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Abstract - Conventional modelling approaches fall short of accurately capturing the complexities of Fused Deposition Modelling 

(FDM). This research proposes an Artificial Neural Network (ANN) model to predict the FDM process's material consumption, 

tensile strength, and dimensional accuracy. Inputs such as layer height, infill density, printing temperature, and printing speed 

are considered. A Face-Centered Central Composite Design (FCCCD) with 78 specimens is employed to design experiments 

(DOE). Material consumption is measured using a densimeter, while tensile strength is determined using a Universal Testing 

Machine (UTM). The performance of the ANN models is evaluated based on metrics like Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of 

determination (R2). The optimal ANN structure for material consumption prediction is found to be 4-19-14-1, achieving a low 

MSE of 0.00096. For tensile strength prediction, the best ANN structure is determined as 4-16-15-12-1 with an MSE of 

0.005274145. Furthermore, dimensional accuracy is successfully captured using a 4-12-12-11-1 network configuration, which 

attains the lowest overall MSE of 0.002898. The proposed ANN model provides accurate predictions for material consumption, 

tensile strength, and dimensional accuracy in the FDM process. This study contributes to the optimization and understanding 

of FDM manufacturing processes through the utilization of optimized network architectures. The findings demonstrate the 

efficacy of the ANN model in improving FDM process control and performance. 

 

Keywords - Fused Deposition Modelling, Artificial Neural Network, Process modelling, Face-Centered Central Composite 

Design, Response surface methodology. 

1. Introduction  
Artificial Neural Networks (ANN) models have emerged 

as powerful models capable of recognizing patterns in data 

and making accurate predictions based on the information they 

have learned. The increasing complexity of manufacturing 

processes initiated a growing interest in applying ANN 

models to address these challenges, including the Fused 

Deposition Modelling (FDM) process. FDM involves the 

layer-by-layer deposition of a heated thermoplastic material to 

create a final product. FDM is widely used in prototyping 

small-scale products due to its accessibility, versatility, and 

affordability. Achieving mechanically robust, precise, and 

sustainable 3D-printed parts hinges on discerning the optimal 

printing parameter synergy for efficient material utilization. 

[1]. In recent years, there has been a growing interest in 

optimizing printing parameters to enhance the quality of 3D-

printed products. Johansson's 2016 study [2] explored this 

topic, focusing on improving tensile properties and layer 

bonding in 3D-printed objects. The findings from this research 

highlighted the significant influence of key parameters such as 

layer height, infill density, printing speed, and printing 

temperature on the printed objects' overall quality and 

structural integrity. This emphasis on parameter optimization 

is further supported by the work of Nguyen et al. in 2020 [3], 

where researchers identified optimal printing parameters for 

achieving enhanced tensile strength, reduced printing time, 

and minimized material consumption. Layer height, infill 

density, printing speed, and printing temperature were 

consistently recognized as primary considerations in 

optimizing both material usage and dimensional accuracy.  

 

This collective body of research [1, 3-6] underscores the 

positive correlation between extended printing durations, 

increased material utilization, and improved mechanical 

strength, particularly in terms of tensile strength. In the 

context of FDM, the intricate relationship between material 

consumption, tensile strength, and dimensional accuracy 

becomes increasingly apparent. Achieving a balance among 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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these factors requires a comprehensive understanding of how 

various process parameters interact and impact the final 

product. Traditionally, modelling FDM process parameters 

relied on conventional techniques, including linear regression 

[7], [8]. However, these methods often fell short of capturing 

the complexity of non-linear data patterns [9]. Recent 

advancements in artificial intelligence have led to the adoption 

of unconventional models such as ANN for process parameter 

modelling. Inspired by the brain's functional organization, 

ANN models are trained on available data to identify patterns 

and generate accurate predictions [10].  

 

A comparative study conducted by Mohamed et al. in 

2016 [11] demonstrated the superior predictive performance 

of ANN models over conventional fractional factorial models, 

as indicated by higher R2 values. Similar results were obtained 

by Lyu et al. in 2019 [12], who compared ANN models to 

multivariate linear regression and support vector regression, 

highlighting the limitations of the latter two methods for 

accommodating multiple process parameters. Furthermore, 

Deshwal et al. (2020) [4] compared the performance of three 

hybrid models-Genetic Algorithm-Response Surface 

Methodology (GA-RSM), Genetic Algorithm-Artificial 

Neural Network (GA-ANN), and Genetic Algorithm-

Adaptive Neuro-Fuzzy Interface System (GA-ANFIS)-in 

predicting multiple process parameters and tensile strength. 

Among these models, the GA-ANN model demonstrated the 

highest accuracy, reaching a remarkable 99.89%.  

 

These findings underscore the importance of employing 

precise predictive models, such as ANN models, to identify 

the optimal combination of FDM process parameters 

effectively. While previous research has demonstrated the 

effectiveness of ANN models in process modelling, a 

significant unresolved issue pertains to determining the 

optimal ANN architecture. This architecture encompasses 

essential elements, including the number of hidden layers, 

neurons within each layer, and the selection of an appropriate 

activation function. Surprisingly, no universally 

recommended configuration for hidden layers and neurons 

exists to ensure maximum accuracy in process modelling. 

Instead, researchers often rely on trial-and-error methods or 

their existing knowledge when structuring their models [13].  

 

These methods, although somewhat successful, may 

neglect alternative configurations that could potentially yield 

even more precise models. This research aims to address this 

notable gap by identifying the optimal ANN structure capable 

of outperforming existing models in accurately predicting 

material consumption, tensile strength, and dimensional 

accuracy within the FDM process. A series of network models 

will undergo training to achieve this objective, followed by a 

comprehensive evaluation using key performance metrics, 

such as R2, MSE, RMSE, MAE, and MAPE. The focus of this 

study will center on the input parameters of layer height, infill 

density, printing speed, and printing temperature. 

2. Methodology 
2.1. Specimen Design and Material 

The specimen used in this study adhered to the 

International Standard ISO/ASTM D638 Type IV shown in 

Figure 1, designed using CATIA V5 software. The specimens 

were printed using Polylactic acid plus (PLA+), with 

properties shown in Table 1. The Ender 3 V2 3D printer was 

selected for fabricating the specimen.  

 

2.2. Process Parameter 

The process parameters were configured within Cura, an 

open-source slicing software commonly employed for 3D 

printing preparations. Cura provided a versatile range of 

options for setting these parameters before slicing the model 

into layers, rendering it compatible with most 3D printers. In 

accordance with insights gleaned from prior research [3], [2], 

four of the most widely recognized and influential process 

parameters were selected: layer height, infill density, printing 

temperature, and printing speed. These choices were made to 

align with established practices. Concerning the remaining 

process parameters, their default settings in Cura were 

retained. Layer height, a crucial parameter in achieving the 

desired print resolution, was defined as each printed layer's 

thickness. 

 

 
Fig. 1 Dimension ISO/ASTM D638 type IV 

 

Table 1. Properties of polylactic acid plus (PLA+) 

Description Value 

Printing temperature 200-230℃ 

Tolerance ±0.02mm 

Printing speed 50-100mm/s 

Platform temperature 60-80℃ 

Diameter 1.75 mm 

Melt flow rate 7-9g/10min 

 

As outlined in Buj-Corral et al. 2019 [15], for 

thermoplastic materials, the recommended range for layer 

height (h) was generally defined as 0.5 times the nozzle 

diameter (d) for the lower limit and 0.8 times the nozzle 

diameter (d) for the upper limit. With the Ender 3 V2's 

equipped nozzle diameter of 0.4 mm, the minimum and 

maximum layer heights were calculated using Equation (1) 
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and Equation (2). Consequently, the minimum layer height 

was calculated to be 0.2 mm, while the maximum layer height 

was determined to be 0.32 mm. The quantity of material 

deposited to fill the boundaries of the printed specimen, 

known as infill density, was set within a range of 20% to 80%, 

as recommended by previous studies [3], [14], [15], [16]. In 

terms of printing temperature, often referred to as nozzle 

temperature, its optimal value depends on the specific material 

and printer in use. For PLA+, as indicated in Table 1, the 

recommended temperature range falls between 200-230°C. In 

order to determine the most suitable temperature range for the 

given material and the Ender 3 V2 printer, a temperature tower 

test was conducted. Figure 2 provides a visual representation 

of the test results, showing minimal stringing and a smoother 

surface within the temperature range of 185°C to 215°C. 

 

Consequently, this study's chosen printing temperature 

range was established as 185°C to 215°C. Printing speed, 

denoting the rate at which the extruder head moves during the 

printing process, plays a pivotal role. While Table 1 

recommends a manufacturer-recommended range of 50 mm/s 

to 100 mm/s, recent research on PLA+ has explored a more 

accelerated printing speed of 150 mm/s [4], [17]. A pragmatic 

approach was adopted to account for potential outliers and 

variations in the data, and the selected range for printing speed 

was extended from 50 mm/s to 150 mm/s. This wider range 

was chosen to encompass the diversity of printing conditions 

and accommodate the higher speeds observed in 

contemporary PLA+ printing studies. 

 

2.3. Design of Experiment 

The experimental design followed a systematic approach, 

integrating Response Surface Methodology (RSM) with a Full 

Factorial Central Composite Design (FCCD) using Design-

Expert software. RSM-FCCD, recognized for its efficacy in 

optimizing processes or products, delves into identifying the 

crucial factors influencing the response and their intricate 

interactions. Design-Expert software emerged as the ideal tool 

for this purpose, equipped with a user-friendly interface, 

advanced statistical analysis capabilities, and various 

graphical representations to streamline the process and 

enhance accuracy. In the context of this study, the four key 

process parameters were categorized into three levels: a 

strategic decision to account for the anticipated non-linear 

response, as detailed in Table 2.  

 

The experiment proceeded with a full factorial design 

comprising three factorial points that systematically tested all 

feasible combinations of factors at the selected levels, and 

each was replicated three times. Expanding on this, six central 

points were introduced into the design, carrying out six 

replications to gauge error variation while maintaining an 

average level across all factors. To further refine the analysis, 

three axial points were strategically introduced. These axial 

points underwent three replications each, operating at the 

extreme levels of one factor while keeping all other factors at 

their average values. This meticulous design yielded a total of 

78 specimens to be printed, as outlined in Table 3. 

 

2.4. Fabrication and Experimental Setup 
 

In alignment with the inputs from Table 3, a total of 78 

samples were produced using the Ender 3 V2 3D printer. 

Comprehensive tensile strength tests were executed on all the 

specimens following this fabrication phase. These tests were 

carried out using the Shimadzu Universal Testing Machine 

(UTM), as illustrated in Figure 3, with a standardized testing 

speed set at 5 mm/min to ensure consistent and accurate 

results. 

h (min) = 0.5 × d (1) 

  

h (min) = 0.8 × d (2) 

 

Fig. 2 Temperature tower test 

 
Table 2. Three levels of the four process parameters 

Process 

Parameter 
Unit 

Level 

1 

Level 

2 

Level 

3 

Layer height mm 0.2 0.26 0.32 

Printing speed mm/s 50 100 150 

Infill density % 20 50 80 

Printing 

temperature 
℃ 185 200 215 

 

 
Fig. 3 Using shimadzu Universal Testing Machine (UTM) 



Mohd Sazli Saad et al.  / IJETT, 71(11), 1-17, 2023 

 

4 

Table 3. FCCCD matrix for process parameters and response 

Run 

Input Output 

Layer 

Height 

(mm) 

Printing 

Speed (mm/s) 

Infill 

Density 

(%) 

Printing 

Temperature (℃) 

Weight 

(g) 

Tensile 

Strength 

(Pa) 

Dimensional 

Accuracy (mm) 

1 0.32 100 50 200 5.23 42.32 0.27 

2 0.26 100 50 200 5.03 35.72 0.3 

3 0.2 150 80 215 5.86 37.24 0.36 

4 0.26 100 20 200 4.44 32.64 0.31 

5 0.2 50 80 215 5.65 36.89 0.28 

6 0.32 50 80 185 5.56 44.8 0.23 

7 0.32 50 20 215 4.88 37.11 0.3 

8 0.2 150 20 185 3.94 31.5 0.23 

9 0.32 100 50 200 5.24 39.93 0.29 

10 0.32 50 20 215 4.91 37.21 0.28 

11 0.32 150 80 215 5.6 45.9 0.4 

12 0.2 150 80 215 5.68 42.02 0.35 

13 0.26 100 50 200 5.11 36.94 0.3 

14 0.2 50 20 185 3.98 31.44 0.25 

15 0.32 100 50 200 5.25 41.05 0.29 

16 0.2 150 80 185 5.67 38.67 0.28 

17 0.26 100 50 185 5.07 37.85 0.25 

18 0.26 100 50 200 5.16 38.58 0.31 

19 0.2 50 20 215 3.99 30.36 0.29 

20 0.26 150 50 200 5.08 36.13 0.32 

21 0.2 150 20 215 3.97 29.46 0.35 

22 0.26 100 50 200 5.1 36.36 0.3 

23 0.2 150 80 185 5.6 40.11 0.29 

24 0.2 150 20 215 3.93 29.14 0.37 

25 0.32 50 80 185 5.47 41.4 0.26 

26 0.32 150 80 215 5.58 42.89 0.39 

27 0.32 150 20 215 4.74 37.4 0.38 

28 0.2 150 20 215 3.91 29.04 0.35 

29 0.26 100 20 200 4.36 33.19 0.27 

30 0.26 100 50 215 5.16 36.93 0.34 

31 0.26 100 80 200 5.84 43.25 0.33 

32 0.32 150 20 215 4.86 38.3 0.37 

33 0.32 50 80 215 5.59 43.88 0.27 

34 0.32 50 20 185 4.82 42.06 0.23 

35 0.26 100 50 185 5.08 33.51 0.28 

36 0.32 150 20 185 4.66 39.16 0.26 

37 0.26 100 80 200 5.82 40.68 0.33 

38 0.2 50 80 185 5.62 37.96 0.24 

39 0.32 150 80 215 5.58 43.37 0.38 

40 0.2 50 80 215 5.86 39.16 0.26 

41 0.32 150 80 185 5.47 46.71 0.3 

42 0.32 50 20 185 4.78 42.99 0.22 

43 0.2 100 50 200 4.87 35.6 0.25 

44 0.26 100 50 200 5.18 39.4 0.27 

45 0.32 50 80 185 5.67 44.27 0.24 

46 0.2 100 50 200 4.85 32.9 0.26 

47 0.26 100 20 200 4.44 35.5 0.27 

48 0.32 50 20 215 4.92 40.82 0.27 

49 0.2 50 80 185 5.71 40.64 0.24 
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50 0.26 100 50 200 5.14 40.47 0.29 

51 0.32 150 20 185 4.64 40.55 0.28 

52 0.2 50 80 215 5.7 40.05 0.27 

53 0.26 50 50 200 5.21 39.73 0.26 

54 0.26 150 50 200 5.14 39.23 0.31 

55 0.2 100 50 200 5.1 36.79 0.28 

56 0.26 100 50 215 5.44 41.25 0.35 

57 0.26 100 50 185 5.3 39.85 0.27 

58 0.26 100 50 215 5.43 40.88 0.34 

59 0.26 50 50 200 5.2 41.31 0.23 

60 0.2 150 20 185 3.91 31.35 0.25 

61 0.2 50 80 185 5.74 39.77 0.25 

62 0.2 150 80 185 5.7 41.8 0.27 

63 0.32 150 80 185 5.49 47.63 0.29 

64 0.2 50 20 185 3.94 32.51 0.22 

65 0.2 150 80 215 5.84 42.86 0.37 

66 0.2 50 20 185 3.96 32.14 0.24 

67 0.32 150 80 185 5.46 45.93 0.3 

68 0.2 50 20 215 4.02 31.81 0.28 

69 0.32 50 80 215 5.76 47.58 0.31 

70 0.32 150 20 185 4.63 39.28 0.28 

71 0.26 50 50 200 5.19 38.79 0.26 

72 0.2 150 20 185 3.88 30.65 0.23 

73 0.32 150 20 215 4.86 40.87 0.36 

74 0.26 100 80 200 5.67 44.7 0.29 

75 0.26 150 50 200 4.93 39.07 0.3 

76 0.32 50 80 215 5.66 47.08 0.31 

77 0.2 50 20 215 3.97 32.4 0.28 

78 0.32 50 20 185 4.79 44.05 0.21 

 

2.5. Artificial Neural Network 

In the attempt to develop precise predictive models, a 

comprehensive study was conducted employing ANN models. 

The primary objective was to investigate a range of network 

architectures and evaluate their performance by measuring the 

MSE and R2. A total of nine ANN models were meticulously 

trained, each encompassing single, double, and triple hidden 

layers, as depicted in Figure 4.  

 

In adherence to Figure 5, the number of neurons within 

each layer was capped at 20 to optimize computational 

resources. This constraint facilitated the examination of all 

1770 possible network configurations for every response 

variable. Before the commencement of training, the collected 

data underwent a normalization procedure, followed by their 

division into three distinct partitions: training (70%), 

validation (15%), and testing (15%). The Levenberg-

Marquardt algorithm was chosen as the designated training 

algorithm for the networks. The performance assessment of 

each model hinged upon the comparison of MSE and the R2 

across the 1770 generated network structures for each 

response variable. Models exhibiting lower MSE values and 

R2 values approaching 1 were deemed superior in terms of 

accuracy.  

 

The most effective architecture for each response variable 

was earmarked from the cohort of trained networks for future 

analysis. Ultimately, out of the nine selected architectures, the 

ANN model with the highest R2 and the lowest MSE for each 

response variable was singled out as the optimal predictive 

model structure. 

 

 
Fig. 4 ANN model structure 
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Fig. 5 Flowchart of ANN model development 
 

3. Results and Discussion  
3.1. Experimental Results 

The process parameters for all 78 specimens were set 

using the slicing software Cura and subsequently executed on 

the Ender 3 V2 3D printer. Following the printing phase, a 

comprehensive series of tensile tests on these specimens were 

conducted, utilizing the Shimadzu Universal Testing Machine 

(UTM).  

 

The resulting tensile test data were then carefully 

collected and input into the Design-Expert software for a 

thorough analysis. This analysis yielded a significant finding, 

as indicated by the strikingly low p-value, which registered at 

less than 0.0001. This high level of statistical significance 

underscores the robustness and credibility of the model, 

further affirming the validity of the research outcomes. 

 

3.2. ANN Results 

The generation of ANN model structures involved 

identifying neuron numbers within hidden layers with the 

highest accuracy based on the lowest MSE, as depicted in 

Figure 6 for material consumption, Figure 7 for tensile 

strength, and Figure 8 for dimensional accuracy. Based on the 

criteria of lowest MSE and highest coefficient of 

determination (R2), a total of nine ANN model structures were 

selected, encompassing three structures for each response.  

  

Experimental data 

Data normalization 

Divide data: 

training: 70% 

validation: 15% 

testing: 15% 

Best ANN Model Structure 

Selection 

• Set maximum number     

  of neuron, n = 20 

• Run the ANN model  

  Structure trending: 

1) Single hidden layer 

2) Double hidden layers 

3) Tripple hidden layers 

A 

A 

Select the best structure from each 

hidden layers 

ANN Modelling: 

• Training function 

• Network structure 

     • Performance     

       evaluation:  

R2, MSE, RMSE,  

MAE AND MAPE 

Unsatisfactory Model 

Best predictive model 

No 

Yes 

Best performance? 



Mohd Sazli Saad et al.  / IJETT, 71(11), 1-17, 2023 

 

7 

 
Fig. 6 Number of hidden layer neurons against MSE for material consumption 

 

 
Fig. 7 Number of hidden layer neurons against MSE for tensile strength 

 

 
Fig. 8 Number of hidden layer neurons against MSE for dimensional accuracy 

Table 4. ANN structures for material consumption 

No Structure R2 MSE 

1 4-11-1 0.997365 0.002206 

2 4-19-14-1 0.998615 0.001391 

3 4-10-6-2-1 0.998451 0.001087 
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Table 5. ANN structures for tensile strength 

No Structure R2 MSE 

1 4-4-1 0.920185 2.047567 

2 4-15-10-1 0.980521 0.999035 

3 4-16-15-12-1 0.980607 0.662976 

 
Table 6. ANN structures for dimensional accuracy 

No Structure R2 MSE 

1 4-1-1 0.96064234 0.00014886 

2 4-9-1-1 0.98184033 0.00006857 

3 4-12-12-11-1 0.96979763 0.00007049 

The selected structures for material consumption are 

presented in Table 4, while Table 5 showcases the chosen 

structure for tensile strength, and Table 6 displays the selected 

structure for dimensional accuracy. Notably, an intriguing 

observation emerges: the structures pertaining to material 

consumption exhibit superior performance compared to those 

associated with tensile strength and dimensional accuracy, as 

indicated by their higher R2 values.  

This discrepancy might suggest a minimal presence of 

noise within the collected weight data of the specimen, 

contributing to a reduced deviation in the output values. It is 

thereby implied that these structures accurately capture the 

variations and patterns inherent in the dependent variable, 

aligning the model's predictions closely with the actual values. 

However, it is noteworthy that the R2 values for the tensile 

strength and dimensional accuracy models remain sufficiently 

close to 1, indicating their accuracy as well. 

 

On the other hand, in terms of MSE, the ANN structures 

for dimensional accuracy demonstrate the lowest values 

compared to the models for material consumption and tensile 

strength. Nevertheless, the MSE values for the material 

consumption and tensile strength models are also low, 

indicating that these models effectively capture the underlying 

patterns and relationships within the data, with their 

predictions closely approximating the actual values. 

In order to thoroughly evaluate the model's performance, 

all nine structures were individually examined—the analysis 

aimed to assess their effectiveness in capturing the underlying 

patterns and relationships within the data. The obtained results 

from the modelled networks were meticulously documented 

and organized for each response, as presented in Table 7, 

Table 8, and Table 9. Upon reviewing Table 7, it is evident 

that structure 4-19-14-1 outperformed the other structures in 

terms of material consumption. This particular structure 

exhibited the lowest average values for MSE, RMSE, MAE, 

and MAPE.  

Furthermore, it demonstrated the highest R2 for both 

training and overall performance. Turning to Table 8, the 

evaluation of tensile strength reveals that structure 4-16-15-

12-1 showcased superior performance.  

 

This specific structure achieved the highest R2 values for 

testing and overall while simultaneously attaining the lowest 

values for MSE, RMSE, MAE, and MAPE in both training and 

overall assessments. Finally, in Table 9, the examination of 

dimensional accuracy indicates that structure 4-12-12-11-1 

delivered the most favourable outcomes.  

 

It demonstrated the highest R2 values for testing and 

overall and the lowest values for MSE, RMSE, MAE, and 

MAPE in both training and overall evaluations. In summary, 

through a meticulous analysis of the modelled structures, it 

becomes evident that specific configurations excelled in 

capturing and predicting the responses of interest. These 

findings provide valuable insights into the optimization of the 

model for material consumption, tensile strength, and 

dimensional accuracy. 

 

Figure 9, Figure 10, and Figure 11 provide additional 

visual representations of the comparison between the overall 

performance metrics for all the ANN models in terms of 

material consumption, tensile strength, and dimensional 

accuracy, respectively. Among the analyzed structures, 

structure 4-19-14-1 with double hidden layers, consisting of 

19 and 14 neurons, respectively, demonstrated superior 

material consumption performance, as shown in Figure 12.  

 

Additionally, for accurate prediction of tensile strength, 

structure 4-16-15-12-1 with triple hidden layers, comprising 

16, 15, and 12 neurons, respectively, was identified as the 

optimal choice, illustrated in Figure 13. Moreover, for 

dimensional accuracy, structure 4-12-12-11-1 with triple 

hidden layers, consisting of 12, 11, and 11 neurons each, 

exhibited exceptional performance, as depicted in Figure 14. 
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Table 7. Performance for structures of material consumption 
Structure Function Training Validation Testing Overall 

4-11-1 

R2 0.9958 0.9893 0.98925 0.99192 

MSE 0.000413 0.002948 0.001533 0.000961 

RMSE 0.020323 0.054299 0.039149 0.031 

MAE 1.427573 3.771887 2.96396 2.004907 

MAPE 2.705481 7.347113 7.392791 4.080609 

4-19-14-1 

R2 0.995854 0.988584 0.98946 0.991945 

MSE 0.000408 0.002982 0.001503 0.000958 

RMSE 0.020193 0.054608 0.038769 0.030956 

MAE 1.391232 3.756713 2.944581 1.974214 

MAPE 2.599909 7.25051 7.330353 3.9825 

4-10-6-2-1 

R2 0.988738 0.988585 0.990512 0.987203 

MSE 0.001114 0.003029 0.001749 0.001498 

RMSE 0.033379 0.055037 0.041824 0.038708 

MAE 2.401556 3.870156 3.239789 2.745707 

MAPE 4.654881 8.03187 9.51716 5.860123 
 

Table 8. Performance for structures of tensile strength 
Structure Function Training Validation Testing Overall 

4-4-1 

R2 0.9958 0.9893 0.98925 0.99192 

MSE 0.000413 0.002948 0.001533 0.000961 

RMSE 0.020323 0.054299 0.039149 0.031 

MAE 1.427573 3.771887 2.96396 2.004907 

MAPE 2.705481 7.347113 7.392791 4.080609 

 

4-15-10-1 

R2 0.995854 0.988584 0.98946 0.991945 

MSE 0.000408 0.002982 0.001503 0.000958 

RMSE 0.020193 0.054608 0.038769 0.030956 

MAE 1.391232 3.756713 2.944581 1.974214 

MAPE 2.599909 7.25051 7.330353 3.9825 

4-16-15-12-1 

R2 0.988738 0.988585 0.990512 0.987203 

MSE 0.001114 0.003029 0.001749 0.001498 

RMSE 0.033379 0.055037 0.041824 0.038708 

MAE 2.401556 3.870156 3.239789 2.745707 

MAPE 4.654881 8.03187 9.51716 5.860123 
 

Table 9. Performance for structures of dimensional accuracy 
Structure Function Training Validation Testing Overall 

4-1-1 

R2 0.909147 0.965865 0.877974 0.914883 

MSE 0.005873 0.003045 0.006426 0.005516 

RMSE 0.076633 0.055182 0.080161 0.074267 

MAE 6.083916 4.607907 5.608769 5.78983 

MAPE 6.083916 4.607907 5.608769 5.78983 

4-9-1-1 

R2 0.974709 0.944296 0.868739 0.955769 

MSE 0.001679 0.004264 0.007506 0.002898 

RMSE 0.040973 0.065298 0.086638 0.053836 

MAE 3.247345 5.450482 7.082315 4.127118 

MAPE 8.276126 20.35382 19.98784 11.78589 

4-12-12-11-1 

R2 0.974709 0.944386 0.868642 0.955769 

MSE 0.053834 0.004257 0.007512 0.002898 

RMSE 0.040973 0.065248 0.08667 0.053834 

MAE 7.079135 5.44625 7.079135 4.126319 

MAPE 8.277185 20.33418 19.97489 11.78178 
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Fig. 9 Performance metrics of ANN models for material consumption 
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Fig. 10 Performance metrics of ANN models for tensile strength 
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Fig. 11 Performance metrics of ANN models for dimensional accuracy 
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Fig. 12 ANN model structure of 4-19-14-1 for material consumption 

 

 
Fig. 13 ANN model structure 4-16-15-12-1 for tensile strength 

 

 
Fig. 14 ANN model structure 4-12-12-11-1 for dimensional accuracy 
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Fig. 15 Linear regression plot of 4-19-14-1 (material consumption) 

 

 
Fig. 16 Linear regression plot of 4-16-15-12-1 (tensile strength) 
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Fig. 17 Linear regression plot of 4-12-12-11-1 (dimensional accuracy) 

 
Fig. 18 Overall target and predicted plot for material consumption   

 

 
Fig. 19 Overall target and predicted plot for tensile strength   
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Fig. 20 Overall target and predicted plot for dimensional accuracy   

 

The regression plots provide valuable insights into the 

relationship between the independent and dependent 

variables. Notably, the regression line for the material 

consumption model (Figure 15) displayed a closer fit to the 

ideal value of 1 compared to the regression lines for the tensile 

strength model (Figure 16) and the dimensional accuracy 

model (Figure 17). This discrepancy could potentially be 

attributed to the presence of noise originating from the 

collected data for the tensile strength test and dimensional 

accuracy measurement. Overall, the regression plots for all 

models indicate that the independent variable holds the 

potential to explain the observed variations in the dependent 

variables. 

The plotted lines for these models demonstrate a high 

capability for accurately predicting reactions based on the 

provided input shown in Figure 18 (material consumption), 

Figure 19 (tensile strength) and Figure 20 (dimensional 

accuracy). It is essential to highlight that a discernible 

discrepancy can be observed among the plotted line of the 

tensile strength model compared to the models for material 

consumption and dimensional accuracy. This discrepancy 

directly corresponds with the comparatively elevated MSE 

value and reduced R2 exhibited by the tensile strength model. 

These findings emphasize the efficacy of the selected 

structures in capturing and predicting the target responses. By 

leveraging these models, researchers can make more precise 

predictions and gain valuable insights into material 

consumption, tensile strength, and dimensional accuracy. 

4. Conclusion 
In contrast to techniques commonly found in the existing 

literature, this study has undertaken an extensive exploration 

of various ANN architectures during the network training 

process. The primary aim of this research was to predict and 

optimize process parameters to enhance three critical aspects 

of FDM printed parts: material consumption, tensile strength, 

and dimensional accuracy. One notable aspect of this study is 

the significantly larger number of model architectures 

generated compared to other methods. This extensive 

exploration increases the likelihood of discovering a more 

accurate model than alternative approaches.  

By integrating essential input variables, including layer 

height, infill density, printing temperature, and printing speed, 

into the ANN models, this study has achieved remarkable 

results that surpass the performance of conventional 

techniques outlined in the literature. The ANN models 

exhibited exceptional predictive capabilities, enabling 

significant reductions in material consumption, substantial 

increases in tensile strength, and remarkable improvements in 

dimensional accuracy for FDM printed parts. The application 

of the Levenberg-Marquardt algorithm as a training function 

allows for the simulation of the influence of process 

parameters on the desired outcome.  

This research provides valuable insights into the potential 

of ANN-based process modelling as a robust approach for 

predicting and optimizing FDM parameters, thereby 

improving the overall tensile strength of manufactured parts. 

The performance evaluation of the ANN models was 

conducted using a comprehensive set of performance metrics, 

R2, MSE, RMSE, MAE, and MAPE. Among the selected ANN 

models, the structure of 4-19-14-1 for material consumption, 

4-16-15-12-1 for tensile strength and 4-12-12-11-1 for 

dimensional accuracy exhibited the highest degree of 

agreement between the experimental data and the 

corresponding predicted values as evidenced by the 

remarkably low MSE values and R2 closest to 1.  

The predictive capabilities of the developed ANN model 

provide a powerful means of establishing a functional 

relationship between the input parameters and the output 

characteristics of the FDM process, making it an effective 

alternative to traditional analytical and numerical models. The 

utilization of ANN models holds substantial promise for 

addressing complex challenges encountered in diverse 

manufacturing processes. 

 

Further investigations into the architectural aspects of 

ANN models are warranted to develop even more accurate and 

precise models, minimizing any potential errors. 

Implementing ANN models to enhance performance outputs, 

particularly in industries such as manufacturing, healthcare, 

automotive, aerospace, and finance, exhibits great potential 
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for transformative impacts. Nonetheless, it is crucial to 

acknowledge the limitations associated with ANN models, 

such as their resource-intensive nature when training larger 

networks with increased hidden layers and neurons. Striving 

for superior outcomes necessitates a comprehensive 

understanding of these limitations and the judicious 

integration of ANN models with complementary 

methodologies, including statistical analysis and rule-based 

systems. 
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