
International Journal of Engineering Trends and Technology Volume 71 Issue 11, 18-26, November 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I11P202 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Supervised Ensemble Learning-Based Approach to

Mitigate SQL Injection Attack on Smart City Data

Asifiqbal Sirmulla1, M. Prabhakar2

1,2Computer Science & Engineering, Reva University Bangalore, Karnataka, India.

1Corresponding Author : r20pcs03@cit.reva.edu.in

Received: 25 March 2023 Revised: 18 June 2023 Accepted: 27 September 2023 Published: 04 November 2023

Abstract - Currently, the use of internet-based applications and technologies has grown drastically. Due to this growth, a

massive amount of data is generated and stored on webservers. This increased use of these technologies faces several

challenges, such as data vulnerability, security threats and data privacy. SQL-based programming language is widely

adopted to access these data due to its simple and efficient use. However, the attacks can use the SQL-based query

injection method, where they can insert malicious queries, posing serious threats to the server. Several techniques have

been presented in the past, such as blacklisting and rule-based detection methods, but these methods fail to detect SQL

injection attacks due to their diversity in input queries. Thus, currently, machine learning-based schemes have gained

massive attention in this field, where supervised and unsupervised methods are widely employed. However, the varying

nature of SQL queries demands a stable architecture. This work presents a machine learning-based approach for SQL

injection attack detection by introducing an ensemble machine learning approach where SVM, NN, discriminant and

random forest classifiers are employed. The experimental analysis shows that the average accuracy performance is

achieved as 95.88%, 96.23%, 96.61%, 95.11%, and 99.30% using KNN, Discriminant classifier, Naïve Bayes, SVM, and

proposed ensemble classification.

Keywords - SQL injection, Machine learning, Ensemble learning, Malicious query prediction, SQLIA.

1. Introduction
The world has noticed a tremendous technological

revolution and growth in various fields where the Internet

is considered one of the fastest-growing technologies, and

it has worked as a radical element for various other

technologies [1]. Due to this holistic growth, the world has

emerged as a global village. Now, the internet and

computer networks are considered an essential component

of life. Due to the significant advantages of the World

Wide Web and its accessibility, it is widely adopted in

various sectors such as e-commerce, banking, e-

government, health care, etc. Moreover, the latest web

technologies, such as HTML5, have further accelerated the

use of web technologies [2].

Moreover, these web-based technologies process

several types of information along with private information

for organizations, such as emails, transactions, or

information related to individuals, such as shopping, social

activities, etc. Many other innovative services are yet to

come very shortly. As these applications are adopted for

various applications, they attract more vulnerabilities,

which can lead to compromise of the World Wide Web and

attacks to contaminate and steal information. In general,

the user submits the request to a web server with the help

of Hypertext Markup Language (HTML) forms, Uniform

Resource Positions (URLs) and other fields. This data is

processed without checking and filtering the query [3].

Processing this unfiltered data, the attackers get a chance to

perform SQL injection, which can act as faulty query

input, resulting in an attack on the webserver [4].

SQL (Structured Query Language) is a widely adopted

programming language used explicitly for database

management. This programming language allows access to

and manipulation of the database. Many WEB-based

programming languages, such as PHP or JAVA, facilitate

several methods to construct and execute the queries [5].

These programming languages accept the user inputs or

statements, which are further concatenated to form the

final query as input to the web server.

Several programming languages have been introduced

to encode the user requests to construct the SQL query

statement. At this stage, attackers can use SQL injection

attacks where malicious code fragments are inserted in the

query statements, which can malfunction the working

server and execute inappropriate queries. This type of

contaminated query can leak data and damage the

database. For example, attackers use SQL injection to

obtain login credentials and other details, which can cause

a threat to private data. Attackers inject these queries into

the programme as input injection, server variable injection,

cookie injection etc. [6]. Below, Figure 1 depicts the

process of SQL query injection.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

19

Fig. 1 SQL query injection

The current World Wide Web scenario is highly

dependent on web-based servers for data storage,

accessing the data from anywhere at any point in time.

However, this has aggravated the vulnerability of private

data to several security threats. SQL injection attacks are

the most common attacks that attackers widely use, and the

attack techniques constantly change as website technology

advances [1]. The SQL language’s structure may be

changed, and it enables a variety of coding styles. As a

result, several classic detection strategies, such as

blocklisting and rule-based detection, cannot provide a

more effective protective impact.

1.1. Research Gap

The field of SQLIA detection leveraging machine

learning has undoubtedly made substantial strides, yet

several critical research gaps persist, necessitating further

investigation and innovation. These gaps include:

• Adaptation to Evolving Attack Strategies: SQL

injection attackers consistently employ novel evasion

and obfuscation techniques to thwart detection. To

effectively combat this, research should concentrate on

devising models capable of adapting to these ever-

evolving attack strategies.

• Mitigating False Positives: A common issue with

machine learning-based SQL injection detection

systems is their propensity to generate high rates of

false positives. This phenomenon can be detrimental in

real-world scenarios. Therefore, it is imperative to

develop methods to curtail false positives while

maintaining a high detection accuracy rate.

• Cross-Domain Applicability: The majority of existing

research is domain-specific, focusing on individual

applications or websites. To enhance versatility and

applicability, researchers should concentrate on

crafting models that can be deployed across diverse

domains, ensuring a more comprehensive safeguard.

• Resource Efficiency: Many current machine learning

models utilized for SQL injection detection are

computationally intensive, rendering them unsuitable

for resource-constrained environments. As such, the

research community should explore methodologies to

engineer efficient models that can be readily deployed

across a spectrum of scenarios.

• Real-Time Detection Imperative: In the security realm,

real-time detection of SQL injection attacks holds

paramount importance for preventing potential

breaches. Thus, research endeavors should be geared

towards devising models and techniques capable of

offering real-time detection with minimal latency, thus

fortifying security protocols.

1.2. Problem Statement

Within the domain of SQLIA detection through the

utilization of machine learning, the current state of the art

presents a series of shortcomings characterized by an

inability to adapt to evolving attack strategies, a propensity

for generating false positives, domain-specificity,

resource-intensive models, and an insufficiency in

providing real-time detection.

The primary objective of this research endeavor is to

address these critical challenges by developing an

innovative and resource-efficient model that excels in real-

time SQL injection attack detection, reduces false

positives, exhibits adaptability across various domains, and

is amenable to deployment in resource-constrained

environments. This research aims to fortify the security

infrastructure of applications and systems by mitigating the

risks posed by SQL injection attacks.

Attacker

User

Client

Malicious
Query

Firewall Web application
Server

Database
Server

Normal Query
Response

Leaked Database

http://abcd.com/page.php?q=selector 1=1

http://abcd.com/page.php'q user page

Configuring data
(splice string)

Leakage of
Configuring data

Sensitive data
leakage

Communication Link

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

20

1.3. Contributions

The research community has presented several

techniques on SQL injection detection in recent years,

although the detection scope is generally confined to

specific subgroups of SQL injection. An effective SQL

injection detection framework is of utmost importance,

capable of identifying all variations of SQL injection

attacks while remaining adaptable to address emerging

attacks promptly. Similarly, the varying characteristics of

these attacks affect the process of determining the types of

attacks. Generally, combining numerous attacks weakens

the traditional machine-learning process because these

approaches are trained for a specific set of attributes. Thus,

this work focuses on developing a new machine learning

that considers different classifiers and constructs an

ensemble model by employing the bagging/boosting

model. Prior to this, a feature selection model is also

implemented to obtain robust features to improve the

training.

1.4. Organization

The remainder of this manuscript is structured as

follows: Section II provides a comprehensive literature

review, Section III outlines the proposed approach for

SQLIA detection, and Section IV presents the results of

the proposed method, including a comparative analysis to

demonstrate its robustness. Finally, Section V offers

concluding remarks on this research and outlines potential

future avenues of study.

2. Literature Survey
This section presents the description of recent

techniques of SQL injection detection by using machine

learning algorithms. Li et al. [9] developed a deep machine

learning-based approach, introducing a deep-forest method

to detect complex SQL injection attacks. According to this

approach, the deep forest approach is improved. This is

achieved by concatenating the input and output of the

previous layer output. This concatenation helps mitigate

the feature degradation issue caused by the increased

number of layers. Furthermore, the AdaBoost algorithm is

also introduced to update the feature weights.

Li et al. [10] reported that traditional machine learning

methods use manually defined attributes; thus, the

detection performance highly depends on the feature

extraction. However, numerous verities of SQL attacks are

present, which vary in characteristics compared with the

pre-trained models. Thus, these methods fail to detect SQL

attacks. The authors have presented a long, short-term

memory scheme capable of handling complex data to deal

with these issues.

Kasim et al. [11] developed an ensemble approach,

which includes data processing, bagging, detection and

prevention phases. The data pre-processing phase uses the

regex function to identify the standard attributes or queries.

Afterwards, feature extraction and feature vector

formulation are applied to the data. Further, a tree-based

bagging model is presented to detect the attack pattern.

This model classifies the attacks as simple, unified, latera

and clean queries. Corresponding to each query, it suggests

preventive methods to deal with different types of attacks.

Batista et al. [12] introduced a hybrid of fuzzy and

neural network models to detect attacks. In this approach,

the neural network generates the rules with the help of

nebulous logic neurons. Generally, these networks suffer

from the overfitting issue, which is resolved using the

regularization model. Similarly, the fuzzy neural network

is used to perform the binary classification based on the

pre-defined rules. Tripathy et al. [13] presented an

experimental analysis where different classifiers such as

AdaBoost, Stochastic gradient descent, random forest,

deep learning and Boosted tree classifiers are used to

detect the SQL attacks.

These machine learning schemes consider data

cleaning, feature extraction, feature selection and

employing the classification model steps to obtain the

classification of attacks. Zhuo et al. [14] presented a deep

learning approach which uses word embedding methods

and a continuous bag of words (CBOW) to construct the

word embedding matrix. Later, they built an LSTM-based

model, which includes an input layer, word embedding

layer, dense layer, activation, drop output layer, fully

connected layer, sigmoid function and final output layer.

Fang et al. [15] presented a combined machine

learning model based on a support vector machine and

LSTM networks. First, SQL tokenization is applied,

followed by the Likelihood Ratio. This generates an SQL

word vector model. This model is considered a train set

and fed into the LSTM model, which classifies the patterns

as genuine and injected queries. Kherbache et al. [16]

discussed that feature selection is considered the critical

phase for anomaly-based intrusion detection by selecting

the most significant attributes to improve efficiency and

minimize false positives. Based on this concept, Aqsa

Afroz et al. [17] presented a combined agglomerative

hierarchal clustering scheme with support vector machine

classification. Feature selection is performed based on the

variance and grouped based on their similarities.

3. Proposed model
This section presents the proposed solution for SQL

injection attack detection by using a machine learning

technique where an ensemble technique is presented to

reduce the misclassification problem.

Moreover, feature redundancy and dimensionality

create an excessive burden on the network during training.

Moreover, redundant attributes impact learning

performance, degrading the overall classification accuracy.

3.1. Overview

The proposed approach is based on machine learning

techniques where feature selection and ranking are

performed during the pre-processing phase. Further, an

ensemble of SVM, NN, discriminant analysis and random

forest stacked to generate the meta-classifier.

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

21

Fig. 2 The architecture of the proposed ensemble approach

According to this architecture, data is first pre-

processed, where data transformation and missing value

imputation are applied. This stage generates a matrix

which contains features and their corresponding labels.

Further, the relief feature selection method ranks the

features according to their weights. In the next phase,

training is performed with the help of ensemble learners,

and finally, testing samples are given as input to generate

the final classification.

3.2. Feature Selection

Data dimension plays a vital role in this field of

machine learning techniques. High-dimensional data

requires huge processing time and consumes more

resources. Moreover, redundancy in the data leads to

degrade the classifier performance. This work has adopted

a relief-based feature selection algorithm [8]. It computes

the statistics for each attribute and uses these parameters to

estimate the ‘relevance’ of the f attribute. These features

are represented as feature weights as 𝑊[𝐴] Weight of

feature 𝐴, which ranges from -1 to +1. Below algorithm 1

shows the pseudocode for relief-based feature selection.

Input: feature vector and its corresponding class

values (in our attack attributes and their classes are

considered as 0 and 1 for attack and normal query)

𝑛 ←number of training instances present in the dataset

𝑎 ← number of attributes

Parameters: 𝑚 ← denotes the random training

samples which are used to update 𝑊

Step 1: initialize the weights as 𝑊[𝐴] ≔ 0

Step 2: for 𝑖=1 to 𝑚 do

Step 3: select a random target form instance 𝑅𝑖

Step 4: identify the nearest hit and miss from the

instances

Step 5: for 𝐴 = 1 𝑡𝑜 𝑎 dor

// compute and update the weights

𝑊[𝐴] = 𝑊[𝐴] −
𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖 , 𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖, 𝑀)

𝑚

Step 6: end for

Step 7: end for

Step 8: return the updated weighted feature scores 𝑊

and ranked attributes.

Input Dataset

Transformation Missing Value Imputation

Relief Feature

Feat 1 Feat 2 Feat 3

Validation Training Testing

SVM NN Discriminant Random Forest

Train 1 Train 2 Train 3 Train 4

Meta Classifier

Final Prediction

Dataset Split

Ensemble

Training

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

22

According to this approach, the feature selection

process is iterated through numerous training instances and

selects the random target from 𝑅𝑖 instances. Further, this is

used to update the feature weights 𝑊 by considering the

target and neighbouring instances. At this stage, the

algorithm computes the nearest neighbour instances of the

target, where the nearest to the same class is known as the

nearest hit. (𝐻) and the other instance is known as nearest

miss which is known as nearest miss (𝑀). In the last step,

computed weights are updated based on the difference

between targets. For discrete attributes, 𝑑𝑖𝑓𝑓 is defined as:

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) = {
0, 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒 (𝐴, 𝐼1) = 𝑣𝑎𝑙𝑢𝑒 (𝐴, 𝐼2)

1, 𝑖𝑓 𝑜𝑡𝑒ℎ𝑟𝑤𝑖𝑠𝑒
 (1)

3.3. Classifiers Used for Ensemble Learning

As mentioned before, traditional machine learning

fails to provide detection for varied attack types; thus, a

robust scheme or architecture is required which can handle

different types of attacks which are dynamic in nature of

attack (i.e., handling the SQL injection query which has

different types of SQL injections). In order to improve the

detection accuracy, an ensemble learning approach is

introduced, which uses SVM, NN, DT and RF. These

classifiers used the stacking approach to formulate the

ensemble model of classification. This section briefly

describes these techniques to adopt in SQL injection

detection.

3.4. Support Vector Machine

The SVM is considered a promising technique in the

field of machine learning. This is a type of supervised

learning scheme which is widely adopted for binary

classification problems. The SVM classifier focuses on

identifying the best hyperplane in such a way that it

separates all data points from one class to another class.

Here, the best hyperplane represents an SVM with the

highest margin between two classes of the input data.

Below given, Figure 2 depicts the actual and hyperplane-

separated data.

Fig. 3 SVM classifier

According to this approach, the SQL injection dataset

is represented as 𝑥𝑗 and their corresponding category (SQL

attack query or not) are denoted as 𝑦𝑗. Let 𝑑 be the

dimension of the dataset; thus, the training set is

represented as 𝑥𝑗 ∈ 𝑅𝑑. For this condition, the hyperplane

can be represented as:

𝑓(𝑥) = 𝑥′𝛽 + 𝑏 = 0 (2)

𝛽 ∈ 𝑅𝑑 and 𝑏 are the real numbers.

This approach aims at identifying the best hyperplane

which separates the attack regular queries based on their

attributes. It focuses on finding the 𝛽 and 𝑏, which are used

to minimize the ‖𝛽‖ such a way that for all data points

(𝑥𝑗 , 𝑦𝑗),

𝑦𝑗𝑓(𝑥𝑗) ≥ 1 (3)

Here, support vectors are 𝑥𝑗 on the boundary of the

plane where 𝑦𝑖𝑓(𝑥𝑖) = 1. Generally, minimizing the ‖𝛽‖

is the main aim of this approach. The classification can be

obtained as follows:

𝐶𝑙𝑎𝑠𝑠(𝑧) = 𝑠𝑖𝑔𝑛(𝑧�̂� + �̂�) = 𝑠𝑖𝑔𝑛 (𝑓(𝑧)) (4)

(𝑓(𝑧)) is the classification score and denotes the distance

from the decision boundary.

However, kernel functions are applied if a simple

hyperplane is not obtained. These functions are

polynomial, radial basis (Gaussian) and Multilayer

perceptron or sigmoid (neural network). These functions

are expressed as:

Polynomial function:

𝐺(𝑥1, 𝑥2) = (1 + 𝑥1𝑥2)𝑝

Radial basis function (Gaussian):

𝐺(𝑥1, 𝑥2) = exp(−‖𝑥1 − 𝑥2‖2)

Multilayer function:

𝐺(𝑥1, 𝑥2) = tanh(𝑝1𝑥1𝑥2 + 𝑝2)

(5)

3.5. Discriminant Analysis

The discriminant is a supervised classification scheme

which uses Gaussian distribution to generate the data

corresponding to the classes. This task is accomplished in

two phases: the training phase and the prediction phase. In

the training phase, the fitting function focuses on

estimating the Gaussian distribution parameter for each

class. Similarly, the prediction phase considers these

trained models and finds the class with the smallest

misclassification to identify the class of the input test

sample. In the training phase, it considers the input SQL

data and their corresponding category, which are processed

through a multivariate normal distribution. During the

fitting process in linear discriminant analysis, it measures

the sample mean of each class is, and later sample

covariance is measured by subtracting the sample mean of

each class. In this phase, it constructs a weighted classifier

as:

�̂�𝑘 =
∑ 𝑀𝑛𝑘

𝑁
𝑛=1 𝑥𝑛

∑ 𝑀𝑛𝑘
𝑁
𝑛=1

 (6)

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

23

On the other hand, this approach focuses on

minimizing the classification cost for prediction. This

function can be expressed as:

�̂� = arg min
𝑦=1,..𝐾

∑ �̂�(𝑘|𝑥)𝐶(𝑦|𝑘)

𝐾

𝑘=1

 (7)

Where �̂� denotes the predicted class, 𝐾 total number

of classes (in our case 2 classes), �̂�(𝑘|𝑥) is the posterior

probability of class 𝑘 for 𝑥 observations and 𝐶(𝑦|𝑘) is the

cost of classification. The posterior probability is

expressed as:

𝑃(𝑥|𝑘) =
1

((2𝜋)𝑑|Σ𝑘|)
1
2

exp (−
1

2
(𝑥

− 𝜇𝑘) ∑(𝑥 − 𝜇𝑘)𝑇

−1

𝑘

)

(8)

Based on the probability, the category for input

attributes can be classified based on the highest

discriminant value as 𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥)

3.6. Neural Network Classifier

 The neural network is a supervised learning algorithm

which contains several neurons as units. These neurons are

used to convert the input data into some output via the

layered arrangement of neurons. Each layer performs some

specific function and then passes to the next layer. This

process is known as the feed-forward process. Along with

data passing, weights are also applied to train the neural

network during the learning phase. Figure 4 below shows

the architecture of the neural network.

Fig. 4 Neural network classification

3.7. Random Forest

 Random forest is a supervised learning scheme which

constructs multiple solutions in the form of decision trees,

and to obtain the output of classification, the class which is

selected the maximum times by most trees is considered the

final classification.

Algorithm 1: Random forest classification algorithm

Inputs: pre-processed data, corresponding labels, splitting

ratios, hyper parameters (estimators, depth, sample leaf)

Output: predicted classes, classification performance

Step 1: function 𝑆𝑒𝑎𝑟𝑐ℎ(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑎𝑓)

Step 2: generate the dictionary based on estimators, depth,

sample leaf

Step 3: initialize the hyper parameter optimizer

Step 4: return the best estimator

Step 5: generate 𝑐 bootstrap samples

Step 6: for 𝑖=1 to 𝑐 do

Randomly sample the training data 𝐷

Create a root node

𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒()

Step 7: end

Step 8: BuildTree()

Step 9: If 𝑁 contains attributes only belonging to one class

Step 10: Return

Step 11: Else

Step 12: Randomly pick the 𝑝% of attributes where the

higher possibility for splitting

Step 13: Select 𝐹 features from the list based on the highest

information gain

Step 14: Generate 𝑓 child nodes from these attributes

Step 15: procedure

𝑅𝐹𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡, 𝑡𝑟𝑎𝑖𝑛 𝑐𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠)
Step 16: use 𝑠𝑒𝑎𝑟𝑐ℎ function to obtain the best estimator

Step 17: Apply 𝑚𝑜𝑑𝑒𝑙𝑓𝑖𝑡 with train and test attributes

Step 18: Predict the labels based on input test data

Step 19: Return predicted class

4. Results and Discussion
This section presents the discussion of the proposed

approach and presents the discussion about the outcome of

the proposed ensemble approach. The proposed approach

is implemented using Python 3.8 and MATLAB2021a

installed on the Windows platform.

4.1. Dataset Details

The proposed approach is implemented on publicly

available data taken from Kaggle’s website [7]. This

dataset contains 34,048 entries in two columns. The first

column represents the sentences used as normal queries or

SQL injection attack queries, and the second column

represents the corresponding labels as 1 or 0. Here, 1

represents the “attack query”, and 0 represents the “normal

query”. In this dataset, a total of 22,305 positive and

11,781 negative samples are present, divided into training

and testing ratios to obtain the system’s classification

performance.

4.2. Performance Measurement

Performance evaluation relies on four key parameters:

accuracy, sensitivity, specificity, and F-measure. These

metrics are derived from the confusion matrix analysis,

which encompasses true positives, false positives, true

negatives, and false negatives. Below the table shows the

representation of the confusion matrix.

Table 1. Confusion matrix

 Positive Negative Total

Positive 𝑇𝑝 𝐹𝑝 𝑇𝑝 + 𝐹𝑝

Negative 𝐹𝑁 𝑇𝑁 𝐹𝑁 + 𝑇𝑁

Total 𝑇𝑃 + 𝐹𝑁 𝑇𝑃 + 𝑇𝑁

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

24

The detection accuracy is computed based on the

values obtained as mentioned in the confusion matrix, such

as true positive, false positive, false negative, and true

positive. The accuracy can be computed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 (1)

Similarly, the sensitivity performance is computed

with the help of a confusion matrix. The sensitivity can be

expressed as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (2)

The specificity can be computed as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 (3)

The F-measure can be computed as:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

 (4)

4.3. Comparative Analysis

In this section, we conduct a comparative analysis to

assess the performance of the proposed ensemble classifier

in relation to other classification methods. The confusion

matrix of the proposed approach is presented in the table

below.

Table 2. Confusion matrix by using the proposed classifier

 Positive Negative

Positive 1298 3

Negative 11 1290

Based on this confusion matrix, the other performance

parameters, such as precision, recall, f-measure and ROC,

are also measured. The obtained performance is

demonstrated in below given table with a weighted

average.

Table 3. Detailed classification performance for the proposed

approach

Class TP FP Pr Rec F1 ROC

1 0.995 0.009 0.991 0.995 0.993 0.986

2 0.990 0.004 0.995 0.990 0.992 0.986

Avg. 0.993 0.007 0.993 0.993 0.993 0.986

Similarly, a support vector machine classification

scheme is applied. The obtained confusion matrix is

presented in below given table.

Table 4. Confusion matrix by using SVM classifier

 Positive Negative

Positive 1255 46

Negative 81 1220

Table 5. Detailed classification performance for SVM classifier

Class TP FP Pr Rec F1 ROC

1 0.964 0.062 0.939 0.964 0.951 0.904

2 0.937 0.035 0.963 0.937 0.950 0.904

Avg. 0.951 0.048 0.951 0.951 0.951 0.904

Later, the performance of the Naïve Bayes classifier is

also measured for the given dataset and obtained the

confusion matrix as follows:

Table 6. Confusion matrix by using Naïve Bayes classifier

 Positive Negative

Positive 1263 38

Negative 24 1277

The detailed classification performance for both

classes is presented in below given table.

Table 7. Detailed classification performance for Naïve Bayes classifier

Class TP FP Pr Rec F1 ROC

1 0.970 0.018 0.981 0.970 0.976 0.952

2 0.981 0.029 0.971 0.981 0.976 0.952

Avg. 0.976 0.023 0.976 0.976 0.976 0.952

Similarly, a discriminant analysis classifier is

implemented, and the obtained confusion matrix is

presented in below given table.

Table 8. Confusion matrix by using discriminant analysis classifier

 Positive Negative

Positive 1290 11

Negative 87 1214

Based on this confusion matrix, the statistical

performance parameters are obtained, which are presented

in below given table.

Table 9. Detailed classification performance for discriminant

classifier

Class TP FP Pr Rec F1 ROC

1 0.9915 0.066 0.9368 0.991 0.963 0.925

2 0.9331 0.008 0.9910 0.933 0.961 0.925

Avg. 0.962 0.0377 0.963 0.962 0.962 0.925

Finally, the performance for the K-nearest

neighbourhood classifier is measured, and the obtained

confusion matrix is presented in below given table.

Table 10. Confusion matrix by using knn classifier

 Positive Negative

Positive 1256 45

Negative 62 1239

Furthermore, the detailed performance of the classifier

is demonstrated in below given table. This experiment

contains the performance analysis for each class present in

the dataset.

Table 11. Detailed classification performance for knn classifier

Class TP FP Pr Rec F1 ROC

1 0.965 0.047 0.953 0.965 0.959 0.919

2 0.952 0.034 0.965 0.965 0.958 0.919

Avg 0.958 0.041 0.9590 0.958 0.958 0.919

The comprehensive classifier performance evaluation

is conducted, considering metrics such as Kappa, MAE,

RMSE, RAE, RRSE, and Accuracy. We benchmark the

performance of our proposed approach against various

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

25

established classification methods, including k-nearest

neighbourhood, discriminant analysis, Naïve Bayes, and

support vector machine classification. Below, the table 13

shows the summarised performance of the proposed

approach and its comparison with other existing classifiers.

The comparative study shows that the overall accuracy is

obtained as 95.88%, 96.23%, 96.61%, 95.11%, and

99.30% using KNN, Discriminant Analysis, Naïve Bayes,

SVM, and Proposed classifier, respectively.

The figure 5 illustrates the average performance of

various classifiers alongside our proposed ensemble

approach. Average performance is evaluated based on

accuracy, ROC, F-Measure, recall, and precision.

The comparative analysis reveals that our proposed

approach attains an average performance of 99.315%

precision, 99.305% recall, 99.305% F-Measure, 98.61%

ROC, and 99.3% accuracy.

Table 12. Performance evaluation of proposed approach against various established classification methods

 Kappa MAE RMSE RAE RRSE Accuracy

KNN 0.917 0.041 0.202 12.1 4.9 95.8

Discriminant analysis 0.924 0.037 0.194 13.2 5.1 96.2

Naïve Bayes 0.952 0.023 0.154 20.9 6.4 96.6

SVM 0.902 0.048 0.220 10.244 4.5 95.1

Proposed 0.986 0.006 0.083 72.2 12.0 99.30

Table 13. Comparative analysis of proposed approach against various established classification methods

Classifier TPR FPR Precision Recall FMeasure ROC Accuracy

KNN
Class 1 0.9564 0.0477 0.9530 0.9654 0.9591 0.9194

95.88
Class 2 0.9523 0.0346 0.9650 0.9523 0.9586 0.9194

Discriminant Analysis
Class 1 0.9915 0.0669 0.9368 0.9915 0.9634 0.9252

96.23
Class 2 0.9391 0.0085 0.9910 0.9331 0.9612 0.9252

Naïve Bayes
Class 1 0.9708 0.0184 0.9814 0.9708 0.9760 0.9529

96.61
Class 2 0.9816 0.0292 0.9711 0.9818 0.9763 0.9529

SVM
Class 1 0.9646 0.0623 0.9394 0.9646 0.9518 0.9046

95.11
Class 2 0.9377 0.0354 0.9637 0.9377 0.9505 0.9046

Proposed classifier
Class 1 0.9955 0.0094 0.9910 0.9955 0.9932 0.9861

99.30
Class 2 0.9906 0.0045 0.9953 0.9906 0.9929 0.9861

Fig. 5 Average performance of various classifiers and proposed ensemble approach

KNN

Discriminant Analysis

Naïve Bayes

SVM

Proposed classifier

Average Precision Average Recall Average Fscore Average ROC Accuracy

Asifiqbal Sirmulla & M. Prabhakar / IJETT, 71(11), 18-26, 2023

26

5. Conclusion
According to the recent studies presented by OWASP,

an injection attack is one of the most vulnerable attacks out

of the top ten security dangers. SQL injection, on the other

hand, is one of the most common forms of injection

assaults. SQL injection may cause significant network

damage due to its different kinds and rapid changes,

culminating in data leaking and website paralysis.

Detecting SQL injection represents a complex challenge

owing to the diversity of attack payloads, the wide range of

attack strategies, and the multitude of attack vectors. How

to successfully defend against SQL injection attacks has

been the focus and frontier of online security in recent

years. Thus, this approach focuses on machine learning-

based techniques and presents an ensemble machine

learning approach which considers neural network, random

forest, SVM and discriminant analysis as learners. The

performance of the proposed approach is measured in

terms of Precision, Recall, F-Measure, ROC, and

Accuracy, which are obtained as 0.99315, 0.99305,

0.99305, 0.9861, and 99.30, respectively.

References
[1] Tomás Sureda Riera et al., “A New Multi-Label Dataset for Web Attacks CAPEC Classification Using Machine Learning

Techniques,” Computers and Security, vol. 120, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Ayush Falor et al., “A Deep Learning Approach for Detection of SQL Injection Attacks Using Convolutional Neural Networks,”

Proceedings of Data Analytics and Management, pp. 293-304, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] O.P. Voitovych, O.S. Yuvkovetskyi, and L.M. Kupershtein, “SQL Injection Prevention System,” International Conference Radio

Electronics and Info Communications (UkrMiCo), IEEE, pp. 1-4, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[4] William G.J. Halfond, and Alessandro Orso, “AMNESIA: Analysis and Monitoring for Neutralizing SQL-Injection Attacks,”

Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 174-183, 2005. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Chrystian Byzdra, and Grzegorz Kozieł, “Analysis of the Defending Possibilities Against SQL Injection Attacks,” Journal of

Computer Sciences Institute, vol. 13, pp. 339-344, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Haifeng Gu et al., “DIAVA: A Traffic-Based Framework for Detection of SQL Injection Attacks and Vulnerability Analysis of

Leaked Data,” IEEE Transactions on Reliability, vol. 69, no. 1, pp. 188-202, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Syed Saqlain Hussain Shah, SQL Injection Dataset, Kaggle. [Online]. Available:

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset

[8] Ryan J. Urbanowicz et al., “Relief-Based Feature Selection: Introduction and Review,” Journal of Biomedical Informatics, vol. 85,

pp. 189-203, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[9] Qi Li et al., “A SQL Injection Detection Method Based on Adaptive Deep Forest,” IEEE Access, vol. 7, pp. 145385-145394, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Qi Li et al., “LSTM-Based SQL Injection Detection Method for Intelligent Transportation System,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 5, pp. 4182-4191, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[11] Ömer Kasim, “An Ensemble Classification-Based Approach to Detect Attack Level of SQL Injections,” Journal of Information

Security and Applications, vol. 59, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] Lucas Oliveira Batista et al., “Fuzzy Neural Networks to Create an Expert System for Detecting Attacks by SQL Injection,” The

International Journal of Forensic Computer Science - IJoFCS, vol. 13, no. 1, pp. 8-21, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[13] Dharitri Tripathy, Rudrarajsinh Gohil, and Talal Halabi, “Detecting SQL Injection Attacks in Cloud Saas Using Machine

Learning,” IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance

and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), IEEE, pp. 145-150, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Z. Zhuo et al., “Long Short-Term Memory on Abstract Syntax Tree for SQL Injection Detection,” IET Software, vol. 15, no. 2, pp.

188-197, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Yong Fang et al., “WOVSQLI: Detection of SQL Injection Behaviors Using Word Vector and LSTM,” Proceedings of the 2nd

International Conference on Cryptography, Security and Privacy, pp. 170-174, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[16] Meriem Kherbache, Kamal Amroun, and David Espes, “A New Wrapper Feature Selection Model for Anomaly-Based Intrusion

Detection Systems,” International Journal of Security and Networks, vol. 17, no. 2, pp. 107-123, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Aqsa Afroz et al., “An Algorithm for Prevention and Detection of Cross Site Scripting Attacks,” SSRG International Journal of

Computer Science and Engineering, vol. 7, no. 7, pp. 8-18, 2020. [CrossRef] [Publisher Link]

https://doi.org/10.1016/j.cose.2022.102788
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Multi-Label+Dataset+for+Web+Attacks+CAPEC+Classification+using+Machine+Learning+Techniques&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404822001833
https://doi.org/10.1007/978-981-16-6285-0_24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Deep+Learning+Approach+for+Detection+of+SQL+Injection+Attacks+Using+Convolutional+Neural+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-6285-0_24
https://doi.org/10.1109/UkrMiCo.2016.7739642
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SQL+Injection+Prevention+System&btnG=
https://ieeexplore.ieee.org/abstract/document/7739642
https://doi.org/10.1145/1101908.1101935
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AMNESIA%3A+Analysis+and+Monitoring+for+Neutralizing+SQL-Injection+Attacks&btnG=
https://dl.acm.org/doi/abs/10.1145/1101908.1101935
https://doi.org/10.35784/jcsi.1329
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+the+Defending+Possibilities+Against+SQL+Injection+Attacks&btnG=
https://ph.pollub.pl/index.php/jcsi/article/view/1329
https://doi.org/10.1109/TR.2019.2925415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DIAVA%3A+a+traffic-based+framework+for+detection+of+SQL+injection+attacks+and+vulnerability+analysis+of+leaked+data&btnG=
https://ieeexplore.ieee.org/abstract/document/8771368
https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
https://doi.org/10.1016/j.jbi.2018.07.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relief-based+feature+selection%3A+Introduction+and+review&btnG=
https://www.sciencedirect.com/science/article/pii/S1532046418301400
https://doi.org/10.1109/ACCESS.2019.2944951
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+SQL+Injection+Detection+Method+Based+on+Adaptive+Deep+Forest&btnG=
https://ieeexplore.ieee.org/abstract/document/8854182
https://doi.org/10.1109/TVT.2019.2893675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LSTM-based+SQL+injection+detection+method+for+intelligent+transportation+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8616823
https://doi.org/10.1016/j.jisa.2021.102852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Ensemble+Classification-Based+Approach+to+Detect+Attack+Level+of+SQL+Injections&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000867
https://doi.org/10.5769/J201801001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+neural+networks+to+create+an+expert+system+for+detecting+attacks+by+sql+injection&btnG=
http://ijofcs.org/abstract-v13n1-pp01.html
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+SQL+injection+attacks+in+cloud+SaaS+using+machine+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9123029
https://doi.org/10.1049/sfw2.12018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory+on+Abstract+Syntax+Tree+for+SQL+Injection+Detection&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12018
https://doi.org/10.1145/3199478.3199503
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WOVSQLI%3A+Detection+of+SQL+injection+behaviors+using+word+vector+and+LSTM&btnG=
https://dl.acm.org/doi/abs/10.1145/3199478.3199503
https://doi.org/10.1504/IJSN.2022.123298
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Wrapper+Feature+Selection+Model+for+Anomaly-Based+Intrusion+Detection+Systems&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Wrapper+Feature+Selection+Model+for+Anomaly-Based+Intrusion+Detection+Systems&btnG=
https://www.inderscienceonline.com/doi/abs/10.1504/IJSN.2022.123298
https://doi.org/10.14445/23488387/IJCSE-V7I7P102
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=407

