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Abstract - This article presents a numerical study on the influence of engine speed on the combustion process and the formation 

of pollutant emissions in a compression ignition engine. The literature shows that the movement of the air impacts the combustion 

process and, therefore, pollutants. Experimental studies have shown that at higher engine speeds, an increase in turbulence is 

created in the cylinders, thus improving the air/fuel mixture. However, few studies address the fundamental factors of varied 

engine speed at reduced steps for a certain range. This study develops and validates a CFD model with experimental data to 

predict the combustion scenario. Zeldovich extended mechanism, Hiroyasu model, and Kelvin-Helmohtz model are adopted to 

calculate NOx, soot, and spray quality, respectively. The engine speed was varied between 1500 and 2000 RPM with an 

increment of 100 RPM to better analyze and optimize combustion parameters and pollutant variations. The results of this 

research show that at higher engine speeds, fuel consumption is reduced in a shorter time by improving the air/fuel mix. The 

combustion time is shorter, which means less time for NOx and soot emissions. The improved air/fuel mix significantly reduces 

NOx and soot by about 38% and 40%, respectively. The results of these calculations show that the combustion process and the 

formation of pollutants strongly depend on the engine speed and load as a function of the crankshaft angle under ignition 

conditions. The results also show that engine speed and injection timing can be adopted in order to establish optimal engine 

power conditions based on low pollutant emissions and correct engine and exhaust temperatures in a compression ignition 

engine. This study blocks the benefits of using computational fluid dynamics (CFD) to better predict a diesel engine's combustion 

process and pollutant emissions. 
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1. Introduction  
 The motorization sector is one of the main contributors to 

energy consumption and polluting environmental emissions. 

These emissions from internal combustion engines have a 

negative impact on the environment and human health. 

Among the polluting emissions that derive from the 

combustion of engines, we have soot and NOx particles, 

which are the result of the unfinished combustion of engines. 

They are considered the main climate change factors, right 

after greenhouse gases. Essentially composed of black carbon, 

soot particles absorb solar radiation, thus contributing to 

nature's warming and rapid degradation. Soot particles and 

NOx seriously harm human health; once absorbed, they can 

cause respiratory and cardiovascular diseases [1]. This is how 

the very strict measures were launched for their reduction, 

both for their mass and the number of particles [2–3]. 

Although many studies have been carried out on the 

understanding and reduction of soot particles, NOx, and many 

other pollutants from internal combustion engines, these 

phenomena remain dominant in Africa because their 

formation involves a complex physical and chemical process 

in the environment. To better understand the phenomenon of 

pollution that derives from internal combustion engines, 

research has been carried out in several automobile sectors 

following well-defined strategies to optimize these 

performances and revise downward its pollutant rate, one of 

which is to act on the engine speed [4].  

 

 The following experimental studies [5–9] have shown 

that at high engine speeds, the engine experiences an increase 

in the phenomenon of turbulence in the combustion chamber, 

which implies an improvement of the mixture air–fuel, which 

means that engine speed and injection timing can be applied 
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wisely to determine the optimal conditions for a good engine 

power range with low emissions and acceptable engine and 

exhaust temperatures in compression ignition engines. Tests 

performed at different engine speeds on a single-cycle version 

of the Caterpillar 3406 production engine by Daniel A. 

Nehmer et al. [10] show that flow and fractional injection can 

affect soot and NOx emissions from a heavy diesel engine. 

Another recent study [11] shows that low-temperature 

combustion in compression-ignition engines has the ability to 

produce ultra-low NOx and soot emissions while maintaining 

good thermal efficiency. This study shows that to obtain a 

low-temperature combustion, a proportionally defined mixing 

time between air and fuel is necessary to avoid fuel-rich 

regions and reduce the maximum combustion temperatures, 

considerably reducing the formation of polluting emissions. In 

order to better predict the combustion process and the 

phenomenon of pollution in diesel engines, a numerical study 

based on fluid dynamics (CFD) is appropriate because it is an 

alternative to the experimental study. Although the execution 

times of the scenarios are relatively longer than the 0D 

models, this allows a better approach to the combustion 

process and pollutants [12].  

 

 Since the 1990s, several articles have been published 

based on the application of CFD to internal combustion 

engines to better understand the phenomena in the cylinders 

and propose good engine optimization [13–15]. Nowadays, 

several research topics based on the dynamics of digital fluids 

are conducted to optimize the engines [16–18]. Christian 

Angelberger et al. [19] show in their work that digital fluid 

mechanics is a key method to further improve internal 

combustion engines in terms of performance and 

environmental preservation. Computational fluid dynamics 

has the unique potential to enable the consolidation of research 

knowledge in the fields of turbulence, chemistry, combustion, 

thermodynamics, and heat transfer and then integrate it into 

different phases of engine design processes to understand, 

control, and better optimize combustion in engines [20–22]. In 

this study, a CFD model is developed and experimentally 

validated [23] for the work done on a diesel engine at Sandia 

National Laboratories.  

 

 The above-mentioned research is based on a variation of 

the engine speed with a pitch difference of about 500 RPM; 

this certainly allows for an understanding of the effect of this 

strategy, but reducing this step of the engine speed could lead 

to a better understanding and optimization of the 

characteristics of the engine. The research of [24] explains that 

the best range for a good study of combustion phenomena and 

polluting emissions of a compression ignition engine is 

between 1500 RPM and 2000 RPM. The objective of this 

study is to analyze through the CFD calculation code the 

phenomenology of diesel combustion and pollutant emissions 

under engine speed conditions variants between 1500 RPM 

and 2000 RPM with a pitch difference of the engine speed of 

more than 100 RPM. 

2. Materials and Methods  
2.1. Materials  

Good combustion improves the efficiency and 

optimization of the diesel engine. In medium-weight engines, 

the interactions between the fuel spray and the piston tank 

walls play a fundamental role in defining the heat release rate. 

Stepped lip pistons promote large-scale turbulence 

phenomena resulting from faster and more efficient heat 

release. However, it should be noted that this behavior is 

widely observed for late injection settings where the engine 

does not operate at its maximum efficiency and, therefore, at 

low rpm [25–27]. It is in this sense that a new medium-weight 

diesel search engine was built at the Sandia National 

Laboratory to allow advanced research on the combustion of 

pollutants and methods of heat loss through walls to improve 

efficiency. Our research topic was validated experimentally 

based on the previous study's data. 

 
Fig. 1 Experimentation with light optical diesel engine [23] 

1. Cast aluminum cylinder head. 

2. Custom deck adapter facilitates conversion to optimal 

engine. 

3. Lanchester balancing box. 

4. Control of intake flow rate, composition, and temperature. 

 
Table 1. Engine parameters 

Boron × Stoke 99 × 108 mm 

Displacement engine 0.477L 

Compression ratio 16.2 

Nozzle diameter 0.254 mm 

Fuel Decane C10H22 

Fuel injected per orifice 29.58 mg/cycle 

Injection pressure 800 bars 

Injection start timing 6910CA 

Injection duration 200CA 

Spray direction 700 with the cylinder axis 

Coordinates of spray  

emanation point 
x=0, y=0, z=2e-5m 

Engine speed 1500 rpm 

Number of nozzles 7 

Intake valve closed (IVC) 5700 CA 

Exhaust valve opened (EVO) 8330 CA 

Swirl number at IVC 1.3 
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2.2. Methodology 

The mesh in ANSYS Forte is generated automatically and 

does not require enough input or processing. After having 

defined surfaces and their refinement methods, the only 

important input is the overall size of the mesh. The resolution 

of the mesh and the detail of the results depend strongly on the 

size of the mesh. Accurate results require a finer mesh, 

although computation times and power have greatly increased. 

This is a very important factor because time and energy 

resources are very limited. 

 

 
Fig. 2 Cylinder sector geometry and mesh 

 

2.2.1. Boundary and Initial Condition 

ANSYS Forte uses the finite volume method to solve the 

governing algebraic equations. The boundary conditions, 

initial conditions, and set-up settings are listed in the table-2. 

2.2.2. Model CFD  

Numerical Fluid Dynamics is a means of applying 

numerical methods to analyze equations governing heat 

transfer and fluid dynamics to obtain solutions to fluid flow 

problems [28]. For this, computers need discretized algebraic 

equations derived from continuous differential equations to 

obtain solutions. In the ANSYS Forte package solvers, there 

are governing equations that govern the calculation process. 

These equations are, more precisely, conservation equations 

that derive from the driving equations (1), the Navier-Stokes 

equation for the conservation of momentum (2), the space 

conservation equations (3), and energy conservation (4) [26]. 

  

The above equations are necessary for flow simulations 

and modelling. As for simulations, they consist of Direct 

Numerical Simulation (DNS) and large turbulence simulation 

(LES). DNS and LES have specific applications with 

relatively higher calculation costs. 

Table 2. Boundary and initial conditions 

Turbulence model SST-k Epsilon 

Inlet boundary conditions Inlet pressure 1bar 

Outlet boundary conditions Outlet pressure 1.23bar 

Time step 10-5 sec 

Initial gas temperature 372.12 K 

Initial swirl ratio 1.5 

Initial swirl profile factor 3.11 

Sector angle 51.42 deg 

Head temperature 470K 

Liner temperature 420 K 
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However, a simpler approach is adopted for numerical 

flow studies, the Reynolds Averaged Navier-Stokes (RANS) 

method. The RANS method is recognized for its seniority in 

terms of CFD analysis. It is very simple, requires little time 

for calculations, and is very effective for the analysis of 

turbulent flows. ANSYS Forte, which is the solver used for 

this work, integrates the RANS approach and is capable of 

simulating the average flow field. This approach uses the 

RANS equations themselves (5), (6), and the Reynolds stress 

equation (7) presented below [29–30]. 
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2.2.3. The NOx Formation Model 

The mechanism of NO formation has been studied by 

many researchers. Zeldovich et al., however, have shown in 

their work the particular role of certain reactions in the 

formation of NO. The concentration of NO is calculated 

decoupled from the combustion phenomenon by a post-

treatment procedure based on the reversible reactions of the 

Zeldovich mechanism: 

 

       
d[NO]

dt
= 

2R{1−([NO]/[NO]e)2}

1+(
[NO]

[NO]e)R1
/(R2+R3)

                  (8) 

 

Where the following notations have been Introduced, 

designating by [NO]e the concentrations. The concentration of 

NO in equation (7) can be converted into a mass fraction as:  
 

   
dXNO

dt
=

2(
MNO
ρc.v

)R1{1−([NO]/[NO]e)2}

1+(
[NO]

[NO]e)R1
/(R1+R3)

              (9) 

Soot Formation 

For soot, an empirical model is used, considering two 

concurrent reactions: soot formation and its oxidation. It is 

easier to implement with the CFD program as it provides 

empirical equations that need to be adjusted to match the 

experimental profile of soot. One of these models most 

commonly used in the literature was proposed in 1983 by 

Hiroyasu et al., which is directly applicable to the simulation 

of internal combustion engines. This model was 

implemented by Feiyang et al. [1] to develop a diesel engine 

and is confronted with other models. It follows the equations 

that calculate the rate of soot formation using the rate of soot 

formation and the rate of oxidation in the Arrhenius-type 

equations: 
 
𝑑𝑚𝑠𝑜𝑜𝑡

𝑑𝑡
= ( 

𝑑𝑚𝑠𝑜𝑜𝑡

𝑑𝑡
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Where  

𝑚𝑠𝑜𝑜𝑡  is the mass of net soot formed, 𝑚𝑓𝑢𝑒𝑙 is the mass 

of fuel vaporized, 𝑋0 is the molar fraction of oxygen,  

𝐸𝑓 and 𝐸0 are the activation energies of soot formation and 

oxidation, respectively, 𝐴𝑓 and  𝐴0 are parameters that can be 

adjusted to match the simulation to the experiment. 

 

Injection Model 

The KH-RT model estimates that the disruption of the 

liquid is due to two types of instabilities: the first is the Kelvin-

Helmholtz type. In his study, Reitz gets the wavelength AKH 

and the rate of increase ΩKH of the fastest-growing wave. 

Based on the dimensionless numbers of the problem, Reitz 

obtains the following correlations from the results of [31]: 

 

             AKH =
9.02r0(1+0.45√Z )(1+0.4Ta

0.7)

(1+0.865We1.67)0.7             (13) 

 

             ΩK.H. =
0.34+0.38We1.5

(1+Z)(1+1.4T0.6)
√

σ

ρlr
3                  (14) 

 

Model of Heat Transfer in the Engine Walls 

The multidimensional analysis of the heat transfer inside 

the engine is performed by solving the following heat 

diffusion equation: 

 

               ∇(k∇T) = ρcp
∂T

∂t
                   (15) 

 

Several methods of solving these equations are discussed 

in the literature, all of which have as their main objective the 

calculation of the distribution of temperature and heat flux 

through the combustion engine parts [32]. Jafari et al. [33] 

perform an iterative analysis between the 3D KIVA II CFD 

code and a finite element thermal conduction code to estimate 

the engine operating characteristics based on heat losses. Then 

Trujilo et al. [34] present a methodology to predict the 

temperature of the inner surface of the cylinder using a finite 

element model. 

 



Fabrice Parfait Nang Nkol et al. / IJETT, 71(10), 163-172, 2023 

 

167 

3. Results and Discussion 
3.1. Model Validation 

 
(a) 

 

 

 
(b) 

Fig. 3 Model validation:  (a) Validation of the model for pressure (b) 

Validation of the model for heat release rate 

The experimental data mentioned above validated the 

CFD model simulated in this study. The condition of this 

engine operating at an engine speed of 1500 rpm with an 

IMEP of 1 MPa was chosen for this numerical study. Figure 3 

below shows the pressure and heat release validations between 

the measured and calculated values for the diesel engine. We 

can see that the concordance of the pressure traces is good for 

validation. Although it overestimates the initial heat release, 

this model predicts the pressure and heat release rate trend 

better and then captures the overall combustion 

characteristics. The expected ignition delay period and the 

duration of diesel combustion are observed. 

3.2. Analysis and Discussion  

3.2.1. Effect of Engine Speed on Engine Parameters and 

Pollutants 

In full variation of the engine speed, the injection of the 

fuel can, in some cases, cause a quantity of unburned fuel at 

the end of the cycle in the combustion chamber. By delaying 

the injection, the time required for the air/fuel mixture to 

achieve better combustion is reduced, leading to a 

considerable reduction in the engine consumption rate. This 

reduced fuel consumption associated with delayed injection 

will result in a large amount of unburned fuel. From then on, 

the heat accumulated at the end of the cycle will be released, 

reducing the injection delay, as shown in Fig. 4b. It is noted 

that to obtain a large part of the energy of the pulverized fuel, 

the injection must be done at about 15 degrees ATDC for the 

higher engine speed and about 10 degrees ATDC for the low 

engine speed. 

Figures 4e and 4f show that the fuel injection timing 

probably affects the pollutant emissions at varying engine 

speeds, more precisely, NOx and soot. When fuel injection 

occurs before 15 degrees ATDC at maximum engine speed, 

which is 2000 RPM for this study, we observe a large 

reduction in the level of NOx and soot particles of about 38% 

and 40%, respectively, between the minimum speed (1500 

RPM) and the maximum speed (2000 rpm). This is due to the 

fact that the ignition time is long enough for the fuel to be fully 

injected before ignition takes place and has premised 

combustion, as shown in Fig. 4b. In addition, the evaporation 

of the fuel before ATDC causes a decrease in the temperature 

in the cylinder, causing a delay in the ignition of the fuel. This 

delayed ignition time is certainly responsible for reducing 

NOx and soot emissions. The reduction of these pollutants can 

also be explained by the fact that a longer time for a mixture 

with a precipitated injection will lead to a poor mixture. 

The variation of the average temperatures in the cylinder 

(Fig. 4c) reflects the exact behavior of the cylinder pressures 

(Fig. 4a). Most of the fuel's energy is released when it is 

injected earlier before the ATDC, which will result in higher 

engine temperature peaks at high rpm variations of about 25% 

between minimum and maximum. At low engine speeds, the 

exhaust temperature increases because the fuel injection is 

delayed. By varying the engine speed, the work can reach its 

maximum. There is a well-defined fuel injection range, so this 

work is at its maximum at maximum engine speed. The 

cylinder pressure visible in Fig. 4a clearly indicates that at 

1500 RPM, the fuel injects in advance and ignites faster, hence 

the increase in cylinder pressure before the piston reaches the 

ATDC. This will lead to a loss of much of the work generated 

at low engine speeds. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 4 Variation: Pressure (a), Heat release rate (b), Temperature (c), Wall heat transfer (d), Nox (e), soot (f). 
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Previous studies show that the movement of air affects the 

combustion process and thus significantly influences the 

formation of pollutant emissions [35–37]. In this study, the 

engine's operation was simulated over a wide range of engine 

speeds (1500 to 2000 RPM) with a pitch of 100 RPM, and a 

significant variation of different parameters was observed. All 

these parametric variations in combustion and pollutant 

formation mean that, at higher engine speeds, fuel is consumed 

in a much shorter period of time by the improved mixture of air 

and fuel, according to [37] research. The shorter combustion 

time allows more time for the formation of pollutants (soot and 

NOx).  

 

In addition, the right air/fuel mix reduces soot and NOx by 

reducing the portion of fuel-rich regions. Therefore, high 

engine speed is expected to significantly reduce Nox and Soot 

emissions, as shown in Figs. 4e and 4f. 

These results are consistent with the study of [38], which 

shows that when the engine speed increases, the maximum 

torque decreases because the ratio of excess air continues to 

increase due to the appearance of the flame. As a result, the 

exhaust gas temperature rises immediately, which could lead to 

an increase in heat transfer in the engine walls. According to 

Fig. 4d, this increase is about 30% for this study. Harsh Goyal 

et al. [39] show in their research that compression ignition with 

a homogeneous load offers both high efficiency and very low 

NOx and soot emissions. During the engine's operating range, 

this must be limited by an excessive pressure rate that increases 

the high load area, which is the main reason for the engine 

clicking. For this problem, illustrated by combustion, the 

ignition time must be delayed after the ATDC, while the correct 

control of the gas temperature and combustion time must be 

adequately ensured. 

Table 3. Contours of combustion parameters 

Engine Speed 

rpm 
Temperature Turbulence Velocity Internal Energy Thermal Conductivity 

1500 

    

1700 

    

1800 

    

1900 

    

2000 
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  Table 3 above provides a more detailed view of some of 

the diesel engine CFD simulation parameters operating at 

speeds ranging from 1500 to 2000 RPM. It is noted that there 

is a temperature variation that decreases with the increase in 

engine speed before the piston reaches the ATDC, an increase 

in heat transfer, the speed of the turbulence phenomenon, and 

the internal energy of the engine. Studies conducted by [40, 

41] show that increasing engine speed has a direct effect on 

turbulence, which in turn greatly influences engine 

combustion.  

  The main effect of turbulence is to affect the parietal heat 

transfer and thus to change the mixture's temperature, which 

in turn influences the moment of ignition and the burning time, 

which results in a reduction of pollutant emissions if the 

combustion phenomenon remains ideal. 

4. Conclusion 
For this study, a CFD mathematical model was adopted, 

validated, and executed using ANSYS FORTE software to 

analyze the effect of engine speed on the combustion and 

pollutant formation processes. Emphasis was placed on the 

variation of NOx, soot, and key combustion parameters, 

namely heat release, cylinder pressure, temperature, and heat 

transfer. This research shows that the varying effects of 

injection timing and velocity have a significant impact on the 

combustion process and, therefore, also on pollutants. For 

simulations carried out at 1500 AND 2000 RPM, we recorded 

an increase in cylinder pressure (10%), heat release (20%), 

temperature (8%), and heat transfer coefficient (10%). Then, 

there was a significant reduction in NOx (25%) and soot 

(40%) emissions for the same range.
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