured until the

number of clients reaches the 66400th PUBLISH packet, while the response time metric is determined by calculating the duration

between the CONNECT and the 66400th PUBLISH packets. In this experiment, the environment temperature is varied using the

air conditioner for each QoS level. The results indicate that the high environment temperature can either increase the CPU

usage and decrease the response time or keep constant the CPU usage and increase the response time.

Keywords - CPU Usage, Environment temperature, Internet of Things, MQTT protocol, Response time.

1. Introduction
The Internet of Things (IoT) describes a network of

physical devices that contain several embedded sensing,

processing and communication technologies for the purpose

of collecting and communicating sensory data over the

internet [1]. This concept was used for the first time by Kevin

Ashton in 1999 [2]. For communication at a lower layer,

several radio technologies such as WMAN, RFID, WPAN,

and WLAN are used by IoT Networks. Irrespective of the

radio technology used, to create an M2M network, IoT devices

must make their data accessible through the internet [3,4].

They are divided into rich resources ones, such as smartphones

and servers and limited resources, such as sensor nodes and

actuators [5]. Due to the low cost of resource-constrained IoT

devices, they have been incorporated into all kinds of

technology solutions [4,6]. They function with small memory,

limited battery power and low computing power [4,5]. As a

result, the performance of M2M communication largely

depends on messaging protocols specially designed for M2M

communication in Internet of Things applications [3,4].

Currently, several messaging protocols exist, such as CoAP,

XMPP, AMQP, and MQTT [1]. Choosing a standardized and

efficacious messaging protocol, which is a constant quandary

for the IoT industry, is a really demanding challenge as it all

depends on the IoT system's features and its messaging

requirements [3]; therefore, there is a large number of papers

in this field that analyze their performance with different

metrics and in different situations [3,6-12].

Nevertheless, they do not consider the impact of the

increased number of clients and the environment temperature

on metrics, which is the purpose of this article. The main goal

is to highlight the environment temperature's significance and

determine its value that keeps the IoT system stable in terms

of memory usage, CPU usage, processor temperature, and

response time. In the present work, emphasis is placed on the

MQTT protocol since it is widely used in varying applications

[13-15].

The rest of this article is divided into five sections: section

II summarizes several related works, followed by a description

of the testbed architecture and its realization in section III.

Section IV introduces the method used to measure the metrics

automatically. Section V presents, examines and analyses the

results. Finally, the conclusion of this paper is in section VI.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

95

2. Literature Review
Many studies have been published in the literature that

analyze the performance of various network protocols for IoT

in different situations and with various metrics. In this section,

some related works published in recent years are summarized.

N. Naik aims to guide ordinary users to choose among

HTTP, AMQP, COAP, and MQTT, the appropriate one for

their IoT-specific system according to various balances

between features (e.g. resource requirement, bandwidth,

latency, power consumption, etc.) based on static components

and some empirical evidence from the literature. Note that the

comparison results are determined by considering the network

is lossless [3]. S. Imane et al. clear up the importance of IoT

in healthcare to provide high-quality services. They began

with a summary of some smart healthcare systems by

identifying their weaknesses and strengths before giving some

criteria for selecting the most appropriate IoT protocol

between COAP and MQTT for a smart healthcare IoT

application. They concluded that COAP is useful in local

networks with less bandwidth and higher-speed transmission,

while MQTT is useful in limited bandwidth. They also gave

in detail some threats and attacks on smart healthcare systems

[7]. M. Zorkany et al. presented a practical comparison of

MQTT and COAP on an e-health system according to the

number of both bytes utilized in messages and messages lost

and the delay. To do so, they evaluated three metrics, namely,

the IoT Delay message, the IoT Average Byte, and the IoT

Success Message according to the packet loss percentages.

Metrics were determined by using the WANEM and

WIRESHARK programs. The results showed that MQTT

outperforms COAP [8]. Y. Guamán et al. conducted a

comparative study between MQTT and COAP regarding jitter

and delay to determine which is suitable for controlling

objects at home. The experiment system consisted of a

Raspberry Pi 3, an Optocoupler circuit and a Lamp. The

results concluded that in a domestic environment, the MQTT

protocol performed better than the COAP protocol, not only

in terms of jitter and delay but also in terms of its

implementation [9].

Other performance evaluation work focuses on MQTT.

For example, D. Borsatti et al. focused on analyzing the

MQTT protocol at different QoS levels regarding latency.

Their goals were to evaluate the impact of the end-to-end

network delay and the publisher, subscriber, and broker

placement on the publisher-to-subscriber data delivery

latency. To achieve that, a testbed was set up. The testbed was

created using two Ubuntu Virtual Machines, VM1 and VM2;

VM1 functions as both a subscriber and a publisher machine,

while VM2 functions as a broker machine. The results showed

that the latency is up to 7 times the average network delay at

the QoS2, and the placements of publisher, broker, and

subscriber did not affect the latency [10]. E. Baranauskas et al.

determined the energy consumption of all MQTT QoS levels

with TLS. The experimental system consists of an ESP32, a

Raspberry Pi 2, a client power supply, a digital multimeter and

a WIFI. The ESP32 and Raspberry Pi 2 function as two MQTT

clients and a broker, respectively. The result showed that

QoS0 consumed 6.7% more energy than QoS1. Note that QoS

2 consumed 1.7% less energy than QoS0, while it consumed

5 % more energy than QoS1 [11]. T. Prantl et al. conducted an

analysis of the impact of securing MQTT using TLS on energy

efficiency, broker connection establishment times, and

throughput in different network situations. They used an

ESP8266 microcontroller, a windows 10 laptop, a client

power supply, a power meter, and a WiFi for their experiment.

The microcontroller and laptop function as an MQTT client

and broker, respectively. The results showed that TLS

negatively affects the performance only in deteriorated

network situations [12]. T. N. Ford et al. focused on evaluating

the performance of the Raspberry Pi 3 Model B, Zero W, and

Zero 2 W in terms of messages' throughput and transmission

time according to the number of packet sizes. They determined

not only the impact of the WiFi bandwidth, payload size, both

client and broker Hardware, QoS level, and a DoS attack on

the transmission time but also the impact of the security on the

throughput. These two metrics were determined using one

subscriber and one publisher [6].

As can be seen from this literature survey, many of them

evaluate the performance of MQTT using one or two MQTT

clients at most, while the environment temperature is not

considered. Note that few published works evaluate the

performance of MQTT on Raspberry Pi devices, although they

are a suitable solution for the IoT system [6]. Recently, the

authors have evaluated Raspberry Pi's performance as an

MQTT broker regarding CPU usage, memory usage,

processor temperature, and response time when the number of

clients and QoS levels increase. This work will determine how

increasing the environment temperature impacts the previous

results. Consequently, this article is the continuation of the

previous work.

3. Testbed Architecture and Realisation
In the previous work, the authors developed an

appropriate evaluation environment to carry out

measurements and analyze the impact of the increase of both

the clients and the QoS levels on the performance of

Raspberry Pi as an MQTT broker in an IoT context. Briefly,

the testbed components consist of an MQTT broker, MQTT

clients, a WiFi Access point, a digital thermometer, and an air

conditioner. MQTT clients are divided into 100 publishers

(Pubs) and 101 subscribers (Subs). Each publisher sends

values of Power (P), Temperature (T) and Humidity (H) while

each subscriber receives them, as illustrated in Figure 1. Note

that the Last Will and Testament, the Persistent Session, the

Retained Message and the Keep Alive are used. This latter was

fixed at 50 seconds for all clients, whereas the Retained

messages are the initial value of P, T and H for each publisher

and each MQTT client's status.

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

96

At the hardware level, the MQTT broker runs on the

Raspberry Pi 3 Module B [16], while MQTT clients run on the

ThinkPad T480 I7-8550U Lenovo laptop. The authors used

the MF253V ZTE 4G Wireless Router to create a local

network and the DS18B20 digital thermometer [17] to

determine the environment temperature during the tests. At the

software level, the used operating system is Raspberry Pi OS

Lite since it has the necessary software without a desktop

environment [18, 19], while the used MQTT broker is the

Mosquitto broker because it is suitable for constrained-

resources devices, as in this case [4].

The Python programming language and the library of

PAHO-MQTT [20] and thread [21] are used to create MQTT

clients' programs and let them run concurrently in the same

script. Note that the current CPU usage and memory usage for

the Mosquitto broker were provided by the command "top -p

<pid>" [22], where <pid> is given by the command "systemctl

status mosquitto.service", whereas the processor temperature

and the environment temperature were provided by commands

"cat / sys / class / thermal / thermal_zone0 / temp " [23, 24]

and "cat /sys/bus/w1/devices/28-800000264462/w1_slave"

[25], respectively. Moreover, the command "renice -12

<pid>" was used to increase the priority of the mosquitto

service execution [26]. In this paper, the same testbed will be

used.

4. Methodology for Measurement Analysis
In the previous work, they developed a suitable technique

for measuring the five metrics: both CPU usage and memory

usage for Mosquitto Broker, processor temperature,

environment temperature, and response time when the number

of clients is (0Pub and 0Sub), (100Pubs and 0Sub), (100Pubs

and 1Sub), (100Pubs and 11Subs), (100Pubs and 21Subs) and

so on up to (100Pubs and 101Subs). Briefly, the technique

goes as follows: after end measuring the first four metrics for

zero clients, the sequential launch of MQTT clients begins

automatically.

This latter starts first with 100 publishers, then a

subscriber afterward, the first ten subscribers, and so on until

the tenth ten subscribers. This serial launch is done after one

minute of the end of measuring the first four metrics

corresponding to them. Note that the programs of 100

publishers, 1 subscriber, and each of the 10 subscribers were

written in separate scripts. Consequently, 100 publishers

simultaneously send PUBLISH packets, and every 10

subscribers simultaneously receive PUBLISH packets.

The first five metrics are determined during 30 min

without clients, whereas they start to be determined once

clients are online and end after publishers or each subscriber

reaches the 66400th PUBLISH packet. At the end of the test,

13 files are obtained that refer to the total active both

subscribers and publishers and the QoS level. Each of them

consists of CPU usage, memory usage, processor

temperatures, and environment temperatures, as illustrated in

Figure 3. Note that they were taken in each update of the

Mosquito service's vital information. The cause of the absence

sometimes of the environment temperature is that the

DS18B20 updates every 1 or 2 seconds, and the command

"top" updates every 3 seconds. On the other hand, the response

time is the duration between the first sent CONNECT packet

and the 66400th PUBLISH packet for each subscriber and

between the 664th PUBLISH packet for each publisher. Note

that the same initial conditions were taken for each repeated

test.

The average and standard deviation of CPU usage,

memory usage, environment temperature, and processor

temperature for each obtained file and the average and

standard deviation of the response time for each number of

concurrently launched clients are determined. In this paper,

this technique will be used.

5. Results and Discussion
The measurement results are presented for each QoS level

in Figures 4 to 8 and more detail in Tables 1 to 3 after

increasing the environment temperature using the air

conditioner. Note that all the results were obtained without any

clients disconnected during the test; therefore, these will allow

us to make a correct comparison.

Based on the results of the memory usage for all QoS

levels, as shown in Figure 4, it can be remarked that the

required memory for Mosquitto broker increases from 0.5% to

0.6% once publishers are launched. It remains constant until

the number of subscribers reaches 101 for QoS levels 0 and 1,

while it increases to 0.69838% when the eighth ten subscribers

are launched and remains constant at 0.7% for QoS level 2.

Depending on the results of CPU usage for all QoS levels, as

illustrated in Figure 5, it can be observed that CPU usage

increases with the number of MQTT clients.

From 0 clients to 100 publishers, the CPU usage increases

by 0.4%, 0.5% and 0.9% for QoS levels 0, 1 and 2,

respectively, and it remains almost constant until the first ten

subscribers are reached, the first ten subscribers, where it

begins to increase obviously. For QoS levels 0 and 2, the CPU

usage continues to increase until the subscribers’ number

reach as 101, whereas, for QoS level 1, it continues to increase

until the subscribers’ number reaches as 91 and then decreases

slightly by 0.2565%.

According to Figure 6, it can be noticed that from 0 clients

to 100 publishers, the processor temperature increases by

3.2°C, 2.2°C and 2.6°C for QoS levels 0, 1 and 2, respectively.

After that, it remains approximately constant until the

subscribers’ number reaches 31 for QoS 0 and 1 for QoS 1 and

2, from which it begins to increase until the maximum number

of clients is reached. In terms of test time, it lasted

09h13min33.0164300s, 09h15min17.4760520s and

09h33min35.7679680s for QoS levels 0, 1 and 2, respectively.

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

97

Fig. 1 Testbed architecture

Fig. 2 Actual implementation

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

98

Fig. 3 One of the obtained files

Fig. 4 Memory usage for various QoS levels

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

99

Fig. 5 CPU usage for various QoS levels

Table 1. Metrics results for QoS level 0

 Metrics

Clients

Memusage(%) CPUusage(%) Tprocessor(°C) Tenvironment(°C) tresponse(mm:ss.sssssss)

x̄  x̄  x̄  x̄  x̄ 

0Pub-0Sub 0.5 0 0.0418 0.1083 50.4775 1.1983 29.8794 0.1021 - -

100Pubs-0Sub 0.6 0 0.4659 0.3362 53.6422 0.3923 30.1765 0.0579 44:58.1554704 14.0232814

100Pubs-1Sub 0.6 0 0.5560 0.3590 53.7292 0.6171 30.3961 0.0793 45:34.7375210 0

100Pubs-11Subs 0.6 0 1.1118 0.4340 53.9097 0.5426 30.5546 0.0507 45:36.2048793 0.1291951

100Pubs-21Subs 0.6 0 1.6814 0.7417 54.1913 0.7086 30.4069 0.3384 45:20.0541590 0.4384503

100Pubs-31Subs 0.6 0 2.3439 0.5653 54.5747 0.6668 30.3001 0.4159 45:12.7283447 0.1231222

100Pubs-41Subs 0.6 0 2.9441 0.4226 55.9746 0.4881 30.2555 0.4629 45:04.6052301 0.0277305

100Pubs-51Subs 0.6 0 3.6011 0.3474 55.8776 0.5679 30.0968 0.4560 45:03.3460545 0.0475846

100Pubs-61Subs 0.6 0 4.3156 0.3024 57.1380 0.6652 30.2960 0.4482 44:59.2386617 0.0085228

100Pubs-71Subs 0.6 0 5.1244 0.2789 57.8059 0.6184 30.3155 0.4140 45:00.2166870 0.0413740

100Pubs-81Subs 0.6 0 5.8889 0.3604 58.3778 0.6654 30.3543 0.4806 45:00.3861349 0.0715964

100Pubs-91Subs 0.6 0 6.6321 0.4272 58.3727 0.6659 30.3360 0.5094 45:01.0727710 0.0645858

100Pubs-100Subs 0.6 0 7.3080 0.4456 58.9101 0.5694 30.6477 0.0480 44:58.9132257 0.0755639

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

100

Table 2. Metrics results for QoS level 1

Metrics

Clients

Memusage(%) CPUusage(%) Tprocessor(°C) Tenvironment(°C) tresponse(mm:ss.sssssss)

x̄  x̄  x̄  x̄  x̄ 

0Pub-0Sub 0.5 0 0.0417 0.1060 49.9547 0.6883 28.4281 0.1067 - -

100Pubs-0Sub 0.6 0 0.5871 0.5169 52.2020 0.5402 28.6758 0.0683 44:47.8622464 8.1224992

100Pubs-1Sub 0.6 0 0.9496 0.7012 52.1118 0.7749 28.8803 0.0898 45:34.1839030 0

100Pubs-11Subs 0.6 0 3.7369 2.0945 53.6025 0.5156 29.0432 0.0554 45:32.7291222 0.0487289

100Pubs-21Subs 0.6 0 6.5557 3.4927 55.1336 0.8040 29.1633 0.0657 45:30.7725962 1.2347048

100Pubs-31Subs 0.6 0 9.6696 3.4441 56.0419 0.6683 29.2820 0.0578 45:25.8577509 0.3351441

100Pubs-41Subs 0.6 0 12.7247 4.5039 57.3925 1.2229 29.4064 0.0615 45:26.2970319 0.4554824

100Pubs-51Subs 0.6 0 15.9089 3.1906 59.1757 0.9813 29.4233 0.0490 45:15.8914025 0.0638623

100Pubs-61Subs 0.6 0 19.4295 2.0271 59.5795 0.7554 29.4599 0.0367 45:12.2849025 0.1404345

100Pubs-71Subs 0.6 0 22.2271 1.9944 60.2573 0.8651 29.4108 0.0474 45:10.5244150 0.1094722

100Pubs-81Subs 0.6 0 25.0337 2.3812 61.8616 0.5974 29.4395 0.0370 45:11.4668670 0.0960955

100Pubs-91Subs 0.6 0 26.1496 2.6274 60.7618 1.0320 29.3879 0.0417 45:17.8326053 0.1053612

100Pubs-100Subs 0.6 0 25.8931 5.3138 60.1713 1.0594 29.3855 0.0440 45:21.4915965 0.3210148

Table 3. Metrics results for QoS level 2

 Metrics

Clients

Memusage(%) CPUusage(%) Tprocessor(°C) Tenvironment(°C) tresponse(mm:ss.sssssss)

x̄  x̄  x̄  x̄  x̄ 

0P a -0S b 0.5 0 0.0410 0.1030 49.5404 1.0968 28.7890 0.0801 - -

100P-0S 0.6 0 0.9225 1.1391 52.1868 0.5654 29.0208 0.0831 44:40.3623696 1.6210172

100P-1S 0.6 0 1.5634 1.0809 52.6350 0.6662 29.1599 0.0376 45:34.8774110 0

100P-11S 0.6 0 5.7685 3.8327 54.0888 0.8282 29.2826 0.0687 46:35.4629899 11.4967979

100P-21S 0.6 0 9.6668 6.4024 55.3071 0.9952 29.4283 0.0895 48:07.5951529 22.6834192

100P-31S 0.6 0 15.9054 1.6473 58.0239 0.4192 29.4772 0.0425 45:33.7561482 0.0874794

100P-41S 0.6 0 19.9036 1.4143 59.2242 0.7673 29.4777 0.0380 45:38.1831383 0.0283345

100P-51S 0.6 0 23.9557 1.2171 60.3773 0.7025 29.5480 0.0755 45:31.2897997 0.1795318

100P-61S 0.6 0 27.1226 1.2515 60.4371 0.5856 29.5268 0.0343 45:35.8941220 0.1296544

100P-71S 0.6 0 30.6574 1.5488 60.7268 0.6786 29.5038 0.0588 45:45.8201724 0.1517876

100P-81S 0.6984 0.0126 34.1196 2.1214 61.7510 0.6128 29.4154 0.0506 46:14.3851415 9.8990647

100P-91S 0.7 0 37.5317 2.0035 63.2206 0.4897 29.4558 0.0467 48:30.5348309 1:42.9210329

100P-100S 0.7 0 41.7216 1.9940 64.4157 0.5690 29.3851 0.0511 48:02.8420009 2:15.9251051
a)PUB; b)SUB

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

101

Fig. 6 Processor temperature for various QoS levels

Fig. 7 Publishers' response time for various QoS levels

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

102

Fig. 8 Subscribers' response time for various QoS levels

Comparing these results with previous ones taken at the

low environment temperature, it can be noticed that both the

CPU usage and the processor temperature increase with the

number of clients regardless of the used environment

temperature. The graph shape not only the processor

temperature and the CPU usage for all QoS levels but also the

subscribers' response time for QoS0 measured at the high and

low environment temperature are the same. To compare the

actual results with the previous ones, the average and standard

deviation of metrics were determined for each QoS level, as

illustrated in Table 4. For QoS0, the memory usage and CPU

usage remain constant, but the processor temperature

increases by 4.8°C and the publishers' response time increases

by 15.6s, while the subscribers' response time average

increases by 4.2s. At the level of QoS1, the difference between

the memory usage is from the seventh ten subscribers. It

decreases slightly by 0.03%, whereas the average of the

processor temperature and CPU usage increase by 4.5°C and

1.2%, respectively. Publishers' response time increases by

18.4s, while subscribers' response time average decreases by

22.6s. At this level, it can be noticed that the high environment

temperature can either increase the CPU usage and decrease

the response time or keep constant the CPU usage and increase

the response time. The test at 27°C for QoS2 was repeated to

verify these results. Between 24°C and 27°C, the average

processor temperature and the CPU usage increase by 4.2°C

and 0.93%, respectively, while publishers' response time and

subscribers' response time average decrease by 21.4s and

12.8s, respectively. Between 27°C and 29°C, the processor

temperature average increases by 0.9°C. The publishers'

response time increases by 4.2s, whereas the subscribers'

response time average increases by 1.7s. The CPU usage at

29°C remains inferior to its counterpart at 27°C, but the

reverse occurs when the eighth ten subscribers are surpassed.

For QoS2, when repeated test at 30°C, it was noticed that the

MQTT clients disconnected.

Table 4. Comparison of metrics in different environment temperature

 Metrics

 QoS

Tenvironment(°C) Memusage(%) CPUusage(%) Tprocessor(°C) tresponse(mm:ss.sssssss)

x̄  x̄  x̄  x̄  x̄ 

0

24.8511 0.0267 0.5923 0.0266 3.2725 2.4016 50.8071 2.1918 45:05.9687279 9.5619550

30.3089 0.1851 0.5923 0.0266 3.2319 2.3678 55.6139 2.3741 45:10.1366972 13.4397700

1

24.6528 0.1170 0.6227 0.0571 11.8149 8.7054 52.2706 3.2352 45:34.2356689 11.5951825

29.1835 0.3203 0.5923 0.0266 12.9929 9.7057 56.7882 3.7407 45:21.7574721 8.3403694

2

24.2420 0.0511 0.6274 0.0578 18.3143 13.4919 52.7291 4.0043 46:39.4630146 1:29.7536052

27.7059 0.1957 0.6202 0.0545 19.2421 13.6720 56.8957 4.8929 46:26.5872859 1:15.1413205

29.3439 0.2171 0.6153 0.0531 19.1446 14.0803 57.8411 4.4667 46:28.2400825 1:07.5047088

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

103

Table 5. Comparison of related works

Articles Protocols Metrics
Number of

Clients

Number of

packets

QoS Environment

temperature 0 1 2

[12] MQTT

Energy efficiency, broker

connection establishment times,

and throughput

1 720 🗸 🗸 🗸 x

[10] MQTT
Publisher-to-subscriber data

delivery latency
2 10000 🗸 🗸 🗸 x

[27] MQTT

Rate of MQTT received

messages,

CPU Usage and Processor

Temperature

60
Maximum

MTR
🗸 🗸 🗸 x

This

work
MQTT

CPU usage, memory usage,

processor temperature, and

Response time

201 66400 🗸 🗸 🗸 🗸

It was also noticed that there is an inverse relationship

between CPU usage and response time, meaning that even

metrics such as throughput and latency can be affected by

changing environment temperature. As a result, the

environment temperature is an important factor to consider

when measuring metrics. Nevertheless, it was noted that no

articles incorporate environment temperature into their

measurements, as illustrated in Table 5. The ideal environment

temperature, in this case, is 25°C because the corresponding

CPU temperature is lower.

6. Conclusion
MQTT publish/subscribe protocol is one of the

foundations of IoT communication with IoT devices. This

paper evaluated and analyzed Raspberry Pi's performance as

an MQTT broker regarding memory usage, CPU usage,

processor temperature, and response time in each QoS level

when the environment temperature increases. To achieve that,

the temperature was increased to 30°C and 29°C for QoS0 and

QoS1, respectively, while the temperature was increased to

27°C, 29°C and 30°C for QoS2. The actual measurement

obtained is compared with the measurement previously

obtained at 24°C for all QoS levels.

The study results showed that the high environment

temperature can either increase the CPU usage and decrease

the response time or remain constant the CPU usage and

increase the response time. Also, it increases the processor

temperature. For QoS level 0, the response time average

increases by 4.2s, while for QoS level 1, at 29°C, the CPU

usage average increases by 1.2%, and the response time

average decreases by 22.6s. For QoS2, comparing the results

at 27°C to those at 24°C, the CPU usage average increases by

0.93% and the response time average decreases by 12.8s,

while, comparing the results at 29°C to those 27°C, the

response time average increases by 1.7s and also, at 30°C, the

MQTT clients disconnect.

Regardless of the fact that the difference in response time

is a few seconds, these seconds in a smart healthcare system,

for example, may lead to the loss of life of patients as well as

when medical sensors disconnect. This study proves that the

environment temperature is an important factor that must be

considered for measuring metrics and that 25°C is the ideal

environment temperature for maintaining system stability.

References
[1] Shakila Zaman et al., “Thinking Out of the Blocks: Holochain for Distributed Security in IoT Healthcare,” IEEE Access, vol. 10, pp.

37064-37081, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Kevin Ashton, “That ‘Internet of Things’ Things,” RFID Journal, vol. 22, no. 7, pp. 97-114, 2009. [Google Scholar] [Publisher Link]

[3] Nitin Naik, “Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP,” IEEE International Systems

Engineering Symposium, pp. 1-7, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[4] Biswajeeban Mishra, Biswaranjan Mishra, and Attila Kertesz, “Stress-Testing MQTT Brokers: A Comparative Analysis of Performance

Measurements,” Energies, vol. 14, no. 18, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Vishal A. Thakor et al., “Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Review, Comparison and

Research Opportunities,” IEEE Access, vol. 9, pp. 28177-28193, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] T.N. Ford, E. Gamess, and C. Ogden, “Performance Evaluation of Different Raspberry Pi Models as MQTT Servers and Clients,”

International Journal of Computer Networks & Communications, vol. 14, no. 2, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Sahmi Imane, Mazri Tomader, and Hmina Nabil, “Comparison between CoAP and MQTT in Smart Healthcare and Some

Threats,” International Symposium on Advanced Electrical and Communication Technologies, pp. 1-4, 2018. [CrossRef] [Google Scholar]

https://doi.org/10.1109/ACCESS.2022.3163580
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Thinking+Out+of+the+Blocks%3A+Holochain+for+Distributed+Security+in+IoT+Healthcare&btnG=
https://ieeexplore.ieee.org/abstract/document/9745088
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=K.+Ashton%2C+%E2%80%9CThat+%E2%80%98Internet+of+Things%E2%80%99+things%2C%E2%80%9D+RFID+J.&btnG=
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://doi.org/10.1109/SysEng.2017.8088251
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Choice+of+effective+messaging+protocols+for+IoT+systems%3A+MQTT%2C+CoAP%2C+AMQP+and+HTTP&btnG=
https://ieeexplore.ieee.org/abstract/document/8088251
https://doi.org/10.3390/en14185817
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Stress-Testing+MQTT+Brokers%3A+A+Comparative+Analysis+of+Performance+Measurements&btnG=
https://www.mdpi.com/1996-1073/14/18/5817
https://doi.org/10.1109/ACCESS.2021.3052867
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Lightweight+Cryptography+Algorithms+for+Resource-Constrained+IoT+Devices%3A+A+Review%2C+Comparison+and+Research+Opportunities&btnG=
https://ieeexplore.ieee.org/abstract/document/9328432
https://doi.org/10.5121/ijcnc.2022.14201
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=PERFORMANCE+EVALUATION+OF+DIFFERENT+RASPBERRY+PI+MODELS+AS+MQTTSERVERS+AND+CLIENTS&btnG=
https://aircconline.com/abstract/ijcnc/v14n2/14222cnc01.html
https://doi.org/10.1109/ISAECT.2018.8618698
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Comparison+Between+CoAP+and+MQTT+in+Smart+Healthcare+and+Some+Threats&btnG=

Bouchra Allaoui et al. / IJETT, 71(10), 94-104, 2023

104

[Publisher Link]

[8] M. Zorkany, K. Fahmy, and Ahmed Yahya, “Performance Evaluation of IoT Messaging Protocol Implementation for E-Health Systems,”

International Journal of Advanced Computer Science and Applications, vol. 10, no. 11, pp. 412-419, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[9] Yesenia Guamán et al., “Comparative Performance Analysis between MQTT and CoAP Protocols for IoT with Raspberry Pi 3 in IEEE

802.11 Environments,” 2020 15th Iberian Conference on Information Systems and Technologies, pp. 1-6, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[10] Davide Borsatti et al., “From IoT to Cloud: Applications and Performance of the MQTT Protocol,” 22nd International Conference on

Transparent Optical Networks, pp. 1-4, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Edgaras Baranauskas, Jevgenijus Toldinas, and Borisas Lozinskis, “Evaluation of the Impact on Energy Consumption of MQTT Protocol

over TLS,” CEUR Workshop Proceedings: IVUS International Conference on Information Technologies: Proceedings of the International

Conference on Information Technologies, pp. 56-60, 2019. [Google Scholar] [Publisher Link]

[12] Thomas Prantl et al., “Performance Impact Analysis of Securing MQTT using TLS,” Proceedings of the ACM/SPEC International

Conference on Performance Engineering, pp. 241-248, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[13] Borislav Toskov et al., “Architecture of Intelligent Guard System in the Virtual Physical Space,” IEEE 10th International Conference on

Intelligent Systems, pp. 265-269, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[14] Aleksandar Velinov et al., “Covert Channels in the MQTT-Based Internet of Things,” IEEE Access, vol. 7, pp. 161899-161915, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Elias M. Pinheiro, and Sérgio D. Correia, “Software Model for a Low-Cost, IoT Oriented Energy Monitoring Platform,” SSRG

International Journal of Computer Science and Engineering, vol. 5, no. 7, pp. 1-5, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[16] Raspberry Pi 3 Model B. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[17] Maximintegrated, Ds18B20: Programmable Resolution 1-Wire Digital Thermometer, 2015. [Online]. Available:

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

[18] Operating System Images. [Online]. Available: https://www.raspberrypi.org/software/operating-systems/#raspberry-pi-os-32-bit

[19] Téléchargements. [Online]. Available: https://raspberry-pi.fr/telechargements/

[20] Paho-MQTT 1.6.1. [Online]. Available: https://pypi.org/project/paho-mqtt/

[21] Threading - Thread-Based Parallelism. [Online]. Available: https://docs.python.org/3/library/threading.html#

[22] Top. [Online]. Available: http://manpages.ubuntu.com/manpages/xenial/man1/top.1.html?_ga=2.164635455.1084823020.1640179895-

1054292474.1615460534

[23] The Config.txt File. [Online]. Available: https://www.raspberrypi.com/documentation/computers/config_txt.html

[24] Ruth Suehle, and Tom Callaway, Raspberry Pi Hacks: Tips & Tools for Making Things with the Inexpensive Linux Computer, 1st ed.,

O’Reilly Media, pp. 1–62, 2013. [Google Scholar] [Publisher Link]

[25] Warren Gay, Advanced Raspberry Pi: Raspbian Linux and GPIO Integration, 2nd ed., Apress Berkely, pp. 245–258, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[26] Renice. [Online]. Available:

http://manpages.ubuntu.com/manpages/xenial/en/man1/renice.1.html?_ga=2.179003750.378150101.1624202291-

1054292474.1615460534

[27] Diana Bezerra Correia Lima et al., “A Performance Evaluation of Raspberry Pi Zero W Based Gateway Running MQTT Broker for

IoT,” IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, pp. 76-81, 2019. [CrossRef]

[Google Scholar] [Publisher link]

https://ieeexplore.ieee.org/abstract/document/8618698
https://doi.org/10.14569/IJACSA.2019.0101157
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Performance+evaluation+of+IoT+messaging+protocol+implementation+for+E-Health+systems&btnG=
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=11&Code=IJACSA&SerialNo=57
https://doi.org/10.23919/CISTI49556.2020.9140905
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Comparative+Performance+Analysis+between+MQTT+and+CoAP+Protocols+for+IoT+with+Raspberry+PI+3+in+IEEE+802.11+Environments%2C%E2%80%9D&btnG=
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Comparative+Performance+Analysis+between+MQTT+and+CoAP+Protocols+for+IoT+with+Raspberry+PI+3+in+IEEE+802.11+Environments%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/9140905
https://doi.org/10.1109/ICTON51198.2020.9203167
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=From+IoT+to+Cloud%3A+Applications+and+Performance+of+the+MQTT+Protocol&btnG=
https://ieeexplore.ieee.org/abstract/document/9203167
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=+Evaluation+of+the+impact+on+energy+consumption+of+MQTT+protocol+over+TLS&btnG=
https://epubl.ktu.edu/object/elaba:42503895/
https://doi.org/10.1145/3427921.3450253
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Performance+impact+analysis+of+securing+mqtt+using+tls&btnG=
https://dl.acm.org/doi/abs/10.1145/3427921.3450253
https://doi.org/10.1109/IS48319.2020.9200177
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Architecture+of+Intelligent+Guard+System+in+the+Virtual+Physical+Space&btnG=
https://ieeexplore.ieee.org/abstract/document/9200177
https://doi.org/10.1109/ACCESS.2019.2951425
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Covert+Channels+in+the+MQTT-Based+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/8890870
https://doi.org/10.14445/23488387/IJCSE-V5I7P101
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Software+Model+for+a+Low-Cost%2C+IoT+oriented+Energy+Monitoring+Platform&btnG=
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=273
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Raspberry+Pi+Hacks%3A+Tips+%26+Tools+for+Making+Things+with+the+Inexpensive+Linux+Computer&btnG=
https://books.google.co.in/books?hl=fr&lr=&id=pdWQAwAAQBAJ&oi=fnd&pg=PR2&dq=Raspberry+Pi+Hacks:+Tips+%26+Tools+for+Making+Things+with+the+Inexpensive+Linux+Computer&ots=8sEq1OrlUO&sig=WrSHfcd109-9oC1sNHbcU7kIOKY&redir_esc=y#v=onepage&q=Raspberry%20Pi%20Hacks%3A%20Tips%20%26%20Tools%20for%20Making%20Things%20with%20the%20Inexpensive%20Linux%20Computer&f=false
https://doi.org/10.1007/978-1-4842-3948-3
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=+Advanced+Raspberry+Pi%3A+Raspbian+Linux+and+GPIO+Integration&btnG=
https://link.springer.com/book/10.1007/978-1-4842-3948-3
https://doi.org/10.1109/IEMCON.2019.8936206
https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=A+Performance+Evaluation+of+Raspberry+Pi+Zero+W+Based+Gateway+Running+MQTT+Broker+for+IoT&btnG=
https://ieeexplore.ieee.org/abstract/document/8936206

