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Abstract - Cloud Computing (CC) can be used in many research areas mainly for its network capacity and high computing 

power. Flexibility, Data security, and cost-effectiveness of working options for remote employees made this technology grab the 

interest of many. Intruders find innovative attack types every day; thus, to thwart such attacks, initial accurate detection should 

be done using Intrusion Detection Systems (IDSs), and after that, proper responses must be given. IDSs, which serve a most 

significant role in the security of the network, contain 3 main elements they are decision engine, data collection, and conversion 

or feature selection. Currently, DL was developed as a novel technique which enables a high accuracy rate and low training 

time with its distinctive learning system. Therefore, this study develops an Intelligent Cloud based Intrusion Detection System 

using an Enhanced Sunflower Optimization with Deep Learning (CIDS-ESFODL) model. The presented CIDS-ESFODL 

technique focuses on the recognition and categorization of intrusions in the cloud platform. The presented CIDS-ESFODL model 

has a three-phase process. In the initial stage, the ESFO algorithm is applied as a feature selector, providing an optimal subset 

of features. Secondly, the Denoising Autoencoder (DAE) technique is implemented for classifying and recognizing intrusions. 

Finally, the Nadam optimizer is utilized for the adjustment of the hyperparameters. The investigational validation of the CIDS-

ESFODL technique on the benchmark IDS dataset reported its significant performance over the other current models by means 

of distinct measures. 

Keywords - Cloud environment, Deep Learning, Nadam optimizer, Intrusion Detection System, Feature selection.

1. Introduction 
CC is one of the latest service innovations in the IT field. 

The CC permits access without limitations of location and 

time, which is one of its major merits [1]. CC supports 

collaborative and mobile services or applications, allows the 

flexibility of governing storage capacity, and offers 

reasonable costs [2]. Additionally, cloud services are 

multisource, letting the users use many service providers 

depending on their necessities. The utility of CC even 

minimizes energy consumption, physical space and 

maintenance necessities for on-site storage and capital 

expenditures [3]. Since CC services are becoming more 

prevalent, governments, a large group of firms, and banks 

have implemented this technology. This transition even 

exposed such systems to several forms of cyberattacks by 

intruders and hackers, demanding robust security systems. 

While implementing CC technologies, cybersecurity should 

prioritize healthcare services due to the privacy of operational 

and patient data [4]. Prevailing IDS work on the mechanism 

of anomaly detection or signature. If the detection system is 

unsuitable, operational and patient data are at risk [5]. The 

cybersecurity approach helps to find and protect malevolent 

actors while assisting in enhancing an administration's defence 

from cyberattacks. There are two main techniques for 

detecting malicious activity in the cloud situation they are 

Machine Learning (ML) techniques and Non-ML (NML) 

methods [6]. NML techniques, a method including signature-

based techniques and virtual machine-related methods, 

depend on the features of cloud malicious behaviours to find 

the assaults [7]. In recent times, ML approaches have been 

formulated to solve the restriction of NML techniques. Many 

existing IDS utilize typical ML approaches for developing 

detection methods. ML methods were broadly implemented to 

build the IDS [8]. But, because of the volume and speed of the 

IoT-generated data, orthodox ML approaches that want well-

crafted feature engineering need intensive research efforts for 

extracting the representative attributes from unstructured and 

big data produced by IoT gadgets. Thus, classical ML–related 

solutions still face several complexities [9]. Currently, Deep 

Learning (DL) techniques are employed in detection 

https://www.internationaljournalssrg.org/
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mechanism systems. DL expedited the analysis between real 

and fast data streams in the extraction of appropriate data to 

forecast the future of the IoT sector. DL was more reliable 

compared to conventional learning since it easily derives data 

and, hence, grants better accuracy [10].  

 

This study develops an Intelligent Cloud based Intrusion 

Detection System using an Enhanced Sunflower Optimization 

with Deep Learning (CIDS-ESFODL) model. The presented 

CIDS-ESFODL technique follows a three-stage process. In 

the initial stage, the ESFO algorithm is applied as a feature 

selector, providing an optimal subset of features. Secondly, 

the Denoising Autoencoder (DAE) technique is implemented 

for classifying and recognizing intrusions. Finally, the Nadam 

optimizer is utilized for the adjustment of the 

hyperparameters. The investigational validation of the CIDS-

ESFODL technique on the benchmark IDS dataset reported its 

significant performance over the other current models by 

means of distinct measures. 

2. Related Works 
Mayuranathan et al. [11] presented an effective selection-

based Feature Subset (FS) classifying technique for detecting 

DDoS attacks. To identify these attacks in IDS, a better FS is 

chosen with maximal recognition using the Random Harmony 

Search (RHS) optimization technique. DL-based 

classification method with RBM is exploited to identify the 

DDoS as soon as the feature is selected. Seven additional layer 

sets are present amidst the RBM hidden and visible layers to 

enhance the recognition accuracy of DDoS attacks. The 

authors in [12] proposed an IDS with DL method using Fuzzy 

Min Max NN Based IDS (FMMNN-IDS). An expansion-

contraction and fuzzy min-max learning approach that could 

learn nonlinear class restrictions in a singular traverse dataset 

and provide the capability to integrate and optimize the 

present classes without retraining is exploited to identify min-

max points.  

 

The authors in [13] presented a newly incorporated 

Cloud-based IDS (CIDS) to immunize the cloud against any 

potential assaults. The presented CIDS comprises five major 

mechanisms to do the subsequent action: to capture and 

analyze the Intrusion Detection (ID), traffic movements, 

monitoring the network, extracting features, logging all 

activities, and taking a reaction. Moreover, an improved 

bagging ensemble method of three DL techniques is exploited 

for predicting intrusion efficiently.  

 

Sharon et al. [14] designed a method to exploit an 

integration of an SAE along with Stacked Contractive AE (S-

SCAE) together with the Bi-DLDA model (succeeded by the 

layer with attention model, dense layer, and dropout layer) to 

detect intrusion in a cloud atmosphere. Furthermore, a cloud 

IDS is modelled for collecting the data congestion from the 

NSL-KDD data and employs a fusion technique to define 

whether acquired packets are harmful. 

In [15], designed an effective IDS was designed for the 

cloud environments with ensemble FS and classification 

methods. The presented model depends on the univariate 

ensemble FS method employed for choosing valuable 

decreased FSs from the given intrusion dataset. At the same 

time, the ensemble classifier could proficiently fuse a single 

classifier to produce a robust classifier by implementing the 

voting method. An ensemble-based presented model 

effectively classifies whether the networking traffic 

behaviours are standard or under attack. Zhang et al. [16] 

proposed an efficient network IDS-based DL method. The 

presented technique applies a DAE with a weighted loss 

function for selecting features that define constraints amount 

of features for IDS for reducing feature dimensionality. The 

selected dataset is later categorized by the compact MLP for 

IDS. 

3. The Proposed Model 

Fig. 1 Overall flow of the CIDS-ESFODL system 
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In this article, a novel CIDS-ESFODL methodology for 

the recognition and categorization of intrusions in the cloud 

platform. This CIDS-ESFODL methodology utilizes a three-

state process, namely Nadam optimizer, ESFO-based FS 

selection, and DAE-based ID. Fig. 1 portrays the 

comprehensive flow of the CIDS-ESFODL system. 

3.1. Stage I: Feature Selection 

Primarily, the ESFO algorithm is applied as a feature 

selector, providing an optimal subset of features. The SFO 

technique simulates the SF movement to absorb the sunlight 

[17]. The SFO has encompassed two stages: movement and 

pollination. In the movement stage, SF takes random steps 

towards the optimum SF, regarded as the sun.  

 

In the pollination stage, SF cooperates to generate pollen 

gamete. Accurate solution space exploration was the major 

aspect of finding the global optimal of optimized problems. 

To realize these issues, the study introduced an updated SFO 

version, such as the ESFO technique. This technique can be 

armed with a novel pollination operator that balances 

exploitation and exploration competencies. Also, this 

technique is exploited for scheduling tasks. 

 

Create population: The first population encompassed 𝑍 SF. 

 

𝑃𝑜𝑝 = {𝑆1, 𝑆2, … , 𝑆𝑍}                    (1) 

 

All the SFs 𝑆𝑖 = {𝑠𝑖,1, 𝑠𝑖,2, … , 𝑠𝑖,𝑀} in the population can 

be encompassed by 𝑀 numbers, which represent the identifier 

of the VM that the task runs on it. 

  

𝑠𝑖𝑗 = 𝑠min + 𝜑𝑖𝑗(𝑠max − 𝑠min)                 (2) 

 

In Eq. (2), 𝜑𝑖𝑗  denotes the uniformly distributed random 

integer ranges from zero to one, 𝑠min and 𝑠max are 

correspondingly the lower and upper boundaries of 𝑠𝑖𝑗 . For 

scheduling tasks, 𝑠min and 𝑠max are correspondingly 

initialized as 1 and 𝑀. There exist two VMs and six tasks 

{𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6},. A potential solution is 𝑆𝑖 = [1,2,2,2,1,1] 
that map tasks 𝑡1, 𝑡5, 𝑎𝑛𝑑 𝑡6 into the initial VMs, and 𝑡2, 𝑡3, 
𝑎𝑛𝑑 𝑡4 into the second VMs.  

 

Two limitations need to be fulfilled in task allocation. All 

the tasks must be contained in the scheduling task, and all the 

tasks might appear only once. Meanwhile, the scheduling task 

was a distinct issue; the index of the task and VM is a positive 

integer. To employs ESFO in scheduling task, the element of 

SF is round to be a distinct number. 

 

Power calculation: The power of all the SFs 𝑆𝑖 is 

evaluated. The word "power" is associated with the solution 

cost in the scheduling task. Afterwards, power calculation, SF 

with minimal cost (𝑆∗) was taken into account as the sun. 

 

Pollination: To design this method, the typical SFO 

arbitrarily chooses 𝑝 × 𝑍 sunflower from the population and 

later updates every chosen SF as 

 

𝑆𝑖
𝑡+1 = 𝑟𝑖 . (𝑆𝑖

𝑡 − 𝑆𝑗
𝑡) + 𝑆𝑗

𝑡                    (3) 

 

Where 𝑝 indicates the pollination rate. 𝑆𝑖
𝑡 and 𝑆𝑗

𝑡 denotes 

the locations of 𝑖 and 𝑗 SFs at iteration 𝑡. 𝑟𝑖 shows the random 

value within [0,1]. In the typical SFO, 𝑝 = 0.5 is exploited. In 

ESFO, the study developed the subsequent formula for the 

pollination stage. 

 

𝑆𝑖
𝑡+1 = 𝛼𝑡 × 𝐴 + (1 − 𝛼𝑡) × 𝐵 

𝐴 = 𝑆𝑗
𝑡 + 𝑈(−1, +1) × (𝑆𝑖

𝑡 − 𝑆𝑗
𝑡)                     (4) 

 

𝐵 = 𝑆𝑖
𝑡 + 𝛽 × (𝑆∗ − 𝑆𝑖

𝑡) 

 

Where 𝛼𝑡 indicates the switching probability at 𝑡 iteration 

controlling the local and global pollination ratio. 𝑆∗ denotes 

the present optimum SF. 𝑈(−1, +1) is a uniformly generated 

random integer within [1, 1] that adds some deviation to 

improve the search around the SF 𝑆𝑖 , 𝛽 denotes the scaling 

factors that control the amplitude of the searching direction 

(𝑆∗ − 𝑆𝑖
𝑡). Then, apply the value 𝛽 = 3. 𝜆, whereas 𝜆 ∈ (0,1) 

indicates a uniform random integer: 

 

𝛼𝑡 = 𝛼max −
𝑡

𝐼
(𝛼max − 𝛼min)                       (5) 

 

In Eq. (5), 𝐼 indicate the maximal amount of iteration. 

𝛼max and 𝛼min are fixed as 0.6 and 0.4. Now, the concept is 

that ESFO does an enhanced global search initially at iteration 

and further local search as it reaches the end. 

 

The primary motive in presenting the novel pollination 

operator was simultaneously enhancing exploitation and 

exploration. The Term 𝐴 and B in Eq. (4) increases the 

exploitation and exploration by mimicking the local and 

global pollination technique. 

 

Movement: here, (1 − 𝑝) × 𝑍 SF is chosen and upgraded as: 

 

𝑆𝑖
𝑡+1 = 𝑆𝑖

𝑡 + 𝑟.
𝑆∗ − 𝑆𝑖

𝑡

‖𝑆∗ − 𝑆𝑖
𝑡‖

                         (6) 

 

The direction changes of SF 𝑆𝑖 toward the sun 𝑆∗ is 

simulated by the above equation. Lastly, the suitable SF is 

found and replaced with the sun. 

 

𝑆∗ = 𝑆𝑘|𝑃(𝑆𝑘) > 𝑃(𝑆𝑗)∀𝑗 = 1,2, 𝑍                     (7) 

 

The process repeats until the maximal amount of 

iterations is obtained.   
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A1gorithm 1: The ESFO Algorithm 

Input: ESFO parameter; 

𝑀 task, 𝑇 = {𝑡1, 𝑡2, 𝑡𝑀}; 

𝑁 virtual machine, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁}; 

Output: A top solution; 

Initialize the population of SF; 

Assess the power of SFs; 𝑡 = 0; 

while (𝑡 < 𝐼) do 

        Calculate the pollination of SF; 

        Calculate the movement of SF; 

        Estimate the power of SF; 

        Upgrade sun 𝑆∗; 

        𝑡 = 𝑡 + 1; 

end 

Return the sun 𝑆∗ as the better solution; 

 

The Fitness Function (FF) exploited in the presented 

method is devised to have a balance amongst the number of 

selective attributes in all solutions (min), and the classifier 

accuracy (max) attained using selective features, Eq. (8) 

designates the fitness function to evaluate the solution. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
                   (8) 

 

Where 𝛾𝑅(𝐷) embodies the classifier error rate of a given 

classier (the KNN) technique is utilized here).|𝐶| is the overall 

attributes in the dataset, and  |𝑅| is the cardinality of the 

selective subset, and 𝛽 and 𝛼 were 2 parameters corresponding 

to the significance of subset length and classification quality. 

∈ [1, 0] and 𝛽 = 1 − 𝛼. 

3.2. Stage II: ID 

This work employs the DAE method for classifying and 

recognizing intrusions. AE can be considered to be an 

optimization technique that is used for extracting and learning 

principal components in case of larger data dissemination 

[18]. It is commonly considered a DL algorithm as it owns the 

power to make a deep network that can handle the networking 

to coordinate with the expected environments. It is generally 

exploited for denoising, compression, image extraction, etc. 

The image compression technique is employed as a feature 

selection method in the AE. AE is considered the most suited 

pre‐processing method for image classification by employing 

DNN. As the size is higher, one extra intermediate Hidden 

Layer (HL) is regarded for the encoder and decoder. The 

middle layer comprises the encoded image with a dimension 

of 64x64. Where 𝑋𝑖 characterizes the input, 𝐻𝑖  epitomizes HL 

(here 𝐼 am 1 to 3) and 𝑌𝑖 is the outcome as shown below: 

 

ℎ𝑖 = 𝑓𝑖(𝑊𝑖𝑋𝑖 + 𝑏𝑖), 𝑖 = 1 𝑡𝑜 4                  (9) 

 

Where, 𝑊𝑖 indicates the weight vector amidst 𝐻1 to 𝐻2, 

𝑋𝑖 to 𝐻1 , and 𝑌𝑖 . 
 

The Deep Neural Network (DNN) is relatively nonlinear, 

and thereby, they are not worth enough for main problems. 

Therefore, pretraining with the noisy dataset was very 

essential. This resulted in a process where noises are 

artificially added to all the layers to give rapid training and the 

best performance. An extension of typical AEA is a DAE that 

was proposed as a base for deep networks. 

 

The basic concept of DAE is bare and relatively simple. 

The presented model reconstructs the dataset from an input of 

the corrupted or ruined dataset. This is a process of the effect 

of the force placed on the HL to recognize powerful aspects 

and avoid simply learning. Therefore, the AE was trained for 

design input from the input dataset's corrupted version. This 

results in a more polished output than the input dataset. This 

DAE is considered a stochastic version of typical AE where it 

performs two tasks: it loosens the effects of the corruption 

technique employed to the input, and it encodes the input. Fig. 

2 signifies the infrastructure of DAE.  

The training method of the DAE is rather a non-complex 

task. One means of training it is by stochastically collapsing 

the dataset and passing it to the NN. Based on this, the AE is 

trained alongside the original data. Another way is to ruin the 

dataset by removing part of the dataset. This might lead to an 

AE forecasting the missing input. The DAE is stacked on one 

another for the iterative learning algorithm to offer an 

equilibrium between input and output. 

 

Fig. 2 Architecture of DAE 

3.3. Stage III: Hyperparameter Tuning 

Here, the Nadam optimizer is exploited for the adjustment 

of the hyperparameters. Integrating the Nesterov momentum 

with Adam optimization produces a novel technique termed 

the Nadam technique [19]. The learning procedure in the 

trained model was accelerated using an exponential decay 

dependent upon the moving gradient average through the 

momentum trick named Nesterov.  

From the Adam optimization, the Nadam optimization 

connects further quickly and is further appropriate for the prior 

training step. The specifics of the optimizer techniques are 

denoted. 
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Algorithm 2: Pseudocode of Nadam optimizer 

Input: Instances of the data 

Output: Optimal Hyperparameters of DAE  

Initialized 𝑘 ← 0, 𝑛0 ← 0, 𝑚0 ← 0, 𝜏 ≈ 10−8  

𝛽1, 𝛽2 ∈ [0,1), 𝜂1 = 0.001 

while (𝐿(𝑤𝑘
𝑠) not converged) do 

𝑘 ← 𝑘 + 1 

𝑔𝑘 ← 𝛻𝑤  𝐿(𝑤𝑘
𝑠)//gain gradients at time step 𝑘  

𝑔̂ ← 𝑔𝑘/(1 − ∏ 𝛽1
𝑖𝑘

𝑖=1 )//correct 𝑔𝑘 

𝑚𝑘 ← 𝛽1𝑚𝑘−1 + (1 − 𝛽1)𝑔𝑘 //the 1st moment estimation 

𝑚̂k ← 𝑚𝑘/(1 − ∏ 𝛽1
𝑖𝑘+1

𝑖=1 )//correct 𝑚𝑘 

𝑛𝑘 ← 𝛽2𝑛𝑘−1 + (1 − 𝛽2)𝑔𝑘
2 //the 2nd moment estimation 

𝑛̂𝑘 ← 𝑛𝑘/(1 − 𝛽2
𝑘)//correct 𝑛𝑘 

𝑤𝑘
𝑠 ← 𝑤𝑘−1

𝑠 −
𝜂1

√𝑛̂𝑘 + 𝜏
(𝛽1

𝑘+1𝑚̂𝑘 + (1 − 𝛽1
𝑘)𝑔̂k) 

end while 

 

The weight is advanced based on the law of recursive 

projected above in Algorithm 2. The parameter which requires 

that initialization is time step 𝑘, the 1st and 2nd order moments 

estimate 𝑚𝑘, and 𝑛𝑘, exponential decay rates 𝛽1 and 𝛽2, the 

rate of learning 𝜂1, and fuzz factor 𝜏. The momentum schedule 

is provided as follows: 
 

𝛽1
𝑘 = 𝛽1 (1 − 0.5 × 0.96

𝑘
250)                   (10) 

 

Whereas 𝛽1 = 0.99.  

Afterwards, the essential part of the technique is the 

iterative procedure. The primary stage is for calculating the 

loss function's gradient (𝑤𝑘−1
𝑠 ), whereas 𝑤𝑘−1

𝑠  signifies the 

weighted parameter. The secondary stage is to compute the 1st 

and 2nd order moments estimate 𝑚𝑘 and 𝑛𝑘 at 𝑘 time step. 

Next correction, the unbiased estimations 𝑚̂𝑘 and 𝑛̂𝑘 are 

acquired. The final stage is to upgrade the weighted parameter. 

This iterative procedure then remains the optimum value 

attained. 

4. Results and Discussion 
The presented CIDS-ESFODL method is validated on the 

UNSW-NB15 Dataset. The existing UNSW-NB15 dataset 

consists of ten classes and 42 factors (labels excluded), known 

as DoS, Normal, Generic, Analysis, Backdoors, Fuzzers, 

Exploits, Reconnaissance, Shellcode, and Worms. In that, 5 

classes are selected for the experimentation is given. 

Table 1. Dataset details 

Class Sample Numbers 

Normal 93000 

Fuzzers 24246 

DoS 794 

Exploits 44525 

Shellcode 1511 

Total Number of Samples 164076 

 
Fig. 3 Confusion matrix of CIDS-ESFODL model (a) Entire database, (b-c) 70 and 30 percent of TRS and TSS 
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The CIDS-ESFODL technique's confusion matrix is 

depicted in Fig. 3. With the overall dataset, and the CIDS-

ESFODL technique identifies 91738 samples into normal 

class, 20843 samples into fuzzes, 5 samples into DoS, 42188 

samples into exploits, and 222 samples into shellcode. 

Simultaneously, with 70% of TRS, the CIDS-ESFODL 

technique identifies 64343 samples into normal class, 14532 

samples into fuzzes, 3 samples into DoS, 29462 samples into 

exploits, and 155 samples into shellcode. Finally, with 30% of 

TSS, the CIDS-ESFODL approach identifies 27395 instances 

into normal class, 6311 instances into fuzzes, 2 instances into 

DoS, 12726 instances into exploits, and 67 instances into 

shellcode. 

 

Table 2. IDS outcome of CIDS-ESFODL system with discrete measures 

and classes 

Class Accuracy Precision Recall 
F-

Score 
MCC NPV 

Dataset of Entire Class 

Normal 96.55 95.42 98.64 97.01 93.01 98.14 

Fuzzers 96.96 92.90 85.96 89.30 87.62 97.60 

DoS 99.52 45.45 00.63 01.24 05.31 99.52 

Exploits 96.79 93.51 94.75 94.12 91.92 98.04 

Shellcode 99.12 59.36 14.69 23.55 29.24 99.21 

Average 97.79 77.33 58.94 61.05 61.42 98.50 

Training (70%) 

Normal 96.53 95.44 98.61 97.00 92.97 98.09 

Fuzzers 96.96 92.84 85.96 89.27 87.59 97.61 

DoS 99.53 37.50 00.55 01.09 04.51 99.53 

Exploits 96.80 93.47 94.78 94.12 91.92 98.05 

Shellcode 99.12 61.51 14.45 23.40 29.53 99.20 

Average 97.79 76.15 58.87 60.97 61.30 98.50 

Testing (30%) 

Normal 96.59 95.39 98.72 97.02 93.10 98.26 

Fuzzers 96.95 93.06 85.97 89.37 87.69 97.57 

DoS 99.49 66.67 00.79 01.57 07.24 99.49 

Exploits 96.78 93.59 94.68 94.13 91.92 97.99 

Shellcode 99.13 54.92 15.30 23.93 28.68 99.24 

Average 97.79 80.72 59.09 61.21 61.72 98.51 

 

Table 2 offers the overall IDS results of the CIDS-

ESFODL model. Fig. 4 investigates the IDS outputs of the 

CIDS-ESFODL model on the overall dataset in terms of 

accu_y, prec_n, and reca_l. The experimental results indicated 

that the CIDS-ESFODL model reaches enhanced results under 

each class. For instance, with normal class, the CIDS-

ESFODL model attains accu_y, prec_n, and reca_l of 96.55%, 

95.42%, and 98.64% respectively. Meanwhile, with the 

Fuzzers class, the CIDS-ESFODL approach attains accu_y, 

prec_n, and reca_l of 96.96%, 92.90%, and 85.96% 

correspondingly.  Furthermore, with the DoS class, the CIDS-

ESFODL approach attains accu_y, prec_n, and reca_l of 

99.52%, 45.45%, and 00.63% correspondingly. 

 

Fig. 5 inspects the IDS outputs of the CIDS-ESFODL 

technique on the entire dataset in terms of 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and 

NPV. The results show that the CIDS-ESFODL approach 

reaches enhanced results under each class. For example, with 

normal class, the CIDS-ESFODL method attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, 

and NPV of 97.01%, 93.01%, and 98.14% correspondingly. In 

the meantime, with normal class, the CIDS-ESFODL 

approach attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV of 89.30%, 87.62%, 

and 97.60% correspondingly. Additionally, with normal class, 

the CIDS-ESFODL approach attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV 

of 1.24%, 5.31%, and 99.52% correspondingly. 

 

Fig. 4 𝑨𝒄𝒄𝒖𝒚, 𝒑𝒓𝒆𝒄𝒏, and 𝒓𝒆𝒄𝒂𝒍 analysis of the CIDS-ESFODL system 

on the entire database 

 

Fig. 5 𝑭𝒔𝒄𝒐𝒓𝒆, MCC, and NPV analysis of the CIDS-ESFODL system on 

the entire database 
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Fig. 6 𝑨𝒄𝒄𝒖𝒚, 𝒑𝒓𝒆𝒄𝒏, and 𝒓𝒆𝒄𝒂𝒍 analysis of the CIDS-ESFODL system 

on 70% of TRS 
 

 
Fig. 7 𝑭𝒔𝒄𝒐𝒓𝒆, MCC, and NPV analysis of CIDS-ESFODL system on 

70% of TRS 

Fig. 6 examines the IDS outcomes of the CIDS-ESFODL 

technique on 70% of TRS in terms of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 

𝑟𝑒𝑐𝑎𝑙. The results show that the CIDS-ESFODL technique 

reaches enhanced results under each class. For example, with 

normal class, the CIDS-ESFODL method attains 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 96.53%, 95.44%, and 98.61% 

correspondingly. Meanwhile, with the Fuzzers class, the 

CIDS-ESFODL model attains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 

96.96%, 92.84%, and 85.96% respectively. Moreover, with 

the DoS class, the CIDS-ESFODL approach achieves 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 99.53%, 37.50%, and 00.55% 

correspondingly. 
 

Fig. 7 examines the IDS outcomes of the CIDS-ESFODL 

approach on 70% of TRS in terms of 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV. 

The figure displayed that the CIDS-ESFODL approach 

reaches enhanced results under each class. For cases with 

normal class, the CIDS-ESFODL model attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, 

and NPV of 97%, 92.97%, and 98.09%, correspondingly.  

Meanwhile, with normal class, the CIDS-ESFODL model 

attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV of 89.27%, 87.59%, and 

97.61% correspondingly. Moreover, with normal class, the 

CIDS-ESFODL model attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV of 

1.09%, 4.51%, and 99.53% correspondingly. 

Fig. 8 examines the IDS outputs of the CIDS-ESFODL 

technique on 30% of TSS in terms of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 

𝑟𝑒𝑐𝑎𝑙. The experimental results specified that the CIDS-

ESFODL technique reaches enhanced results under each 

class. For example, with normal class, the CIDS-ESFODL 

model attains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 96.59%, 95.39%, 

and 98.72% correspondingly. While, with the Fuzzers class, 

the CIDS-ESFODL model gains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 

96.95%, 93.06%, and 85.97% correspondingly.  Also, with the 

DoS class, the CIDS-ESFODL model attains 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

and 𝑟𝑒𝑐𝑎𝑙 of 99.49%, 66.67%, and 00.79% correspondingly. 

 

Fig. 8 𝑨𝒄𝒄𝒖𝒚, 𝒑𝒓𝒆𝒄𝒏, and 𝒓𝒆𝒄𝒂𝒍 analysis of the CIDS-ESFODL system 

on 30% of TSS 

 

Fig. 9 𝑭𝒔𝒄𝒐𝒓𝒆, MCC, and NPV evaluation of CIDS-ESFODL approach on 

30% of TSS 
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Fig. 10 TACC value and VACC value evaluation of the CIDS-ESFODL 

approach  

Fig. 9 inspects the IDS outcomes of the CIDS-ESFODL 

technique on 30% of TSS in terms of 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV. 

The results indicated that the CIDS-ESFODL method reaches 

enhanced results under each class. For example, with normal 

class, the CIDS-ESFODL model attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and 

NPV of 97.02%, 93.10%, and 98.26% correspondingly. In the 

meantime, with normal class, the CIDS-ESFODL model 

attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV of 89.37%, 87.69%, and 

97.57% correspondingly. Additionally, with normal class, the 

CIDS-ESFODL technique attains 𝐹𝑠𝑐𝑜𝑟𝑒, MCC, and NPV of 

1.57%, 7.24%, and 99.49% correspondingly. 

 

The TACC and VACC values of the CIDS-ESFODL 

method are inspected on IDS in Fig. 10. The output depicted 

that the CIDS-ESFODL method portrayed an enhanced 

achievement with higher TACC and VACC values. Also, the 

CIDS-ESFODL technique attained optimum TACC outputs. 

 

The TLS and VLS values of the CIDS-ESFODL method 

are examined on IDS achievement in Fig. 11. The output 

portrays that the CIDS-ESFODL method exhibited enhanced 

achievement with lesser TLS and VLS values. Lastly, the 

CIDS-ESFODL approach has lessened VLS outputs. 

 

Fig. 11 TLS value and VLS value evaluation of the CIDS-ESFODL 

approach 

 

Fig. 12 Precision-recall evaluation of the CIDS-ESFODL approach 

 

Fig. 13 ROC analysis of the CIDS-ESFODL system  

A clear study of the precision-recall of the CIDS-

ESFODL approach under the testing data is given in Fig. 12. 

The figure portrays that the CIDS-ESFODL approach has an 

enhanced precision-recall values under the overall classes. 

 

An elaborate study of ROC of the CIDS-ESFODL 

technique under the testing data is provided in Fig. 13. The 

results signified that the CIDS-ESFODL technique has shown 

its capability in classifying discrete classes. 

 

Table 3. 𝑨𝒄𝒄𝒖𝒚 analysis of the CIDS-ESFODL system with other ML 

techniques 

Methods Accuracy (%) 

CIDS-ESFODL 97.79 

DT Classifier 86.19 

LR Model 83.93 

NB Classifier 83.17 

ANN-Single Layered 81.84 

EM-Clustering 78.62 

Ramp-KSVCR 94.23 

PSI-NetVisor 94.57 

SVM Model 96.08 
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Fig. 14 𝑨𝒄𝒄𝒖𝒚 analysis of the CIDS-ESFODL system with other ML 

techniques 

Table 3 and Fig. 14 show an elaborate relative study of 

the CIDS-ESFODL method with current ML methods [21]. 

The experimental values indicated that the EM-clustering 

approach reaches a lower 𝑎𝑐𝑐𝑢𝑦 of 78.62%. 
 

Next, the DR, LR, and NB models reached slightly 

improved performance. Along with that, the Ramp-KSVCR, 

PSI-NetVisor, and SVM Models attained closer results. 

However, the CIDS-ESFODL model accomplishes maximum 

outcomes with an increased 𝑎𝑐𝑐𝑢𝑦 of 97.79%. Therefore, the 

CIDS-ESFODL model is found to be an effectual tool for 

cloud IDS. 

5. Conclusion  
In this article, a novel CIDS-ESFODL methodology for 

the recognition and categorization of intrusions in the cloud 

platform. This CIDS-ESFODL methodology utilizes a three-

stage process. In the initial stage, the ESFO algorithm is 

applied as a feature selector, providing an optimal subset of 

features. Secondly, the DAE algorithm is implemented for 

classifying and recognizing intrusions. Finally, the Nadam 

optimizer is utilized for the adjustment of the 

hyperparameters. The investigational validation of the CIDS-

ESFODL technique on the benchmark IDS dataset reported its 

significant achievement over the other current approaches by 

means of diverse measures. In the future, an ensemble learning 

process can boost the CIDS-ESFODL technique's 

experimental results. 
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