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Abstract - Currently, the use of internet-based applications and technologies has grown drastically. Due to this growth, a 

massive amount of data is generated and stored on webservers. This increased use of these technologies faces several 

challenges, such as data vulnerability, security threats and data privacy. SQL-based programming language is widely 

adopted to access these data due to its simple and efficient use. However, the attacks can use the SQL-based query 

injection method, where they can insert malicious queries, posing serious threats to the server. Several techniques have 

been presented in the past, such as blacklisting and rule-based detection methods, but these methods fail to detect SQL 

injection attacks due to their diversity in input queries. Thus, currently, machine learning-based schemes have gained 

massive attention in this field, where supervised and unsupervised methods are widely employed. However, the varying 

nature of SQL queries demands a stable architecture. This work presents a machine learning-based approach for SQL 

injection attack detection by introducing an ensemble machine learning approach where SVM, NN, discriminant and 

random forest classifiers are employed. The experimental analysis shows that the average accuracy performance is 

achieved as 95.88%, 96.23%, 96.61%, 95.11%, and 99.30% using KNN, Discriminant classifier, Naïve Bayes, SVM, and 

proposed ensemble classification. 

Keywords - SQL injection, Machine learning, Ensemble learning, Malicious query prediction, SQLIA. 

 

1. Introduction  
The world has noticed a tremendous technological 

revolution and growth in various fields where the Internet 

is considered one of the fastest-growing technologies, and 

it has worked as a radical element for various other 

technologies [1]. Due to this holistic growth, the world has 

emerged as a global village. Now, the internet and 

computer networks are considered an essential component 

of life. Due to the significant advantages of the World 

Wide Web and its accessibility, it is widely adopted in 

various sectors such as e-commerce, banking, e-

government, health care, etc. Moreover, the latest web 

technologies, such as HTML5, have further accelerated the 

use of web technologies [2]. 

 

Moreover, these web-based technologies process 

several types of information along with private information 

for organizations, such as emails, transactions, or 

information related to individuals, such as shopping, social 

activities, etc. Many other innovative services are yet to 

come very shortly. As these applications are adopted for 

various applications, they attract more vulnerabilities, 

which can lead to compromise of the World Wide Web and 

attacks to contaminate and steal information. In general, 

the user submits the request to a web server with the help 

of Hypertext Markup Language (HTML) forms, Uniform 

Resource Positions (URLs) and other fields. This data is 

processed without checking and filtering the query [3]. 

Processing this unfiltered data, the attackers get a chance to 

perform SQL injection, which can act as faulty query 

input, resulting in an attack on the webserver [4].  

 

SQL (Structured Query Language) is a widely adopted 

programming language used explicitly for database 

management. This programming language allows access to 

and manipulation of the database. Many WEB-based 

programming languages, such as PHP or JAVA, facilitate 

several methods to construct and execute the queries [5]. 

These programming languages accept the user inputs or 

statements, which are further concatenated to form the 

final query as input to the web server.  

 

Several programming languages have been introduced 

to encode the user requests to construct the SQL query 

statement. At this stage, attackers can use SQL injection 

attacks where malicious code fragments are inserted in the 

query statements, which can malfunction the working 

server and execute inappropriate queries. This type of 

contaminated query can leak data and damage the 

database. For example, attackers use SQL injection to 

obtain login credentials and other details, which can cause 

a threat to private data. Attackers inject these queries into 

the programme as input injection, server variable injection, 

cookie injection etc. [6]. Below, Figure 1 depicts the 

process of SQL query injection. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 SQL query injection 

The current World Wide Web scenario is highly 

dependent on web-based servers for data storage, 

accessing the data from anywhere at any point in time. 

However, this has aggravated the vulnerability of private 

data to several security threats. SQL injection attacks are 

the most common attacks that attackers widely use, and the 

attack techniques constantly change as website technology 

advances [1]. The SQL language’s structure may be 

changed, and it enables a variety of coding styles. As a 

result, several classic detection strategies, such as 

blocklisting and rule-based detection, cannot provide a 

more effective protective impact. 

 

1.1. Research Gap  

The field of SQLIA detection leveraging machine 

learning has undoubtedly made substantial strides, yet 

several critical research gaps persist, necessitating further 

investigation and innovation. These gaps include: 

• Adaptation to Evolving Attack Strategies: SQL 

injection attackers consistently employ novel evasion 

and obfuscation techniques to thwart detection. To 

effectively combat this, research should concentrate on 

devising models capable of adapting to these ever-

evolving attack strategies. 

 

• Mitigating False Positives: A common issue with 

machine learning-based SQL injection detection 

systems is their propensity to generate high rates of 

false positives. This phenomenon can be detrimental in 

real-world scenarios. Therefore, it is imperative to 

develop methods to curtail false positives while 

maintaining a high detection accuracy rate. 

 

• Cross-Domain Applicability: The majority of existing 

research is domain-specific, focusing on individual 

applications or websites. To enhance versatility and 

applicability, researchers should concentrate on 

crafting models that can be deployed across diverse 

domains, ensuring a more comprehensive safeguard. 

 

• Resource Efficiency: Many current machine learning 

models utilized for SQL injection detection are 

computationally intensive, rendering them unsuitable 

for resource-constrained environments. As such, the 

research community should explore methodologies to 

engineer efficient models that can be readily deployed 

across a spectrum of scenarios. 

 

• Real-Time Detection Imperative: In the security realm, 

real-time detection of SQL injection attacks holds 

paramount importance for preventing potential 

breaches. Thus, research endeavors should be geared 

towards devising models and techniques capable of 

offering real-time detection with minimal latency, thus 

fortifying security protocols. 

 

1.2. Problem Statement  

Within the domain of SQLIA detection through the 

utilization of machine learning, the current state of the art 

presents a series of shortcomings characterized by an 

inability to adapt to evolving attack strategies, a propensity 

for generating false positives, domain-specificity, 

resource-intensive models, and an insufficiency in 

providing real-time detection.  
 

The primary objective of this research endeavor is to 

address these critical challenges by developing an 

innovative and resource-efficient model that excels in real-

time SQL injection attack detection, reduces false 

positives, exhibits adaptability across various domains, and 

is amenable to deployment in resource-constrained 

environments. This research aims to fortify the security 

infrastructure of applications and systems by mitigating the 

risks posed by SQL injection attacks. 
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1.3. Contributions  

The research community has presented several 

techniques on SQL injection detection in recent years, 

although the detection scope is generally confined to 

specific subgroups of SQL injection. An effective SQL 

injection detection framework is of utmost importance, 

capable of identifying all variations of SQL injection 

attacks while remaining adaptable to address emerging 

attacks promptly. Similarly, the varying characteristics of 

these attacks affect the process of determining the types of 

attacks. Generally, combining numerous attacks weakens 

the traditional machine-learning process because these 

approaches are trained for a specific set of attributes. Thus, 

this work focuses on developing a new machine learning 

that considers different classifiers and constructs an 

ensemble model by employing the bagging/boosting 

model. Prior to this, a feature selection model is also 

implemented to obtain robust features to improve the 

training.  

 

1.4. Organization 

The remainder of this manuscript is structured as 

follows: Section II provides a comprehensive literature 

review, Section III outlines the proposed approach for 

SQLIA detection, and Section IV presents the results of 

the proposed method, including a comparative analysis to 

demonstrate its robustness. Finally, Section V offers 

concluding remarks on this research and outlines potential 

future avenues of study. 

 

2. Literature Survey  
This section presents the description of recent 

techniques of SQL injection detection by using machine 

learning algorithms. Li et al. [9] developed a deep machine 

learning-based approach, introducing a deep-forest method 

to detect complex SQL injection attacks. According to this 

approach, the deep forest approach is improved. This is 

achieved by concatenating the input and output of the 

previous layer output. This concatenation helps mitigate 

the feature degradation issue caused by the increased 

number of layers. Furthermore, the AdaBoost algorithm is 

also introduced to update the feature weights.  

 

Li et al. [10] reported that traditional machine learning 

methods use manually defined attributes; thus, the 

detection performance highly depends on the feature 

extraction. However, numerous verities of SQL attacks are 

present, which vary in characteristics compared with the 

pre-trained models. Thus, these methods fail to detect SQL 

attacks. The authors have presented a long, short-term 

memory scheme capable of handling complex data to deal 

with these issues.  

 

Kasim et al. [11] developed an ensemble approach, 

which includes data processing, bagging, detection and 

prevention phases. The data pre-processing phase uses the 

regex function to identify the standard attributes or queries. 

Afterwards, feature extraction and feature vector 

formulation are applied to the data. Further, a tree-based 

bagging model is presented to detect the attack pattern. 

This model classifies the attacks as simple, unified, latera 

and clean queries. Corresponding to each query, it suggests 

preventive methods to deal with different types of attacks.  
 

Batista et al. [12] introduced a hybrid of fuzzy and 

neural network models to detect attacks. In this approach, 

the neural network generates the rules with the help of 

nebulous logic neurons. Generally, these networks suffer 

from the overfitting issue, which is resolved using the 

regularization model. Similarly, the fuzzy neural network 

is used to perform the binary classification based on the 

pre-defined rules. Tripathy et al. [13] presented an 

experimental analysis where different classifiers such as 

AdaBoost, Stochastic gradient descent, random forest, 

deep learning and Boosted tree classifiers are used to 

detect the SQL attacks.  

 

These machine learning schemes consider data 

cleaning, feature extraction, feature selection and 

employing the classification model steps to obtain the 

classification of attacks. Zhuo et al. [14] presented a deep 

learning approach which uses word embedding methods 

and a continuous bag of words (CBOW) to construct the 

word embedding matrix. Later, they built an LSTM-based 

model, which includes an input layer, word embedding 

layer, dense layer, activation, drop output layer, fully 

connected layer, sigmoid function and final output layer.  
 

Fang et al. [15] presented a combined machine 

learning model based on a support vector machine and 

LSTM networks. First, SQL tokenization is applied, 

followed by the Likelihood Ratio. This generates an SQL 

word vector model. This model is considered a train set 

and fed into the LSTM model, which classifies the patterns 

as genuine and injected queries. Kherbache et al. [16] 

discussed that feature selection is considered the critical 

phase for anomaly-based intrusion detection by selecting 

the most significant attributes to improve efficiency and 

minimize false positives. Based on this concept, Aqsa 

Afroz et al. [17] presented a combined agglomerative 

hierarchal clustering scheme with support vector machine 

classification. Feature selection is performed based on the 

variance and grouped based on their similarities. 

 

3. Proposed model  
This section presents the proposed solution for SQL 

injection attack detection by using a machine learning 

technique where an ensemble technique is presented to 

reduce the misclassification problem.  

 

Moreover, feature redundancy and dimensionality 

create an excessive burden on the network during training. 

Moreover, redundant attributes impact learning 

performance, degrading the overall classification accuracy.  

3.1. Overview  

The proposed approach is based on machine learning 

techniques where feature selection and ranking are 

performed during the pre-processing phase. Further, an 

ensemble of SVM, NN, discriminant analysis and random 

forest stacked to generate the meta-classifier. 
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Fig. 2 The architecture of the proposed ensemble approach 

According to this architecture, data is first pre-

processed, where data transformation and missing value 

imputation are applied. This stage generates a matrix 

which contains features and their corresponding labels. 

Further, the relief feature selection method ranks the 

features according to their weights. In the next phase, 

training is performed with the help of ensemble learners, 

and finally, testing samples are given as input to generate 

the final classification.  

3.2. Feature Selection  

Data dimension plays a vital role in this field of 

machine learning techniques. High-dimensional data 

requires huge processing time and consumes more 

resources. Moreover, redundancy in the data leads to 

degrade the classifier performance. This work has adopted 

a relief-based feature selection algorithm [8]. It computes 

the statistics for each attribute and uses these parameters to 

estimate the ‘relevance’ of the f attribute. These features 

are represented as feature weights as 𝑊[𝐴] Weight of 

feature 𝐴, which ranges from -1 to +1. Below algorithm 1 

shows the pseudocode for relief-based feature selection.  

 

Input: feature vector and its corresponding class 

values (in our attack attributes and their classes are 

considered as 0 and 1 for attack and normal query) 

𝑛 ←number of training instances present in the dataset 

𝑎 ← number of attributes 

Parameters: 𝑚 ← denotes the random training 

samples which are used to update 𝑊  

Step 1: initialize the weights as 𝑊[𝐴] ≔ 0 

Step 2: for 𝑖=1 to 𝑚 do 

Step 3: select a random target form instance 𝑅𝑖 

Step 4: identify the nearest hit and miss from the 

instances  

Step 5: for 𝐴 = 1 𝑡𝑜 𝑎 dor  

// compute and update the weights  

𝑊[𝐴] = 𝑊[𝐴] −
𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖 , 𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖, 𝑀)

𝑚
 

Step 6: end for 

Step 7: end for  

Step 8: return the updated weighted feature scores 𝑊 

and ranked attributes. 

Input Dataset 

Transformation Missing Value Imputation 

Relief Feature 

Feat 1 Feat 2 Feat 3 

Validation Training Testing 

SVM NN Discriminant Random Forest 

Train 1 Train 2 Train 3 Train 4 

Meta Classifier 

Final Prediction 

Dataset Split 

Ensemble 

Training 
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According to this approach, the feature selection 

process is iterated through numerous training instances and 

selects the random target from 𝑅𝑖 instances. Further, this is 

used to update the feature weights 𝑊 by considering the 

target and neighbouring instances. At this stage, the 

algorithm computes the nearest neighbour instances of the 

target, where the nearest to the same class is known as the 

nearest hit. (𝐻) and the other instance is known as nearest 

miss which is known as nearest miss (𝑀). In the last step, 

computed weights are updated based on the difference 

between targets. For discrete attributes, 𝑑𝑖𝑓𝑓 is defined as: 

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) = {
0, 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒 (𝐴, 𝐼1) = 𝑣𝑎𝑙𝑢𝑒 (𝐴, 𝐼2)

1, 𝑖𝑓 𝑜𝑡𝑒ℎ𝑟𝑤𝑖𝑠𝑒 
   (1) 

 

3.3. Classifiers Used for Ensemble Learning  

As mentioned before, traditional machine learning 

fails to provide detection for varied attack types; thus, a 

robust scheme or architecture is required which can handle 

different types of attacks which are dynamic in nature of 

attack (i.e., handling the SQL injection query which has 

different types of SQL injections). In order to improve the 

detection accuracy, an ensemble learning approach is 

introduced, which uses SVM, NN, DT and RF. These 

classifiers used the stacking approach to formulate the 

ensemble model of classification. This section briefly 

describes these techniques to adopt in SQL injection 

detection. 

  

3.4. Support Vector Machine  

The SVM is considered a promising technique in the 

field of machine learning. This is a type of supervised 

learning scheme which is widely adopted for binary 

classification problems. The SVM classifier focuses on 

identifying the best hyperplane in such a way that it 

separates all data points from one class to another class. 

Here, the best hyperplane represents an SVM with the 

highest margin between two classes of the input data. 

Below given, Figure 2 depicts the actual and hyperplane-

separated data.  

 

Fig. 3 SVM classifier  

According to this approach, the SQL injection dataset 

is represented as 𝑥𝑗 and their corresponding category (SQL 

attack query or not) are denoted as 𝑦𝑗. Let 𝑑 be the 

dimension of the dataset; thus, the training set is 

represented as 𝑥𝑗 ∈ 𝑅𝑑. For this condition, the hyperplane 

can be represented as: 

𝑓(𝑥) = 𝑥′𝛽 + 𝑏 = 0 (2) 

𝛽 ∈ 𝑅𝑑 and 𝑏 are the real numbers.  

This approach aims at identifying the best hyperplane 

which separates the attack regular queries based on their 

attributes. It focuses on finding the 𝛽 and 𝑏, which are used 

to minimize the ‖𝛽‖ such a way that for all data points 

(𝑥𝑗 , 𝑦𝑗),  

𝑦𝑗𝑓(𝑥𝑗) ≥ 1 (3) 

 

Here, support vectors are 𝑥𝑗 on the boundary of the 

plane where 𝑦𝑖𝑓(𝑥𝑖) = 1. Generally, minimizing the ‖𝛽‖ 

is the main aim of this approach. The classification can be 

obtained as follows: 

𝐶𝑙𝑎𝑠𝑠(𝑧) = 𝑠𝑖𝑔𝑛(𝑧�̂� + �̂�) = 𝑠𝑖𝑔𝑛 (𝑓(𝑧))   (4) 

(𝑓(𝑧)) is the classification score and denotes the distance 

from the decision boundary. 

However, kernel functions are applied if a simple 

hyperplane is not obtained. These functions are 

polynomial, radial basis (Gaussian) and Multilayer 

perceptron or sigmoid (neural network). These functions 

are expressed as: 

Polynomial function: 

𝐺(𝑥1, 𝑥2) = (1 + 𝑥1𝑥2)𝑝 

Radial basis function (Gaussian): 

𝐺(𝑥1, 𝑥2) = exp(−‖𝑥1 − 𝑥2‖2) 

Multilayer function: 

𝐺(𝑥1, 𝑥2) = tanh(𝑝1𝑥1𝑥2 + 𝑝2) 

(5) 

 

3.5. Discriminant Analysis 

The discriminant is a supervised classification scheme 

which uses Gaussian distribution to generate the data 

corresponding to the classes. This task is accomplished in 

two phases: the training phase and the prediction phase. In 

the training phase, the fitting function focuses on 

estimating the Gaussian distribution parameter for each 

class. Similarly, the prediction phase considers these 

trained models and finds the class with the smallest 

misclassification to identify the class of the input test 

sample. In the training phase, it considers the input SQL 

data and their corresponding category, which are processed 

through a multivariate normal distribution. During the 

fitting process in linear discriminant analysis, it measures 

the sample mean of each class is, and later sample 

covariance is measured by subtracting the sample mean of 

each class. In this phase, it constructs a weighted classifier 

as: 

�̂�𝑘 =
∑ 𝑀𝑛𝑘

𝑁
𝑛=1 𝑥𝑛

∑ 𝑀𝑛𝑘
𝑁
𝑛=1

  (6)  
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On the other hand, this approach focuses on 

minimizing the classification cost for prediction. This 

function can be expressed as: 

�̂� = arg min
𝑦=1,..𝐾

∑ �̂�(𝑘|𝑥)𝐶(𝑦|𝑘)

𝐾

𝑘=1

         (7) 

 

Where �̂� denotes the predicted class, 𝐾 total number 

of classes (in our case 2 classes), �̂�(𝑘|𝑥) is the posterior 

probability of class 𝑘 for 𝑥 observations and 𝐶(𝑦|𝑘) is the 

cost of classification. The posterior probability is 

expressed as: 

𝑃(𝑥|𝑘) =
1

((2𝜋)𝑑|Σ𝑘|)
1
2

exp (−
1

2
(𝑥

− 𝜇𝑘) ∑(𝑥 − 𝜇𝑘)𝑇

−1

𝑘

) 

(8) 

 

Based on the probability, the category for input 

attributes can be classified based on the highest 

discriminant value as 𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) 

 

3.6. Neural Network Classifier  

 The neural network is a supervised learning algorithm 

which contains several neurons as units. These neurons are 

used to convert the input data into some output via the 

layered arrangement of neurons. Each layer performs some 

specific function and then passes to the next layer. This 

process is known as the feed-forward process. Along with 

data passing, weights are also applied to train the neural 

network during the learning phase. Figure 4 below shows 

the architecture of the neural network. 

 
Fig. 4 Neural network classification 

3.7. Random Forest  

 Random forest is a supervised learning scheme which 

constructs multiple solutions in the form of decision trees, 

and to obtain the output of classification, the class which is 

selected the maximum times by most trees is considered the 

final classification.  

Algorithm 1: Random forest classification algorithm 

Inputs: pre-processed data, corresponding labels, splitting 

ratios, hyper parameters (estimators, depth, sample leaf)  

Output: predicted classes, classification performance  

Step 1: function 𝑆𝑒𝑎𝑟𝑐ℎ(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑎𝑓)  

Step 2: generate the dictionary based on estimators, depth, 

sample leaf 

Step 3: initialize the hyper parameter optimizer 

Step 4: return the best estimator 

Step 5: generate 𝑐 bootstrap samples 

Step 6: for 𝑖=1 to 𝑐 do 

Randomly sample the training data 𝐷 

Create a root node 

𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒() 

Step 7: end 

Step 8: BuildTree() 

Step 9: If 𝑁 contains attributes only belonging to one class 

Step 10: Return 

Step 11: Else 

Step 12: Randomly pick the 𝑝% of attributes where the 

higher possibility for splitting  

Step 13: Select 𝐹 features from the list based on the highest 

information gain  

Step 14: Generate 𝑓 child nodes from these attributes  

Step 15: procedure 

𝑅𝐹𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡, 𝑡𝑟𝑎𝑖𝑛 𝑐𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠)  
Step 16: use 𝑠𝑒𝑎𝑟𝑐ℎ function to obtain the best estimator  

Step 17: Apply 𝑚𝑜𝑑𝑒𝑙𝑓𝑖𝑡 with train and test attributes 

Step 18: Predict the labels based on input test data 

Step 19: Return predicted class 

 

4. Results and Discussion  
This section presents the discussion of the proposed 

approach and presents the discussion about the outcome of 

the proposed ensemble approach. The proposed approach 

is implemented using Python 3.8 and MATLAB2021a 

installed on the Windows platform.  

4.1. Dataset Details  

The proposed approach is implemented on publicly 

available data taken from Kaggle’s website [7]. This 

dataset contains 34,048 entries in two columns. The first 

column represents the sentences used as normal queries or 

SQL injection attack queries, and the second column 

represents the corresponding labels as 1 or 0. Here, 1 

represents the “attack query”, and 0 represents the “normal 

query”. In this dataset, a total of 22,305 positive and 

11,781 negative samples are present, divided into training 

and testing ratios to obtain the system’s classification 

performance.  

4.2. Performance Measurement  

Performance evaluation relies on four key parameters: 

accuracy, sensitivity, specificity, and F-measure. These 

metrics are derived from the confusion matrix analysis, 

which encompasses true positives, false positives, true 

negatives, and false negatives. Below the table shows the 

representation of the confusion matrix.  

Table 1. Confusion matrix 

 Positive Negative Total 

Positive 𝑇𝑝 𝐹𝑝 𝑇𝑝 + 𝐹𝑝 

Negative 𝐹𝑁 𝑇𝑁 𝐹𝑁 + 𝑇𝑁 

Total 𝑇𝑃 + 𝐹𝑁 𝑇𝑃 + 𝑇𝑁  
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The detection accuracy is computed based on the 

values obtained as mentioned in the confusion matrix, such 

as true positive, false positive, false negative, and true 

positive. The accuracy can be computed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 (1) 

 

Similarly, the sensitivity performance is computed 

with the help of a confusion matrix. The sensitivity can be 

expressed as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (2) 

                      

The specificity can be computed as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 (3) 

 

The F-measure can be computed as: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

 (4) 

4.3. Comparative Analysis  

In this section, we conduct a comparative analysis to 

assess the performance of the proposed ensemble classifier 

in relation to other classification methods. The confusion 

matrix of the proposed approach is presented in the table 

below. 

Table 2. Confusion matrix by using the proposed classifier 

 Positive Negative 

Positive 1298 3 

Negative 11 1290 

 

Based on this confusion matrix, the other performance 

parameters, such as precision, recall, f-measure and ROC, 

are also measured. The obtained performance is 

demonstrated in below given table with a weighted 

average.  

Table 3. Detailed classification performance for the proposed 

approach 

Class TP FP Pr Rec F1 ROC 

1 0.995 0.009 0.991 0.995 0.993 0.986 

2 0.990 0.004 0.995 0.990 0.992 0.986 

Avg. 0.993 0.007 0.993 0.993 0.993 0.986 
 

Similarly, a support vector machine classification 

scheme is applied. The obtained confusion matrix is 

presented in below given table.  

Table 4. Confusion matrix by using SVM classifier 

 Positive Negative 

Positive 1255 46 

Negative 81 1220 
 

Table 5. Detailed classification performance for SVM classifier 

Class TP FP Pr Rec F1 ROC 

1 0.964 0.062 0.939 0.964 0.951 0.904 

2 0.937 0.035 0.963 0.937 0.950 0.904 

Avg. 0.951 0.048 0.951 0.951 0.951 0.904 

Later, the performance of the Naïve Bayes classifier is 

also measured for the given dataset and obtained the 

confusion matrix as follows: 

Table 6. Confusion matrix by using Naïve Bayes classifier 

 Positive Negative 

Positive 1263 38 

Negative 24 1277 

 

The detailed classification performance for both 

classes is presented in below given table.  

Table 7. Detailed classification performance for Naïve Bayes classifier 

Class TP FP Pr Rec F1 ROC 

1 0.970 0.018 0.981 0.970 0.976 0.952 

2 0.981 0.029 0.971 0.981 0.976 0.952 

Avg. 0.976 0.023 0.976 0.976 0.976 0.952 

 

Similarly, a discriminant analysis classifier is 

implemented, and the obtained confusion matrix is 

presented in below given table. 

Table 8. Confusion matrix by using discriminant analysis classifier 

 Positive Negative 

Positive 1290 11 

Negative 87 1214 
 

Based on this confusion matrix, the statistical 

performance parameters are obtained, which are presented 

in below given table.  

Table 9. Detailed classification performance for discriminant 

classifier 

Class TP FP Pr Rec F1 ROC 

1 0.9915 0.066 0.9368 0.991 0.963 0.925 

2 0.9331 0.008 0.9910 0.933 0.961 0.925 

Avg. 0.962 0.0377 0.963 0.962 0.962 0.925 
 

Finally, the performance for the K-nearest 

neighbourhood classifier is measured, and the obtained 

confusion matrix is presented in below given table.  

Table 10. Confusion matrix by using knn classifier 

 Positive Negative 

Positive 1256 45 

Negative 62 1239 
 

Furthermore, the detailed performance of the classifier 

is demonstrated in below given table. This experiment 

contains the performance analysis for each class present in 

the dataset.  

Table 11. Detailed classification performance for knn classifier 

Class TP FP Pr Rec F1 ROC 

1 0.965 0.047 0.953 0.965 0.959 0.919 

2 0.952 0.034 0.965 0.965 0.958 0.919 

Avg 0.958 0.041 0.9590 0.958 0.958 0.919 

 

The comprehensive classifier performance evaluation 

is conducted, considering metrics such as Kappa, MAE, 

RMSE, RAE, RRSE, and Accuracy. We benchmark the 

performance of our proposed approach against various 
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established classification methods, including k-nearest 

neighbourhood, discriminant analysis, Naïve Bayes, and 

support vector machine classification. Below, the table 13 

shows the summarised performance of the proposed 

approach and its comparison with other existing classifiers. 

The comparative study shows that the overall accuracy is 

obtained as 95.88%, 96.23%, 96.61%, 95.11%, and 

99.30% using KNN, Discriminant Analysis, Naïve Bayes, 

SVM, and Proposed classifier, respectively. 

The figure 5 illustrates the average performance of 

various classifiers alongside our proposed ensemble 

approach. Average performance is evaluated based on 

accuracy, ROC, F-Measure, recall, and precision.  

The comparative analysis reveals that our proposed 

approach attains an average performance of 99.315% 

precision, 99.305% recall, 99.305% F-Measure, 98.61% 

ROC, and 99.3% accuracy. 

Table 12. Performance evaluation of proposed approach against various established classification methods 

 Kappa MAE RMSE RAE RRSE Accuracy 

KNN 0.917 0.041 0.202 12.1 4.9 95.8 

Discriminant analysis 0.924 0.037 0.194 13.2 5.1 96.2 

Naïve Bayes 0.952 0.023 0.154 20.9 6.4 96.6 

SVM 0.902 0.048 0.220 10.244 4.5 95.1 

Proposed 0.986 0.006 0.083 72.2 12.0 99.30 

Table 13. Comparative analysis of proposed approach against various established classification methods 

Classifier  TPR FPR Precision Recall FMeasure ROC Accuracy 

KNN 
Class 1 0.9564 0.0477 0.9530 0.9654 0.9591 0.9194 

95.88 
Class 2 0.9523 0.0346 0.9650 0.9523 0.9586 0.9194 

Discriminant Analysis 
Class 1 0.9915 0.0669 0.9368 0.9915 0.9634 0.9252 

96.23 
Class 2 0.9391 0.0085 0.9910 0.9331 0.9612 0.9252 

Naïve Bayes 
Class 1 0.9708 0.0184 0.9814 0.9708 0.9760 0.9529 

96.61 
Class 2 0.9816 0.0292 0.9711 0.9818 0.9763 0.9529 

SVM 
Class 1 0.9646 0.0623 0.9394 0.9646 0.9518 0.9046 

95.11 
Class 2 0.9377 0.0354 0.9637 0.9377 0.9505 0.9046 

Proposed classifier 
Class 1 0.9955 0.0094 0.9910 0.9955 0.9932 0.9861 

99.30 
Class 2 0.9906 0.0045 0.9953 0.9906 0.9929 0.9861 

 
Fig. 5 Average performance of various classifiers and proposed ensemble approach

KNN

Discriminant Analysis

Naïve Bayes

SVM

Proposed classifier

Average Precision Average Recall Average Fscore Average ROC Accuracy
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5. Conclusion  
According to the recent studies presented by OWASP, 

an injection attack is one of the most vulnerable attacks out 

of the top ten security dangers. SQL injection, on the other 

hand, is one of the most common forms of injection 

assaults. SQL injection may cause significant network 

damage due to its different kinds and rapid changes, 

culminating in data leaking and website paralysis. 

Detecting SQL injection represents a complex challenge 

owing to the diversity of attack payloads, the wide range of 

attack strategies, and the multitude of attack vectors. How 

to successfully defend against SQL injection attacks has 

been the focus and frontier of online security in recent 

years. Thus, this approach focuses on machine learning-

based techniques and presents an ensemble machine 

learning approach which considers neural network, random 

forest, SVM and discriminant analysis as learners. The 

performance of the proposed approach is measured in 

terms of Precision, Recall, F-Measure, ROC, and 

Accuracy, which are obtained as 0.99315, 0.99305, 

0.99305, 0.9861, and 99.30, respectively.  
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