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Abstract - A malware attack is the most prominent cyberattack where malware (malicious software) implements unauthorized 

action on the target's system. The malware (otherwise called a virus) incorporates different attacks like spyware, command and 

control, ransomware, etc. Cyber attackers create, sell and use malware for various reasons; however, it is more commonly used 

to steal business, personal or financial data. Machine Learning (ML) approaches, and Deep Learning (DL) approaches are 

currently utilized to give an effective solution to overcome these cyberattacks. With the advancement of the ML and DL 

approaches, a classification model has been commonly exploited in this study to categorize whether the file is malicious or not. 

This article introduces a new Binary Mayfly Optimization with Deep Wavelet Network-based Malware Detection (BMFO-

DWNMD) for cybersecurity. The presented BMFO-DWNMD technique focuses on the recognition and classification of malware 

using the classification and Feature Selection (FS) process. In the proposed BMFO-DWNMD approach, the BMFO approach 

is exploited for the optimum Feature Subset (FSB) selection. Next, the BMFO-DWNMD model uses a DWN classifier to 

recognize malware attacks. Lastly, the African Vulture Optimization Algorithm (AVOA) is exploited for the process of 

hyperparameter tuning. A comprehensive set of simulations has been performed to depict the investigational validation of the 

BMFO-DWNMD model. The experimental outcomes illustrate an enhanced achievement of the BMFO-DWNMD model over 

other models. 
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1. Introduction  
Cyber security experts focused more on risk evaluation 

and devised methods for mitigating. Devising a successful 

approach was a plan set in the cyber defence area. ML even 

turned out to be a significant concern in data protection 

through ML, which was successful in cyber defence [1]. The 

exponential growth in Cloud Computing (CC), evolutionary 

computation and networking resulted from unprecedented 

advances in computational, computing, and storage 

technology [2]. As the earth is being digitalized rapidly - there 

occurs an increasing need for comprehensive and 

sophisticated data security and privacy problems to fight 

security threats, which becomes more complex [3].  

 

Today, huge volumes of data are produced all over the 

grids, raising accessibility for real-time system monitoring. 

Sightseeing such data significantly boosts the prognosis, 

performance monitoring, and diagnosis of anomalies in 

complicated systems [4]. Historical data describing the 

system's operation can assist in finding anomalies and 

effective attacks. But, conventional Bad Data Detection 

(BDD) methods are unprepared for real-time storage and 

computational problems due to the massive quantity of data 

produced in the smart grid [5]. 

 

Such difficulties uncover the possibility of utilizing data 

analytical approaches, like ML, for managing complicated 

structure data sets with AI to prevent and detect cyber-attacks 

[6]. ML techniques are used for analyzing different 

combinations of measurements using control actions, AMI, 

and states by learning their paradigms [7]. It can identify False 

Data Injection (FDI) assault by learning the non-linear, 

complicated relations between measurements. As mentioned 

in the studies, this can be made similar to successful methods 

implemented for other power system problems. It is known to 

predict software change proneness, categorize network traffic, 

DDoS detection, perform software metrics estimation, Botnet 

detection, etc. [8].  

 

The success of DL in big data areas can be implemented 

to fight cyber threats as mutations of assaults are like minor 

changes in, for example, imagery pixels [9]. It denotes that DL 

in security learns the true face (legitimate or attack) of cyber 

data on even minor changes, representing the resiliency of DL 
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to minor changes in network data by constituting a high-level 

invariant representation of the training dataset [10]. 
 

This study designs a new Binary Mayfly Optimization 

with Deep Wavelet Network-based Malware Detection 

(BMFO-DWNMD) for cybersecurity. The presented BMFO-

DWNMD technique focuses on the recognition and 

classification of malware using the classification and Feature 

Selection (FS) process. In the proposed BMFO-DWNMD 

approach, the BMFO approach is exploited for the optimum 

FSB selection. Next, the BMFO-DWNMD model uses a 

DWN classifier to recognize malware attacks. Lastly, the 

African Vulture Optimization Algorithm (AVOA) is exploited 

for the process of hyperparameter tuning. A comprehensive 

set of simulations has been performed to depict the 

investigational validation of the BMFO-DWNMD model.  

2. Literature Review 
Al-Abassi et al. [11] present a DL technique for 

constructing novel balanced representations of imbalanced 

databases. A novel representation is provided as an ensemble 

DL attack detection method specially planned for the ICS 

platform. The presented attack detection scheme leverages 

Decision Tree (DT) and Deep Neural Networks (DNNs) 

techniques for identifying cyber-attacks from novel 

representations.  

 

Sarker et al. [12] presented an Intrusion Detection Tree 

("IntruDTree") ML-oriented safety method that initially 

considered the hierarchy of privacy aspects as per their 

significance and then framed a tree-oriented standardized ID 

method related to the selective significant attributes. This 

technique was ineffective concerning the prediction outcome 

for hidden test cases but even lessened the computing 

difficulty of the method by diminishing the feature 

dimension.  

 

In [13], modelled a data-driven cyberattack recognition 

technique for islanded DC microgrids. Data can be gathered 

by observing the performance of intellectual attackers who can 

bypass the classical cyberattack recognition systems and 

disturb the system's operation. The Reinforcement Learning 

(RL) method verifies these intellectual attackers' activities, 

who use the vulnerability of index-related cyberattack 

recognition algorithms, like discordant detection systems.  

 

In [14], the author provides the complete expansion of a 

novel intellectual and independent DL-related detection and 

classifier mechanism for cybercrime in IoT communication 

networking that uses the supremacy of CNN, IoT-related ID 

and Classifier System utilizing CNN (IoT-IDCS-CNN). The 

presented IoT-IDCS-CNN achieves calculation that uses the 

vigorous Compute Unified Device Architecture (CUDA) 

based NVIDIA GPU and parallel processing that uses I9-core-

related high-speed Intel CPUs.  

Elsisi et al. [15] presented a powerful IoT structure for 

monitoring the online status of Gas-Insulated Switchgear 

(GIS) rather than the conventional observing techniques. The 

presented IoT structure can be extracted from the Cyber-

Physic System, namely CPS in Industry 4.0 conception. 

However, the categorization of the cyberattacks and GIS 

insulation shortcomings indicates core difficulties against the 

application of IoTs for tracking the GIS status and online 

monitoring. So, advanced ML approaches were used to 

identify cyber-attacks to verify and paradigm. In [16, 17], the 

cognitive ML-assisted Attack Detection structure was 

modelled for securely sharing medical datasets. The 

Healthcare CPS will effectively spread the gathered data to 

cloud storage. This presented method depends on the patient-

centric model that protects the data on trust-worthy devices 

such as end-user control data sharing access and end-users' 

mobile phones. 

3. The Proposed Model 
The present article proposes an innovative BMFO-

DWNMD methodology for automatic malware recognition to 

accomplish cybersecurity. The presented BMFO-DWNMD 

methodology concentrated on classifying and detecting 

malware using FS and the classifying process. Fig. 1 

demonstrates the comprehensive procedure of the BMFO-

DWNMD algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall procedure of BMFO-DWNMD system 
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3.1. Module I: MFOFS Technique 

In the presented BMFO-DWNMD technique, the BMFO 

technique is exploited for the optimum FSB selection. The 

MFO was established to optimize the non-interrupted search 

space [18]. Though, the nature of FS problems is based on an 

initial binary solution in the feature space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 MFO flow 

As a result, certain operators of the MFO must be adapted 

to let the model for optimizing in the binary searching range. 

Calculating the length amid global and current solutions is the 

most popular swarming behaviour (for example, PSO). Based 

on this, it has been demonstrated that the transfer function is 

the simplest operator that is used for converting the continuous 

optimizer into binary. They are applied without any 

modifications to the essence and structure of the model. The 

transfer function maps the updating process to a binary 

updating process. Accordingly, the component of the 

relocated solution is a constraint to the "zero" or "one". In this 

work, the sigmoidal transfer function is exploited to convert 

the typical MFO as Binary MFO represents the (BMFO). 

 

The sigmoid function's primary goal is to describe a 

possibility for all the components of the solutions ranging 

from zero to one. Eberhart and Kennedy used to change the 

PSO into the binary search. All the moths will upgrade their 

location in the binary feature space by Eq. (3) according to the 

probabilities attained from Eq. (2). The binary version of 

BMFO has been demonstrated in Algorithm 1. 

 

𝛥𝑀 = 𝐷𝑖 × 𝑒𝑏𝑡 × 𝑐𝑜𝑠(2𝛱)                      (1) 

 

𝑇(𝛥𝑀𝑡) =
1

1 + 𝑒𝛥𝑀𝑡
                             (2) 

 

𝑀𝑖
𝑑(𝑡 + 1) = {

0, 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑇𝐹(𝑀)

1, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝑇𝐹(𝑀)
                     (3) 

 

Algorithm 1: Pseudocode of BMFO 

Input: Max_iteration, 𝑛 and 𝑑 represents the moth and 

dimension numbers 

Output: Estimated global solution 

Initializing the location of the moth 

While 𝑙 ≤ 𝑀𝑎𝑥_iteration do 

Upgrade flame number 

𝑂𝑀 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑀); 

if 𝑙 == 1 then 

𝐹 = sort (𝑀); 

𝑂𝐹 = sort (𝑂𝑀); 

Else 

𝐹 = sort (𝑀𝑙−1, 𝑀𝑙); 

𝑂𝐹 = sort (𝑂𝑀𝑙−1, 𝑂𝑀𝑙); 

End if 

For 𝑖 = 1: 𝑛 do 

For 𝑗 = 1: 𝑑 do 

Upgrade 𝑟 and 𝑡; 

Evaluate 𝐷 in terms of the respective moth; 

Upgrade the step vector of moth ∆𝑀. 

Evaluate the probability. 

Upgrade the location vector of the moth  

End for 

End for  

𝑙 = 𝑙 + 1; 

End while 
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In the study, the classifier of KNN is utilized for 

evaluating every feature set. The objective of FS is to 

instantaneously accomplish two contrary targets, which are 

minimizing and maximizing the feature numbers and accuracy 

of the classification. Now, the Fitness Function (FF) in Eq. (4) 

is exploited for evaluating the carefully chosen subset in every 

approach where 𝛼𝛾𝑅(𝐷) denotes the error rate, |𝑅| indicates 

the chosen feature numbers, |𝐶| shows the feature numbers in 

the original data, and 𝛼 ∈ [0,1], 𝛽 = (1 − 𝛼) represents two 

variables that provide an indication regarding the length of 

FSB and importance of classification based on the 

recommendation. Fig. 2 illustrates the flowchart of MFO. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
                         (4) 

 

3.2. Module II: DWN-based Classification Model 

At this stage, the BMFO-DWNMD technique uses a 

DWN classifier to recognize malware attacks. A Wavelet 

network is the fusion between neural and wavelet networks 

[19]. It is composed of three layers: an initial layer with 𝑁𝑖 

entries, a Hidden Layer (HL) comprising 𝑁𝑤 wavelets and the 

output layer that accommodates the weighted output of the 

wavelet networks. It exploits a feedforward propagation 

technique from input to output neurons.  

 

Moreover, it contains a specific vicinity with the structure 

of the NN. The major comparison between both networks is 

that they compute linear incorporation of non-linear functions 

relying on these combinations' adjustable parameters (dilation 

and translation). But, the transfer function exploited by the 

hidden cells is their main difference. The steps for 

constructing the Deep Wavelet Network (DWN) are: 

 
Step 1: Generate a wavelet network using a single HL where 

the transfer function depends on the wavelet families. 

Step 2: Generate an additional wavelet network with the last 

layer detached to create the features attained in the 

initial HL. 

Step 3: Perform training for the second AE through the 

feature produced from the initial AE (Step 2).  

Step 4: Eliminate the last layer for generating the features 

attained in the second HL. 

Step 5: Stack the encoder from the AE together to form a 

DNN. 

Step 6: Steps 3, 4, and 5 are repeated based on the desired 

amount of HLs. 

 

Afterwards, in the learning stage, organize the vector 

attained in the matrix where every column signifies a picture 

such that the classification stage can be employed: 

 

Where 𝑊𝑖𝑗 indicates the weight connecting the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

output of neurons. 𝑎𝑖 shows the dilation coefficient of the 𝑖𝑡ℎ 

neuron, bi denotes the translation coefficient of the 𝑖𝑡ℎ 

neuron. The method depends on two HLs whereby the wavelet 

basis function operates as the activation function 𝜓. During 

the learning stage, the feedforward propagation algorithm is 

applied. The usage of the model is to decrease the error 

generated by the network, thereby correcting this parameter 

that was determined previously: the translations, weights and 

dilations. Then, applied the quadratic cost function for 

measuring these errors: 

 

𝐸 =
1

2
∑(

𝑇

𝑡=1

𝑦𝑑(𝑡) − 𝑦(𝑡))2                       (5) 

 

In Eq. (5), 𝑦(𝑡) represents the output provided by the 

network; 𝑦𝑑(𝑡) indicates the preferred output, and it can be 

formulated by: 

𝑦(𝑡) = ∑ 𝑤𝑠

𝑆

𝑠=1

. 𝜓𝑠 (
𝑡 − 𝑏𝑠

𝑎𝑠

)                     (6) 

 

The GD algorithm is selected for the error minimization 

technique. In all the iterations, the images are proposed to the 

input or output network and later transmit the computation of 

the layer to others until the layer of output. It comprises 

altering the setting in the reverse direction to the error gradient 

function: 

 

𝑉𝑡+1 = 𝑉𝑡 − 𝜀(𝑡)
𝜕𝐸

𝜕𝑉
                                   (7)  

 

In Eq. (7) 𝑉𝑡 and 𝜀(𝑡) signifies the parameter {𝑤, 𝑎, 𝑏} and 

pitch of gradient at the 𝑡𝑡ℎ iteration. While placing 𝑒(𝑡) =
𝑦𝑑(𝑡) − 𝑦(𝑡), the following function is derived: 

 

𝜕𝐸

𝜕𝜔𝑖𝑗

= ∑ 𝑒

𝑇

𝑡=1

(𝑡)𝜓(𝜏)                                 (8) 

 

𝜕𝐸

𝜕𝑎𝑖

= ∑ 𝑒

𝑇

𝑡=1

(𝑡)𝜔𝑖𝑗

𝜕𝜓(𝜏)

𝜕𝑎𝑖

                             (9) 

 

𝜕𝐸

𝜕𝑏𝑖

= ∑ 𝑒

𝑇

𝑡=1

(𝑡)𝜔𝑖𝑗

𝜕𝜓(𝜏)

𝜕𝑏𝑖

                          (10) 

 

Where 𝜏 =
𝑡−𝑏

𝑎
. The parameter {𝑤, 𝑎, 𝑏} has been 

randomly initialized. The alteration of this setting is 

accomplished as follows: 
 

𝜔(𝑡 + 1) = 𝜔(𝑡) + 𝜇𝑤 △ 𝜔                      (11)  

 

𝑎(𝑡 + 1) = 𝑎(𝑡) + 𝜇𝑎 △ 𝑎                       (12) 

 

𝑏(𝑡 + 1) = 𝑏(𝑡) + 𝜇𝑏 △ 𝑏                       (13) 
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From the expression, 𝜇𝑤, 𝜇𝑎 and 𝜇𝑏 denotes the rate of 

learning rate of the three networking setups. 

 

△ 𝜔 = −
𝜕𝐸

𝜕𝜔
, △ 𝑏 = −

𝜕𝐸

𝜕𝑏
, △ 𝑎 = −

𝜕𝐸

𝜕𝑎
 

3.3. Module III: AVOA-Based Parameter Optimization  

Finally, the AVOA is exploited for the hyperparameter 

tuning process. The AVOA is a metaheuristic technique based 

on the navigational and feeding behaviours of African vultures 

[20]. Also, the presented algorithm is extremely adaptable and 

flexible when compared to other metaheuristic approaches and 

has a lower computation difficulty. The exploitation and 

exploration phases of AVOA are explained briefly in the 

following. The possibility of selecting a vulture for guiding 

others to one of the optimum solutions in each ensemble is 

evaluated as follows: 
𝑃(𝑖 + 1)

= {
𝑅(𝑖) − |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| × 𝐹 𝑖𝑓𝑃1 ≥ 𝑟𝑎𝑛𝑑𝑝1

𝑅(𝑖) − 𝐹 + 𝑟1 × ((𝑈 − 𝐿) × 𝑟2 + 𝐿) 𝑖𝑓 𝑃1 < 𝑟𝑎𝑛𝑑𝑝1

 (14) 

 

In Eq. (14), 𝑃(𝑖) indicates the location of the vulture in 

the existing iterations and 𝑃(𝑖 + 1) denotes the location at the 

following iterations, correspondingly. Furthermore, 𝐹 denotes 

the satiation vulture rate, 𝑈 and 𝐿 indicate the upper and lower 

bounds, whereas 𝑟1 and 𝑟2 denote the random variable, and 𝑋 

shows the vector that depicts the random movement of the 

vulture. Furthermore, 𝑟𝑎𝑛𝑑𝑝1
 is a randomly generated value 

within [0, 1]: 
 

𝑅(𝑖) = {
𝐵𝑒𝑠𝑡 𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 𝑖𝑓 𝑃𝑖 = 𝐿1

𝐵𝑒𝑠𝑡 𝑉𝑢𝑙𝑡𝑢𝑟e2 𝑖𝑓 𝑃𝑖 = 𝐿2
                             (15) 

 

In Eq. (15), Best 𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 and Best 𝑉𝑢𝑙𝑡𝑢𝑟𝑒2 denote the 

first and second-group optimum solution at the existing 

iteration. Beforehand the optimization search starts, both 𝐿1 

and 𝐿2 are initialized where the value lies within [0, 1] and the 

sum equals 1. Two approaches are provided in this stage based 

on the satiation vulture rate. Once the vulture (F) 's satiation 

rate is superior or equivalent to 0.5, then the vulture fights for 

food in the circular motion that is evaluated as follows: 
 

𝑃(𝑖 + 1) =

{
|𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| × (𝐹 + 𝑟3) − (𝑅(𝑖) − 𝑃(𝑖)) 𝑖𝑓 𝑃2 ≥ 𝑟𝑎𝑛𝑑𝑝2

𝑅(𝑖) − (𝑆1 + 𝑆2) 𝑖𝑓 𝑃2 < 𝑟𝑎𝑛𝑑𝑝2

       (16) 

 
Where 𝑆1 and 𝑆2 indicate the spiral flight movement that 

is formulated using Eqs. (17) and (18): 
 

𝑆1 = 𝑅(𝑖) × (
𝑟4×𝑃(𝑖)

2𝜋
) × 𝑐𝑜𝑠(𝑃(𝑖))       (17) 

 

𝑆2 = 𝑅(𝑖) × (
𝑟5×𝑃(𝑖)

2𝜋
) × 𝑠𝑖𝑛(𝑃(𝑖))        (18) 

 

Where 𝑅(𝑖) is evaluated in Eq. (15) and 𝑟3, 𝑟4, and 𝑟5 

represent a random variable with a value ranging from zero to 

one. Furthermore, 𝑟𝑎𝑛𝑑𝑝2
 and 𝑟𝑎𝑛𝑑𝑝3

 indicate the random 

integer in (0,1) to attain the suitable approach in the 

exploitation stage. Furthermore, other vultures have turned out 

to be aggressive in the process of foraging If 𝐹 < 0.5 and is 

assessed by the following expression: 

 
𝑃(𝑖 + 1) =

{

𝐴1+𝐴2

2
𝑖𝑓 𝑃3 ≥ 𝑟𝑎𝑛𝑑𝑝3

𝑅(𝑖) − |𝑅(𝑖) − 𝑃(𝑖)| × 𝐹 × 𝐿𝑒𝑣𝑦(𝑋 × 𝑅(𝑖)) 𝑖𝑓 𝑃3 < 𝑟𝑎𝑛𝑑𝑝3 

  (19) 

 

In Eq. (19), 𝐴1 and 𝐴2 denote the vulture movement and 

are characterized as follows: 

 

𝐴1 = 𝐵𝑒𝑠𝑡 𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) −
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)×𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖)−𝑃(𝑖)2
× 𝐹      (20) 

 

𝐴2 = 𝐵𝑒𝑠𝑡 𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) −
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)×𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖)−𝑃(𝑖)2 × 𝐹      (21) 

 

Moreover, the Levy movement enhances the AVOA 

approach's effectiveness. The control parameter of AVOA 

used was fixed as 0.6, 0.4, 0.6, 0.8, and 0.2 for 𝑃1, 𝑃2, 𝑃3, 𝐿1 

and 𝐿2, correspondingly. Lastly, the AVOA technique proved 

to be effective in resolving different kinds of optimization 

problems. The steps of AVOA are given in the following: 

 

• Define the size of the population and the maximal amount 

of iterations; 

• Calculate the vulture fitness values; 

• Choose 𝑅(𝑖) by implementing Eq. (15) for each vulture; 

• Use Eq. (17) to calculate the location of the optimum 

vulture; 

• Based on the satiation rate of the vulture, Eq. (16) or (19) 

is used to upgrade the location of the vulture; 

• Save the optimum vulture location and then calculate the 

FF value if the maximum iteration number is not attained. 

 

The AVOA approach derives an FF to accomplish good 

efficiency of classification. The AVOA approach also 

determines a positive integer to indicate the greater candidate 

solution's achievement. At present, the lessening of the 

classifier error rate can be considered as an FF. 

    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

               =
𝑛𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100       (22) 

 

4. Performance Validation 
In this segment, the investigational validation of the 

BMFO-DWNMD approach is investigated by employing a 

benchmark dataset [21]. It involves 10868 samples with nine 

class labels, namely Ramnit depicting C-1, Lollipop depicting 

C-2, Kelihos_Ver3 depicting C-3, Vundo depicting C-4, 

Simda depicting C-5, Tracur depicting C-6, Kelihos_Ver1 

depicting C-7, Obfuscator.ACY depicting C-8, and Gatak 

depicting C-9 correspondingly is depicted below. 
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Table 1. Dataset details 

Labels No. of Instances 

C-1 1541 

C-2 2478 

C-3 2942 

C-4 475 

C-5 42 

C-6 751 

C-7 398 

C-8 1228 

C-9 1013 

Overall 

Instances 
10868 

 

The confusion matrices of the BMFO-DWNMD model 

under malware detection are portrayed in Fig. 3. The outputs 

portrayed that the BMFO-DWNMD model has recognized all 

the malware outbreaks competently. 

 

In Table 2 and Fig. 4, the comprehensive malware 

recognition outputs of the BMFO-DWNMD method are 

investigated on 80 and 20 percent of TRS/TSS data. The 

outputs indicated that the BMFO-DWNMD method has been 

properly classified under both sets. As a sample, with 80% of 

TRS, the BMFO-DWNMD methodology reaches average 

𝑎𝑐𝑐𝑢𝑦 of 97.09%, 𝑠𝑒𝑛𝑠𝑦  of 70.27%, 𝑠𝑝𝑒𝑐𝑦 of 98.25%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 71.67%, MCC of 70.28%, and 𝐺𝑚𝑒𝑎𝑛  of 77.67%. Also, with 

20% of TSS, the BMFO-DWNMD methodology achieves 

average 𝑎𝑐𝑐𝑢𝑦 of 97.14%, 𝑠𝑒𝑛𝑠𝑦  of 69.31%, 𝑠𝑝𝑒𝑐𝑦 of 

98.27%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 71.18%, MCC of 70.29%, and 𝐺𝑚𝑒𝑎𝑛  of 

76.91%. 

 

 
Fig. 3 Confusion matrices of BMFO-DWNMD approach (a-b) and (c-d) 80:20 and 70:30 TRS/TSS 
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Table 2. Malware identification output of BMFO-DWNMD technique 

on 80 and 20 percent of TRS/TSS 

Labels 𝑨𝒄𝒄𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 𝑮𝒎𝒆𝒂𝒏 

Training (80%) 

C-1 95.91 85.91 97.56 85.63 83.25 91.55 

C-2 95.66 92.86 96.49 90.74 87.95 94.66 

C-3 95.99 95.51 96.16 92.75 90.05 95.84 

C-4 97.87 68.70 99.19 73.68 72.79 82.55 

C-5 99.61 00.00 100.00 00.00 00.00 00.00 

C-6 96.41 68.52 98.53 72.92 71.17 82.16 

C-7 97.24 41.74 99.37 52.76 53.44 64.41 

C-8 97.45 90.11 98.37 88.74 87.32 94.15 

C-9 97.69 89.07 98.58 87.83 86.56 93.70 

Average 97.09 70.27 98.25 71.67 70.28 77.67 

Testing (20%) 

C-1 96.14 90.20 97.11 86.79 84.62 93.59 

C-2 96.32 95.29 96.62 92.08 89.77 95.95 

C-3 95.54 94.36 95.99 92.15 89.08 95.17 

C-4 97.93 69.39 99.28 75.14 74.34 83.00 

C-5 99.63 00.00 100.00 00.00 00.00 00.00 

C-6 96.46 63.77 98.67 69.57 68.02 79.32 

C-7 97.56 35.06 99.86 50.47 55.33 59.17 

C-8 97.24 88.33 98.44 88.33 86.76 93.24 

C-9 97.42 87.44 98.43 86.14 84.73 92.77 

Average 97.14 69.31 98.27 71.18 70.29 76.91 
 

 

Fig. 4 Malware identification output of BMFO-DWNMD technique on 

80 and 20 percent of TRS/TSS  

In Table 3 and Fig. 5, the complete malware recognition 

outputs of the BMFO-DWNMD approach are inspected on 70 

and 30 percent of TRS/TSS data. The outputs specified that 

the BMFO-DWNMD system has accurately classified under 

both sets. For example, with 70% of TRS, the BMFO-

DWNMD system reaches average 𝑎𝑐𝑐𝑢𝑦 of 97.92%, 𝑠𝑒𝑛𝑠𝑦  of 

74.05%, 𝑠𝑝𝑒𝑐𝑦 of 98.77%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 75.67%, MCC of 74.78%, 

and 𝐺𝑚𝑒𝑎𝑛  of 80.18%. Furthermore, with 30% of TSS, the 

BMFO-DWNMD system achieves average 𝑎𝑐𝑐𝑢𝑦 of 98.15%, 

𝑠𝑒𝑛𝑠𝑦  of 75.66%, 𝑠𝑝𝑒𝑐𝑦 of 98.90%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 77.11%, MCC 

of 76.18%, and 𝐺𝑚𝑒𝑎𝑛  of 81.23%.   

Table 3. Malware identification output of BMFO-DWNMD technique 

on 70 and 30 percent of TRS/TSS  

Labels 𝑨𝒄𝒄𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 𝑮𝒎𝒆𝒂𝒏 

Training (70%) 

C-1 97.98 95.34 98.42 93.13 91.98 96.87 

C-2 97.31 96.81 97.45 94.21 92.51 97.13 

C-3 98.01 98.12 97.97 96.43 95.09 98.05 

C-4 98.17 65.31 99.72 76.32 76.58 80.70 

C-5 99.57 00.00 100.00 00.00 00.00 00.00 

C-6 97.50 79.50 98.82 81.23 79.91 88.63 

C-7 97.70 54.01 99.41 63.92 63.93 73.27 

C-8 97.21 86.96 98.51 87.47 85.90 92.55 

C-9 97.86 90.43 98.59 88.28 87.13 94.42 

Average 97.92 74.05 98.77 75.67 74.78 80.18 

Testing (30%) 

C-1 98.19 93.95 98.86 93.42 92.38 96.37 

C-2 97.21 96.69 97.37 94.14 92.37 97.03 

C-3 98.50 98.96 98.33 97.21 96.21 98.64 

C-4 98.62 73.48 99.68 81.17 80.94 85.59 

C-5 99.72 00.00 100.00 00.00 00.00 00.00 

C-6 97.49 79.06 98.91 81.86 80.57 88.43 

C-7 97.88 58.56 99.27 65.33 64.71 76.24 

C-8 97.27 88.59 98.40 88.24 86.70 93.37 

C-9 98.50 91.62 99.28 92.59 91.76 95.37 

Average 98.15 75.66 98.90 77.11 76.18 81.23 
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Fig. 5  Malware identification output of BMFO-DWNMD technique on 

70 and 30 percent of TRS/TSS  

The TACC value and VACC value of the BMFO-

DWNMD methodology are tested on cyberattack achievement 

in Fig. 6. The figure is implicit that the BMFO-DWNMD 

methodology has depicted an improved achievement with 

greater TACC and VACC values. It is evident that the BMFO-

DWNMD approach has attained greater TACC outputs. 

 

 
Fig. 6 TACC and VACC output of BMFO-DWNMD technique 

 

Fig. 7 TLS and VLS output of BMFO-DWNMD approach 

The TLS value and VLS value of the BMFO-DWNMD 

technique have experimented on cyberattack achievement in 

Fig. 7. The figure indicated that the BMFO-DWNMD 

approach had depicted augmented achievement with lesser 

TLS and VLS values. It is evident that the BMFO-DWNMD 

approach has reached a minimum VLS output. 

A precise precision-recall inspection of the BMFO-

DWNMD system under the testing data is depicted in Fig. 8. 

The outputs stated that the system has given an outcome in 

greater values under total classes. 

 

 

Fig. 8 Precision-recall output of BMFO-DWNMD approach 

A short ROC evaluation of the BMFO-DWNMD 

technique under the testing data is described in Fig. 9. The 

outputs specified that the BMFO-DWNMD technique has 

shown its capacity to classify distinct classes. 

 

 

Fig. 9 ROC output of BMFO-DWNMD approach 

To ensure an enhanced achievement of the BMFO-

DWNMD model, far-reaching relative research is 

accomplished in Table 4 [22]. Fig. 10 exhibits a comparison 

research of the BMFO-DWNMD model over other techniques 

by means of 𝑎𝑐𝑐𝑢𝑦. The investigational outputs notified that 

the BMFO-DWNMD approach had better performance. It is 

noticed that the BMFO-DWNMD approach attains a higher 

𝑎𝑐𝑐𝑢𝑦 of 98.15%, whereas the linear-SVM, RBF-SVM, MLP, 
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CNN, and DLMD techniques obtain lower 𝑎𝑐𝑐𝑢𝑦 of 96.82%, 

93.82%, 97.18%, 95.62%, and 95.21% subsequently.  

Table 4. Relative evaluation of the BMFO-DWNMD method with other 

approaches 

Methods Accuracy (%) 
Computational  

Time (sec) 

BMFO-DWNMD 98.15 6.46 

Linear-SVM 96.82 14.23 

RBF-SVM 93.82 12.69 

MLP 97.18 18.2 

CNN 95.62 9.62 

DLMD 95.21 18.42 

 

 
Fig. 10 𝑨𝒄𝒄𝒖𝒚 evaluation of the BMFO-DWNMD method with other 

approaches 

 

Fig. 11 shows a comparative investigation of the BMFO-

DWNMD method with other methods in terms of CT. The 

simulation outcomes illustrated that the BMFO-DWNMD 

method attains effective results with a minimal CT of 6.46s. 

On the other hand, the linear-SVM, RBF-SVM, MLP, CNN, 

and DLMD technique accomplishes lower CT of 

14.23𝑠, 12.69𝑠, 18.2𝑠, 9.62𝑠,and 18.42𝑠 subsequently.These 

outputs show the enhanced achievement of the proposed 

technique for malware detection. 

 
Fig. 11 CT analysis of BMFO-DWNMD approach with other 

approaches 

5. Conclusion  
This article uses a novel BMFO-DWNMD approach for 

automatic malware detection to accomplish cybersecurity. 

The presented BMFO-DWNMD technique focuses on the 

recognition and classification of malware using classification 

and FS process. In the proposed BMFO-DWNMD approach, 

the BMFO approach is exploited for the optimum FSB 

selection. Next, the BMFO-DWNMD model uses a DWN 

classifier to recognize malware attacks. Lastly, the AVOA is 

exploited for the process of hyperparameter tuning. A 

comprehensive set of simulations has been performed to 

depict the investigational validation of the BMFO-DWNMD 

model. The experimental outcomes illustrate an enhanced 

achievement of the BMFO-DWNMD model over other 

models. In the future, the data clustering process can be 

exploited to reduce the computation complexity of the BMFO-

DWNMD technique. 
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