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Abstract - The evolution of software systems has witnessed tremendous changes in the last decade, moving from simple web-

based applications to enterprise-level distributed applications built on top of interoperable components. When systems are 

realized with the integration of heterogeneous components, they should evolve to accommodate changes gracefully. Moreover, 

systems need to be resilient against runtime faults that can occur for different reasons. Component-based software engineering 

has been phenomenal in producing such systems that drive the home chain of businesses in the real world. Building an enterprise 

application based on reusable components, instead of reinventing the wheel, is the main approach in the contemporary era. The 

reusable components are platform-independent and interoperable in nature. There is every possibility to have certain faults as 

the components are heterogeneous in nature, and they are location transparent as well. Several approaches were found in the 

literature to have fault-tolerant architectures in this context. However, there is still a need for leveraging fault tolerance 

architecture by addressing the problem of dynamic configuration of fault tolerance mechanisms at runtime. Towards this end, in 

this paper, we proposed a novel fault-tolerant architecture for component-based software development in the domain of software 

engineering. We proposed an algorithm known as Dynamic Configuration of Fault Tolerance Mechanisms (DCFTM) to ensure 

the system can withstand different kinds of faults at runtime and be resilient against faults. A case study enterprise application 

with distributed component-based architecture is built to evaluate the proposed fault-tolerant architecture and underlying 

DCFTM algorithm to prove the concept. The empirical study revealed that the DCFTM algorithm outperforms state of the art.  

 

Keywords - Software engineering, Fault tolerant architecture, Component-based software development. 
 

1. Introduction  
Component-based software systems are essentially 

distributed in nature, where server components can be 

geographically located anywhere in the world. Distributed 

computing is a completely server-side phenomenon where 

different server programs or components work together. 

Reusing server components in related applications is also 

possible instead of reinventing the wheel. Moreover, the 

components with different configurations involved in the 

system are to be used appropriately. Especially there is a need 

for fault tolerance among critical configurations [1]. As 

presented in Figure 1, software components can be 

constructed and reused to form different applications. Each 

application can have critical configurations to be maintained 

in a fault-tolerant approach. Fault tolerance should be one of 

the salient features of distributed applications based on 

Service Oriented Architecture (SOA). Faire of critical 

configurations can cause severe problems to the underlying 

system. The rationale behind this is that a distributed 

application must be made available around the clock and 

should have scalability besides resiliency against possible 

faults at runtime.  

 

 
Fig. 1 Shows how to construct software using components and reuse 

them in different applications 

 

Millions of interactions are possible in a live distributed 

application as it has users across the globe. It is necessary to 

maintain configuration interactions correctly, and there are 

characteristics of different interactions. An interaction is the 

communication between the components in a given 

configuration of a distributed application. There is a need for 

fault tolerance, which reflects the health of the distributed 

application that gives Quality of Service (QoS) despite faults 

occurring. As discussed in [2], it is also known as the 

resiliency of the distributed system. Moreover, component 
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reliability in configurations while serving the purpose against 

client calls is another important consideration [7]. There might 

be faults propagating from the source to other components at 

runtime, and such faults need to be handled appropriately [14]. 

In distributed applications, different technologies like RMI are 

used. Therefore, there is a need to be aware of technology-

specific configurations and methods of invocations, if any.  

 

There are many existing approaches found in the 

literature for fault-tolerant architectures. Chinnaiah and 

Niranjan [1] proposed a methodology for fault-tolerant 

software based on configurations for the cloud. Bajunaid and 

Menasce [2] used the concepts of checkpointing and rollback 

to improve availability in component-based software systems. 

Schirmeier et al. [3] proposed a framework for fault injection 

to determine the ability of fault tolerance of hardware 

implemented using software. Their framework has pre-

injection and post-injection analysis besides the fault injection 

method. Himabindu et al. [4] focused on resilient embedded 

systems and discussed software-based fault-tolerant 

approaches, while Smara et al. [5], on the other hand, focused 

on different aspects pertaining to fault tolerance. Liu et al. [6] 

proposed a software rejuvenation-based fault tolerance 

approach. Pham et al. [7] focused on component-based 

reliability prediction. Chemashkin and Zhilenkov [8] 

proposed an active fault-tolerant control system. Mukwevho 

and Celik [9] made a review of fault-tolerant methods towards 

the smart cloud. Fiondella [10] focused on the reliability of 

component systems with positive and negative correlations. 

The work found in the literature can be categorized into 

configuration approaches ([1, 7, 8, 18]), checkpoint 

approaches ([2, 6, 9, 10]), software-based approaches ([3, 4, 

5, 11, 12]) and others.  

 

From the literature review, it is understood that there is a 

need for improving fault tolerance dynamics in component-

based distributed applications. As fault tolerance dynamics are 

associated with configurations of different reusable artefacts, 

this paper proposes an algorithm for ensuring fault tolerance, 

which is evaluated using a Distributed Reservation System 

(SOA) implemented using Java’s RMI based on SOA 

architecture. Our contributions to this paper are as follows.  

• A fault-tolerant architecture is proposed for achieving 

fault tolerance in component-based software engineering.  

• An algorithm named Dynamic Configuration of Fault 

Tolerance Mechanisms (DCFTM) for ensuring fault 

tolerance in component-based systems. 

• A case study application is implemented using Java 

programming language to prove the concept. 

 

The remainder of the paper is structured as follows. 

Section 2 reviews the literature on the state of the art 

pertaining to fault-tolerant architectures for component-based 

software engineering. Section 3 presents the proposed 

architecture and algorithm for fault tolerance. Section 4 

presents the cast study application. Section 5 presents 

experimental results, while section 6 concludes the paper and 

gives directions for future work.  

 

2. Related work 
This section reviews the literature on fault-tolerant 

approaches existing for component-based software systems.  

 

2.1. Configuration Approaches 

Chinnaiah and Niranjan [1] proposed a methodology for 

fault-tolerant software based on configurations for the cloud. 

Their method is based on the frequency of configuration and 

interactions and their characteristics. It has a provision to 

create a failure log for future revisions. They considered both 

proactive and reactive fault-tolerant schemes. Pham et al. [7] 

focused on component-based reliability prediction. Their 

prediction model involves different layers such as component 

developers, service architecture and a reliability prediction 

tool. Transformation and Markov models are used in the 

process of reliability prediction. They intend to improve it in 

future with error propagation to develop more approaches for 

fault tolerance. Chemashkin and Zhilenkov[8] proposed an 

active fault-tolerant control system that includes the 

reconfigurable feed-forward controller and reconfiguration 

mechanism for fault detection and diagnosis. It considers 

dynamic faults and system configuration faults leading to 

problems in reliability.  

 

Wienke and Wrede [18] proposed an autonomous fault 

detection framework for component-based systems 

considering performance bugs. Their method makes use of a 

regression approach to identify faults. Their algorithm is 

assisted by feature generation that reduces the complexity of 

the proposed method. It is found to be stable with robotic 

systems. Peng and Huang [19] used stochastic modelling to 

tolerate faults in distributed applications. A web service-based 

system is used for empirical study. It has server-side restful 

functions and client-side applications where composite 

services are consumed by the application.  

 

2.2. Checkpointing Approaches 

Bajunaid and Menasce [2] used checkpointing and 

rollback to improve availability in component-based software 

systems. They used a queuing network model and 

checkpointing for heterogeneous software components. The 

components are represented as Markov chains for better 

performance. Liu et al. [6] proposed a software rejuvenation-

based fault tolerance approach. Their scheme was meant for 

cloud applications. The system depends on a checkpointing 

technique with a rejuvenation agent that works between the 

original Virtual Machine (VM) and the interim node. 

However, they intend to improve it for better failure detection 

accuracy. Mukwevho and Celik [9] made a review of fault-

tolerant methods towards the smart cloud. The methods 

include proactive, reactive and resilience-based methods. 

They intend to use machine learning towards fault tolerance 

methods in future. Jafary and Fiondella [10] focused on the 



Lalu Banothu et al.  / IJETT, 71(11), 56-68, 2023 

 

58 

reliability of component systems with positive and negative 

correlations. They explored methods like bivariate Bernoulli 

and component reliability expressions. In future, they intended 

to generalize their approach to be suitable for different series 

of components.  

 

Song et al. [13] proposed an Interface Definition 

Language (IDL) for system-level fault tolerance in embedded 

systems. Their tool is known as SuperGlue, which generates 

code for an interface-driven approach towards finding faults. 

The tool also has provisions to optimize and decrease the code 

needed for fault recovery. Though it causes non-prohibitive 

slowdown, it does not lead to system failure. Shu et al. [14] 

considered fault propagation and architecture-based reliability 

of distributed systems. The fault tolerance analysis approach 

makes use of the fault pervasion intensity matrix, input and 

output state matrix and fault tolerance of the architecture. The 

reliability analysis model is made using transition probability 

among the distributed components. Stoicescu et al. [15] 

proposed an adaptive fault tolerance approach for realizing 

resilient computing systems. Their method includes both 

offline and online agile management of fault tolerance 

mechanisms. Fault tolerance design patterns are used for the 

effective implementation of their method. The main advantage 

is agility, which needs further investigation with different case 

studies.  

 

Nagaraju et al. [20] focused on correlated failures of 

server systems in distributed applications. A fault-tolerant 

server is built using a software rejuvenation approach. The 

system has different states and transitions between them. Fault 

recovery, available and rejuvenation are the states available. 

However, they intend to include the impact of correlation in 

their future endeavours.  

 

2.3. Software-based Fault Tolerance and Other Methods 

Schirmeier et al. [3] proposed a framework for fault 

injection to determine the ability of fault tolerance of hardware 

implemented using software. Their framework has pre-

injection and post-injection analysis besides the fault injection 

method. It makes use of meta-information in order to have the 

framework realized. With fault injection complaints, their 

architecture finds the capability of fault tolerance approaches. 

Holler [4] focused on resilient embedded systems and 

discussed software-based fault-tolerant approaches. They 

reviewed about fault injection methods and fault tolerance 

methods based on software diversity. 

 

On the other hand, Smara et al. [5] focused on different 

aspects of fault tolerance. First, it focused on fault detection 

using acceptance tests. Second, they investigated different 

kinds of faults, such as response-time failures, software faults 

and transient hardware faults. With a fire control system case 

study and model checker, they investigated and evaluated their 

method. However, they did not focus on the core work of fault 

recovery and tolerance.  

Aponte-Moreno et al. [11] proposed a software-based 

fault tolerance method supported by Approximate Computing 

(AC). Their approach could improve energy efficiency and 

reduce computational overhead in fault detection and fault 

tolerance mechanisms. Their method includes different phases 

such as approximation, fault tolerance, fault injection and fault 

detection.  

 

In future, they intend to implement other fault tolerance 

methods on top of AC. Hellhake et al. [12] proposed a data 

flow-based approach and black box integration testing in 

distributed applications for resiliency. Their scheme considers 

Electronic Control Units (ECUs) as part of distributed 

software systems. Data flow-based convergence conditions 

are used to find faults with integration testing.  

 

Zheng et al. [16] focused on software reliability issues 

associated with component-based systems. They illustrated 

software challenges considering autonomous vehicle 

functionalities. A model-based approach is followed, and it 

has an application layer, functional model, software model, 

hardware platform and design metrics. Dubey and Jasra [17] 

focused on software reliability in distributed component-

based systems. They combined ANFIS and fuzzy approaches 

towards it.  

 

ANFIS is the neural network model that is coupled with 

fuzzy logic in order to have better reliability of software. In 

the future, they intend to use different factors to improve their 

hybrid approach. Chiang et al. [21] proposed a framework for 

fault-tolerant reliability prediction in distributed systems. 

Maskura et al. [23] focused on maintainability and reliability 

issues of software architecture for fault tolerance. From the 

literature review, it is understood that there is a need for 

improving fault tolerance dynamics in component-based 

distributed applications.  

 

3. System Model and Proposed Algorithm  
 

The system model involves a distributed application in 

the real world. It is meant for travel reservations. The 

application is elaborated and discussed in Section 4. However, 

this section focuses on the system model and the algorithm 

proposed. The system model includes RMI client and RMI 

server components. The distributed server components 

include a car server (C), flight server (F), room server (R) and 

middleware server (M) as presented in Figure 2. Out of the 

server components reused with different configurations, M is 

the component that helps access other components. The SOA-

based reservation system is essentially encapsulated by C, F 

and R.  

 

3.1. Problem Definition 

Provided the components such as C, F and R, building a 

component-based system and its implementation with an 

underlying algorithm for fault tolerance in the travel 

reservation system is the problem considered.  
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Fig. 2 The system model 

In the case of SOA-based architecture with Single Sign 

On (SSO), it is essential to have different configured services 

that involve required server-side components. It is also 

important that the components work in a reliable fashion. In 

case of any fault, there needs to be fault tolerance, and the 

client’s work is to be carried out without failing the job to be 

done. The critical configurations are made fault-tolerant.  

 
Table 1. Shows notations used in the proposed system 

Notation Description 

𝐹𝑗𝑘 the number of times configuration 

𝐶𝑘 
the number of configurations present in a 

software system 

𝐶𝑖 Configuration 

𝑁 the number of configurations 

𝑉𝑖 significance of 𝑖𝑡ℎconfiguration 

𝑆(𝐶𝑖) set of configurations 

ß parameter 

X program/job processing requirement 

C random variable 

R repair time 

As presented in Table 1, different notations are used to 

represent the proposed system. 

 

3.2. Mathematical Model  
 

Consider G as a graph representing the system model; Ci, 

C and Ck containing components of DRS are different critical 

configurations. Let Ijk denote interactions between specific 

components such as Cj and Ck. Each reservation activity is a 

transaction that is made up of many operations that are 

executed as units conforming to ACID properties of 

transactions. By the end of different interactions, it is possible 

to determine how many successful interactions there are 

between pairs of components such as Cj and Ck using equation 

1. 

M(Ijk)=
Fjk

∑ Fjk
N
k=1

                          (1) 

 

Where N denotes the number of configurations, Cj and 

Ck are two components between which successful interactions 

are made, and Fjk represents the number of times Cj invoked 

Ck. With every successful interaction, the value of Ijk 

increases. When the jth configuration never interacts with the 

kth configuration in its lifetime, the interaction value Ijk is set 

to zero. In the case of recursive configuration invocation, such 

as a component invoking itself, there is also increment Ijk. If 

the jth configuration interacts with only the kth configuration, 

then Ijk=1/N for all k=1 except j. Finally, a stochastic matrix 

Distributed Reservation system 

RMI 

Client 

Client Server 

Flight Server 

Room Server 

Middleware 

Request 

Response 

Reliable and 

fault Tolerant 

Services 

RMI server Components 

AFT algorithm 
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M is realized with all successful interactions. Fault tolerance 

can be based on the frequency of interactions. Initially, each 

component’s individual interaction value is considered zero. 

As the critical configurations are used frequently in the 

system’s interactions, it is important to keep track of failed and 

successful interactions. It is possible to determine frequently 

used configurations based on interactions.  

 

The interaction value of Ci (ith configuration), which is 

represented as P(Ci), is computed as in equation 2.  

 

P(Ci)= 
1−α

N
+  α ∑ P(Cj)jϵS(Ci) M(Iji)                     (2) 

 

P(C_1)=1- /N +  ∑ 

 

Where a set of configurations is denoted as S(Ci) that 

involve interactions with the configuration such as Ci, finally, 

the performance of critical configuration is computed as in Eq. 

3. 

P(Ci)=( 1 − α)
β

|C|
+  α ∑ P(Cj)jϵS(Ci) M(Iji)                      (3) 

 

Moreover, with respect to a non-critical configuration, the 

performance of such configuration is computed as in Eq. 4. 

 

P(Ck)=( 1 − α)
1−β

|NC|
+  α ∑ P(Cj)jϵS(Ck) M(Ijk)                      (4) 

 

With the recovery block approach where redundant 

modules are used in programming, the probability of recovery, 

denoted as F, can be computed as in Eq. 5. 

 

F=∏ fi
n
i=1                     (5) 

 

3.3. Algorithm Design   
 

The algorithm considers different components in the 

DRS, such as C, F, R, and M. There needs to be an array of 

fault tolerance candidates with values and a configuration 

value that requires the algorithm’s fault tolerance candidate as 

input. The algorithm’s outcome is finding the best fault 

tolerance candidate for the given configuration.  

 
Algorithm 1: Dynamic configuration of fault tolerance mechanisms 

algorithm 

Algorithm: Dynamic Configuration of Fault 

Tolerance Mechanisms (DCFTM) 

Inputs: Fault tolerance candidate values vector t, 

configuration C 

1. Initialize x to zero 

2. Initialize i to one 

Finding Eligible Candidates 

3. For each i in 1 to n  

4. If C>=t[i] Then 

5.       S[x]=t[i] 

6.       Increment x 

7.    End If 

8. End For 

Finding Candidate that has Minimum Failure 

Probability  

9. Assign S[1] to min 

10. For each j from 2 to x 

11.    IF S[j]<min Then  

12.       min=S[j] 

13.       FT(C) =j 

14.    End If 

15. End For  

 

As presented in Algorithm 1, it is evident that the 

algorithm takes two inputs. The first input is a set of fault-

tolerance candidate values, and the second parameter is a 

fault-tolerant configuration. The algorithm’s output is to find 

the best fault tolerance candidate for execution at runtime. 

Based on the interaction value of the given configuration, the 

suitable fault-tolerant candidates are identified, and finally, 

the best one is determined.  

 

The algorithm takes an array of FT candidates and returns 

the best candidate for a given configuration. The best 

candidate is the one which exhibits minimum failure 

probability. Step 1 and Step 2 x and i are initialized to zero 

and one, respectively. Both act as index values for vectors 

such as S and T, where S is a vector to hold eligible candidates. 

Step 3 through Step 8 is an iterative process that finds all the 

suitable candidates for given C, and they are assigned to vector 

S. Step 4 has a condition to check whether the given FT 

candidate is suitable for given configuration requirement C.  

 

Step 5 adds a suitable configuration to S. Step 6 

increments the index x. By the end of the iterative process, S 

holds all suitable FT candidates that can be used for given 

configuration C. However, it is important to choose the best 

candidate from S. As mentioned earlier, the best candidate is 

the one which exhibits minimum failure probability. This 

process is done in the algorithm from Step 9 through Step 15. 

In Step 9, S[1] is the FT candidate assigned to the min 

variable, which is going to keep track of the best FT candidate 

in the ensuring iterative process takes place from Step 10 

through Step 15. Step 11 iteratively checks whether the given 

FT candidate has a failure probability less than min. Thus, by 

the end of the process, the min holds the best FT candidate.  

 

4. Case Study Application  
 

This section presents different aspects of the case study 

application built to prove the concept. It covers 

implementation details. 

 

4.1. Implementation Details 

A distributed application is built to demonstrate proof of 

the concept using Java’s RMI technology and API. The 

application is built on component architecture, where each 

component has self-contained functionality and can be 
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integrated into an application to serve a specific purpose. The 

application is based on broker architecture, where components 

are looked up by the RMI client from the RMI registry, and 

then calls are made to appropriate server components.  

 

The server components implement java.rmi—remote 

interface to get features of a remotely callable component. 

Different servers are implemented for different kinds of 

reservations. For instance, car server implementation takes 

care of car reservations. Similarly, flight server 

implementation takes care of flight reservations, while room 

server implementation helps with room reservations. A single 

sign-on helps the user to have complete planning of a trip that 

involves travel and staying in hotel rooms.  

 

As presented in Figure 3, the implementation is made 

with plenty of Java classes organized into several packages. 

The main packages include common, object, resinterface, 

servers and two-phase commit. These packages, in turn, can 

have sub-packages for better and meaningful organization of 

the code. The common package contains different classes that 

are common to various server components. The server 

package contains sub-packages and corresponding classes to 

encapsulate specific server implementations. A 

ResourceManager interface is defined in the resinterface 

package, which is the basis for methods that can be invoked. 

This interface extends java.rmi.Remote to support remote 

method invocations.  

The ResourceManager interface is implemented by 

different server implementations such as CarServerImpl, 

FlightServerImpl and RoomServerImpl. Since the DRS 

application supports distributed monetary transactions, a two-

phase commit protocol is used to achieve a transaction’s 

Atomicity, Consistency, Isolation and Durability (ACID) 

properties.  

 

4.2. Class Hierarchy 

The hierarchy of classes defined in DRS includes abstract 

classes, interfaces and implementations. The whole 

application can be split into client-side and server-side 

functionalities. The server-side classes represent remote 

objects to be invoked by client applications. The overview of 

different classes used to realize DRS is shown in the form of 

a class diagram shown in Figure 4. It shows inheritance and 

dependency relationships among classes.  

The DRS application supports distributed architecture; 

the server components can run on any machine 

geographically. Car, Flight and Hotel are reservable items. 

The classes such as Car, Flight and Hotel are sub-classes of a 

ReservableItem class. The Middleware Server Impl acts as a 

middleware server component to create and manage all server 

objects. Middleware Server Impl implements Resource 

Manager and uses it appropriately. Other server components 

are encapsulated in the implementation classes, such as Car 

Server Impl, Flight Server Impl and Room Server Impl.

 
Fig. 3 Java classes packages 

ClassesSub-Package of JAVAJAVA Package

JAVA

lang

System.class

String.class

util

Map.class

ArrayList.class

io

I/O Stream

O/P Stream

net

Socket

URL

awt Button.class
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Fig. 4 Overview of class hierarchy in DRS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Very important API involved in DRS 
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Fig. 6 Client-side API involved in DRS 

All these servers are implementing Resource Manager, 

which is a remote interface[24]. The TransactionManager 

class uses a middleware server component and reservable 

items to complete transactions pertaining to travel 

reservations. Different client-side applications encapsulated 

by the classes client, clientLoopSingle and 

clientLoopMultiple interact with server components through 

ResourceManager. RMI technology is in place to support the 

invocation of objects running in the Java Virtual Machine 

(JVM) of a remote machine. All server objects are registered 

in the RMI registry, which holds the references of server 

objects. These references are looked up by the client 

applications in order to interact with server components.  

4.3. Important API 

As the DRS is based on a distributed architecture, using 

technology that supports remote object calling is 

indispensable. ResourceManager is the class that encapsulates 

remotely accessible functions accessed through various server 

objects. Very important classes of DRS are presented in Figure 

5. They include four abstract classes like: ResourceManager, 

ReservableItem, RMItem and ReservedItem. The 

ResourceManager class is abstract in nature, and it 

implements the Remote interface of java.rmi package. Hence, 

it is a very important class that encapsulates all remotely 

invoked methods. The ResourceManager class has all the 

methods required by the DRS for achieving various kinds of 

reservations. It has methods to deal with car reservations, 

flight reservations and room reservations. It has methods to 

deal with customer requests to coordinate with different 

remote server objects. It also has methods required by 

distributed transactions and a two-phase commit protocol for 

consistency. The API presented has different reservable items 

such as Car, Flight and Hotel. It also has a class known as 

ReservedItem to keep track of reserved items. 

 

4.4. Client-Side API 

RMI client applications are the ones that know how to 

look up the RMI registry in order to obtain references of server 

objects whose functions can be run from a remote location. 

This is essential for invoking components that run in 

geographically located machines. Moreover, clients can be of 

many types. Different client applications are built to serve 

different users making travel reservations using single sign-

on. The client-side applications are encapsulated in three 

different classes: client, clientLoopSingle and 

clientLoopMultiple, as presented in Figure 6. The first 

application is not interactive, while the remaining two are 

interactive in nature.  

When compared with the second, the third model supports 

multiple client threads to run and get services. Thus, it can 

serve multiple users to have their reservations done. The three 

applications have a main() method to run them as client 

applications. They can be started and stopped as and when 

needed. However, RMI server components run around the 

clock and provide client services.  

4.5. RMI Architecture and its Usage in DRS 

RMI technology is one of the distributed technologies 

supported by Java. It is widely used in the real world to build 

applications that need service orientation. The implemented 

classes (API) can be categorized into server-side and client-

side API. 

client object 

message 

rm 

main 

parse 

findchoice 

listcommands 

listspecific 

wrongnumber 

getint 

getboolean 

getstring 

clientLoopSingle Object 

message 

rm 

MINLOADIR 

MAXLOADIR 

accessAllRMS 

carCommands 
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flightCommands 

customerCommands 

itineraryCommand 

randomLocations 
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getint 

getBoolean 

getString 

clientLoopMultiple Object 
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rm 

MINLOADIR 

MAXLOADIR 

NUMTIMESEXECUTECOMMAND 
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Fig. 7 Overview of RMI architecture on top of which DRS is built 

There is communication between the client side and 

server side API through RMI technology specification. Figure 

7 shows the RMI architecture in which client and server 

components interact. 

 

Both RMI server and RMI client applications are 

essentially software components that achieve remote method 

invocation, thus leading to a distributed architecture. In other 

words, the components or servers involved in the system can 

run any machine located across the globe. Still, such 

components can work together and realize an application that 

serves the purpose per business rules. The client and server 

cannot have direct communication. Instead, they will interact 

through proxies known as Stub and Skeleton. The client-side 

proxy is known as Stub, and the server-side proxy is known as 

Skeleton. In other words, Stub represents a remote object 

(server) at the client while Skeleton resides at the server to 

take a request from Stub and pass it to the real server object. 

The transport layer encapsulates the connectivity between 

client and server machines. On the other hand, the Remote 

Reference Layer (RRL) manages references made by the 

client to the remote object. The client call first goes to Stub, 

which passes it to the remote reference layer. RRL makes a 

virtual connection to server-side RRL. Then, server-side RRL 

sends a request to Skeleton. The Skeleton actually invokes the 

method in the remote object (car server/flight server/room 

server). Between the RMI client and server, there are 

procedures taking place, such as marshalling and 

unmarshalling. The client passes parameters to a remote 

method, and the parameters and calls are bundled for proper 

serialization. This process at the client side is known as 

marshalling. When the server receives the request, the process 

of unbundling parameters to known actual arguments and 

method calls is known as unmarshalling. In the process, the 

RMI registry plays a crucial role as the references of different 

RMI servers are registered with the RMI registry. The entire 

process is illustrated in Figure 8. The three RMI clients used 

in the DRS application are known as client, clientLoopSingle 

and clientLoopMultiple. 

 
Fig. 8 Illustrates the flow of interactions between the DRS client and 

DRS servers through the RMI registry 

These three kinds of clients essentially represent an RMI 

client (remote client). They cannot invoke methods on RMI 

servers (remote objects) directly. Instead, RMI clients need to 

get the reference of remote objects from the RMI registry, as 

the server objects are registered in the registry using the 

rebind() method. The client invokes the lookup() method on 

the registry to obtain server objects’ references. Once the 

remote reference is available, the client can make calls on the 

remote objects as needed. This architecture resembles broker 

architecture used in RMI technology to support the worldwide 

reuse of distributed components.  

 

5. Experimental Results  
Experiments are made using the prototype application, 

which is nothing but a DRS case study. The results are 

observed in terms of the percentage of successful interactions 

versus the number of interactions with different critical 

configurations considered. The proposed method is compared 

with existing fault-tolerant methods found in [1]. 

As presented in Table 2, the percentage of successful 

interactions is provided against the number of interactions 

when 1% of critical configurations are used in the empirical 

study.  

Table 2. Shows the percentage of successful interactions with 1% 

critical configurations 

Percentage of successful interactions 

NoFT FCI-FT FI-FS DCFTM 

92.5 97.5 98 100 

92 97 97.8 100 

91 96.5 97.7 100 

90 96 97.6 100 

89 95.5 97.5 100 

88 95 97.3 100 

86.9 94.5 97 100 

86 94 96.9 100 

84.9 93.5 96.8 99 

83.9 93 96.6 98.8 

82.5 92.5 96.5 98.7 
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Fig. 9 Performance with 1% of critical configurations 

 

As presented in Figure 9, the number of interactions is 

provided in the horizontal axis, and vertical access shows the 

percentage of successful interactions. The observations are 

made when 1% of critical configurations are used for 

empirical study. When no fault tolerance is used, the 

performance deteriorates. When the proposed algorithm 

DCFTM is used for fault-tolerant execution, it could achieve 

the best results by identifying the ideal candidate 

configuration.   

As presented in Table 3, the percentage of successful 

interactions is provided against the number of interactions 

when 5% critical configurations are used in the empirical 

study.  

 
Table 3. Shows the percentage of successful interactions with 5% 

critical configurations 

Percentage of successful interactions 

NoFT FCI-FT FI-FS DCFTM 

86.5 94 97 100 

86 93.8 96.7 100 

85.8 93.7 96.5 100 

85.5 93.6 96.3 100 

84.9 93.5 96.1 100 

83.9 93.4 95.8 99.7 

83 92.9 95 99 

82 91.9 94.9 98.7 

80.5 91.8 93.7 97.9 

79 91.7 93.5 97.7 

76 91.6 93 97.4 

As presented in Figure 10, the number of interactions is 

provided in the horizontal axis, and vertical access shows the 

percentage of successful interactions. The observations are 

made when 5% critical configurations are used for empirical 

study. When no fault tolerance is used, the performance 

deteriorates. When the proposed algorithm DCFTM is used 

for fault-tolerant execution, it could achieve the best results by 

identifying the ideal candidate configuration.   

 

As presented in Table 4, the percentage of successful 

interactions is provided against the number of interactions 

when 10% of critical configurations are used in the empirical 

study.  

 
Table 4. Shows the percentage of successful interactions with 10% 

critical configurations 

Percentage of successful interactions 

NoFT FCI-FT FI-FS DCFTM 

69.9 79 82 100 

69.5 78.9 85 100 

69 78.5 84.9 100 

68 77 84.7 99.9 

65 76 84.5 99.8 

63 75 83.9 99.6 

60 74 83.8 99 

57 73 83.4 98.7 

50 72.5 82 97.9 

41 71 81.9 97.7 

31 70 75 97.4 
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Fig. 10 Performance with 5% of critical configurations 

 
Fig. 11 Performance with 10% of critical configurations 
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As presented in Figure 11, the number of interactions is 

provided in the horizontal axis, and vertical access shows the 

percentage of successful interactions. The observations are 

made when 10% of critical configurations are used for 

empirical study. When no fault tolerance is used, the 

performance deteriorates. When the proposed algorithm 

DCFTM is used for fault-tolerant execution, it could achieve 

the best results by identifying the ideal candidate 

configuration.  

6. Conclusion and Future Work 
In this paper, we proposed an algorithm known as 

Dynamic Configuration of Fault Tolerance Mechanisms 

(DCFTM) to ensure that the system can withstand different 

kinds of faults at runtime and be resilient against faults. A case 

study enterprise application with distributed component-based 

architecture is built to evaluate the proposed fault-tolerant 

architecture and underlying DCFTM algorithm to prove the 

concept. The distributed reservation system supports various 

components that work together. They facilitate reservations 

pertaining to travel, including car, flight and hotel rooms. The 

implementation is made using Java and its Remote Method 

Invocation (RMI) technology. It has provisions for consistent 

transactions and fault tolerance. Experiments are made with 

the case study application. The empirical study revealed that 

the DCFTM algorithm outperforms state of the art. Though 

this paper proposes an algorithm for fault tolerance on top of 

distributed architecture, we believe it can be improved further. 

Therefore, in our future work, we intend to define an algorithm 

that will have not only fault tolerance but also suggestions for 

performance improvement.  
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