
International Journal of Engineering Trends and Technology Volume 71 Issue 11, 56-68, November 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I11P206 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Component-Based Software Development through

DCFTM in Software Engineering

Lalu Banothu1, M. Chandra Mohan2, C. Sunil Kumar3

1,2Department of Computer Science Engineering, JNTUH College of Engineering, Hyderabad, India.

3Department of Computer Science Engineering, The Apollo University, Chittoor, Andhra Pradesh, India.

1Corresponding Author : lalunb.csegnitc@gniindia.org

Received: 14 May 2023 Revised: 25 August 2023 Accepted: 04 October 2023 Published: 04 November 2023

Abstract - The evolution of software systems has witnessed tremendous changes in the last decade, moving from simple web-

based applications to enterprise-level distributed applications built on top of interoperable components. When systems are

realized with the integration of heterogeneous components, they should evolve to accommodate changes gracefully. Moreover,

systems need to be resilient against runtime faults that can occur for different reasons. Component-based software engineering

has been phenomenal in producing such systems that drive the home chain of businesses in the real world. Building an enterprise

application based on reusable components, instead of reinventing the wheel, is the main approach in the contemporary era. The

reusable components are platform-independent and interoperable in nature. There is every possibility to have certain faults as

the components are heterogeneous in nature, and they are location transparent as well. Several approaches were found in the

literature to have fault-tolerant architectures in this context. However, there is still a need for leveraging fault tolerance

architecture by addressing the problem of dynamic configuration of fault tolerance mechanisms at runtime. Towards this end, in

this paper, we proposed a novel fault-tolerant architecture for component-based software development in the domain of software

engineering. We proposed an algorithm known as Dynamic Configuration of Fault Tolerance Mechanisms (DCFTM) to ensure

the system can withstand different kinds of faults at runtime and be resilient against faults. A case study enterprise application

with distributed component-based architecture is built to evaluate the proposed fault-tolerant architecture and underlying

DCFTM algorithm to prove the concept. The empirical study revealed that the DCFTM algorithm outperforms state of the art.

Keywords - Software engineering, Fault tolerant architecture, Component-based software development.

1. Introduction
Component-based software systems are essentially

distributed in nature, where server components can be

geographically located anywhere in the world. Distributed

computing is a completely server-side phenomenon where

different server programs or components work together.

Reusing server components in related applications is also

possible instead of reinventing the wheel. Moreover, the

components with different configurations involved in the

system are to be used appropriately. Especially there is a need

for fault tolerance among critical configurations [1]. As

presented in Figure 1, software components can be

constructed and reused to form different applications. Each

application can have critical configurations to be maintained

in a fault-tolerant approach. Fault tolerance should be one of

the salient features of distributed applications based on

Service Oriented Architecture (SOA). Faire of critical

configurations can cause severe problems to the underlying

system. The rationale behind this is that a distributed

application must be made available around the clock and

should have scalability besides resiliency against possible

faults at runtime.

Fig. 1 Shows how to construct software using components and reuse

them in different applications

Millions of interactions are possible in a live distributed

application as it has users across the globe. It is necessary to

maintain configuration interactions correctly, and there are

characteristics of different interactions. An interaction is the

communication between the components in a given

configuration of a distributed application. There is a need for

fault tolerance, which reflects the health of the distributed

application that gives Quality of Service (QoS) despite faults

occurring. As discussed in [2], it is also known as the

resiliency of the distributed system. Moreover, component

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

57

reliability in configurations while serving the purpose against

client calls is another important consideration [7]. There might

be faults propagating from the source to other components at

runtime, and such faults need to be handled appropriately [14].

In distributed applications, different technologies like RMI are

used. Therefore, there is a need to be aware of technology-

specific configurations and methods of invocations, if any.

There are many existing approaches found in the

literature for fault-tolerant architectures. Chinnaiah and

Niranjan [1] proposed a methodology for fault-tolerant

software based on configurations for the cloud. Bajunaid and

Menasce [2] used the concepts of checkpointing and rollback

to improve availability in component-based software systems.

Schirmeier et al. [3] proposed a framework for fault injection

to determine the ability of fault tolerance of hardware

implemented using software. Their framework has pre-

injection and post-injection analysis besides the fault injection

method. Himabindu et al. [4] focused on resilient embedded

systems and discussed software-based fault-tolerant

approaches, while Smara et al. [5], on the other hand, focused

on different aspects pertaining to fault tolerance. Liu et al. [6]

proposed a software rejuvenation-based fault tolerance

approach. Pham et al. [7] focused on component-based

reliability prediction. Chemashkin and Zhilenkov [8]

proposed an active fault-tolerant control system. Mukwevho

and Celik [9] made a review of fault-tolerant methods towards

the smart cloud. Fiondella [10] focused on the reliability of

component systems with positive and negative correlations.

The work found in the literature can be categorized into

configuration approaches ([1, 7, 8, 18]), checkpoint

approaches ([2, 6, 9, 10]), software-based approaches ([3, 4,

5, 11, 12]) and others.

From the literature review, it is understood that there is a

need for improving fault tolerance dynamics in component-

based distributed applications. As fault tolerance dynamics are

associated with configurations of different reusable artefacts,

this paper proposes an algorithm for ensuring fault tolerance,

which is evaluated using a Distributed Reservation System

(SOA) implemented using Java’s RMI based on SOA

architecture. Our contributions to this paper are as follows.

• A fault-tolerant architecture is proposed for achieving

fault tolerance in component-based software engineering.

• An algorithm named Dynamic Configuration of Fault

Tolerance Mechanisms (DCFTM) for ensuring fault

tolerance in component-based systems.

• A case study application is implemented using Java

programming language to prove the concept.

The remainder of the paper is structured as follows.

Section 2 reviews the literature on the state of the art

pertaining to fault-tolerant architectures for component-based

software engineering. Section 3 presents the proposed

architecture and algorithm for fault tolerance. Section 4

presents the cast study application. Section 5 presents

experimental results, while section 6 concludes the paper and

gives directions for future work.

2. Related work
This section reviews the literature on fault-tolerant

approaches existing for component-based software systems.

2.1. Configuration Approaches

Chinnaiah and Niranjan [1] proposed a methodology for

fault-tolerant software based on configurations for the cloud.

Their method is based on the frequency of configuration and

interactions and their characteristics. It has a provision to

create a failure log for future revisions. They considered both

proactive and reactive fault-tolerant schemes. Pham et al. [7]

focused on component-based reliability prediction. Their

prediction model involves different layers such as component

developers, service architecture and a reliability prediction

tool. Transformation and Markov models are used in the

process of reliability prediction. They intend to improve it in

future with error propagation to develop more approaches for

fault tolerance. Chemashkin and Zhilenkov[8] proposed an

active fault-tolerant control system that includes the

reconfigurable feed-forward controller and reconfiguration

mechanism for fault detection and diagnosis. It considers

dynamic faults and system configuration faults leading to

problems in reliability.

Wienke and Wrede [18] proposed an autonomous fault

detection framework for component-based systems

considering performance bugs. Their method makes use of a

regression approach to identify faults. Their algorithm is

assisted by feature generation that reduces the complexity of

the proposed method. It is found to be stable with robotic

systems. Peng and Huang [19] used stochastic modelling to

tolerate faults in distributed applications. A web service-based

system is used for empirical study. It has server-side restful

functions and client-side applications where composite

services are consumed by the application.

2.2. Checkpointing Approaches

Bajunaid and Menasce [2] used checkpointing and

rollback to improve availability in component-based software

systems. They used a queuing network model and

checkpointing for heterogeneous software components. The

components are represented as Markov chains for better

performance. Liu et al. [6] proposed a software rejuvenation-

based fault tolerance approach. Their scheme was meant for

cloud applications. The system depends on a checkpointing

technique with a rejuvenation agent that works between the

original Virtual Machine (VM) and the interim node.

However, they intend to improve it for better failure detection

accuracy. Mukwevho and Celik [9] made a review of fault-

tolerant methods towards the smart cloud. The methods

include proactive, reactive and resilience-based methods.

They intend to use machine learning towards fault tolerance

methods in future. Jafary and Fiondella [10] focused on the

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

58

reliability of component systems with positive and negative

correlations. They explored methods like bivariate Bernoulli

and component reliability expressions. In future, they intended

to generalize their approach to be suitable for different series

of components.

Song et al. [13] proposed an Interface Definition

Language (IDL) for system-level fault tolerance in embedded

systems. Their tool is known as SuperGlue, which generates

code for an interface-driven approach towards finding faults.

The tool also has provisions to optimize and decrease the code

needed for fault recovery. Though it causes non-prohibitive

slowdown, it does not lead to system failure. Shu et al. [14]

considered fault propagation and architecture-based reliability

of distributed systems. The fault tolerance analysis approach

makes use of the fault pervasion intensity matrix, input and

output state matrix and fault tolerance of the architecture. The

reliability analysis model is made using transition probability

among the distributed components. Stoicescu et al. [15]

proposed an adaptive fault tolerance approach for realizing

resilient computing systems. Their method includes both

offline and online agile management of fault tolerance

mechanisms. Fault tolerance design patterns are used for the

effective implementation of their method. The main advantage

is agility, which needs further investigation with different case

studies.

Nagaraju et al. [20] focused on correlated failures of

server systems in distributed applications. A fault-tolerant

server is built using a software rejuvenation approach. The

system has different states and transitions between them. Fault

recovery, available and rejuvenation are the states available.

However, they intend to include the impact of correlation in

their future endeavours.

2.3. Software-based Fault Tolerance and Other Methods

Schirmeier et al. [3] proposed a framework for fault

injection to determine the ability of fault tolerance of hardware

implemented using software. Their framework has pre-

injection and post-injection analysis besides the fault injection

method. It makes use of meta-information in order to have the

framework realized. With fault injection complaints, their

architecture finds the capability of fault tolerance approaches.

Holler [4] focused on resilient embedded systems and

discussed software-based fault-tolerant approaches. They

reviewed about fault injection methods and fault tolerance

methods based on software diversity.

On the other hand, Smara et al. [5] focused on different

aspects of fault tolerance. First, it focused on fault detection

using acceptance tests. Second, they investigated different

kinds of faults, such as response-time failures, software faults

and transient hardware faults. With a fire control system case

study and model checker, they investigated and evaluated their

method. However, they did not focus on the core work of fault

recovery and tolerance.

Aponte-Moreno et al. [11] proposed a software-based

fault tolerance method supported by Approximate Computing

(AC). Their approach could improve energy efficiency and

reduce computational overhead in fault detection and fault

tolerance mechanisms. Their method includes different phases

such as approximation, fault tolerance, fault injection and fault

detection.

In future, they intend to implement other fault tolerance

methods on top of AC. Hellhake et al. [12] proposed a data

flow-based approach and black box integration testing in

distributed applications for resiliency. Their scheme considers

Electronic Control Units (ECUs) as part of distributed

software systems. Data flow-based convergence conditions

are used to find faults with integration testing.

Zheng et al. [16] focused on software reliability issues

associated with component-based systems. They illustrated

software challenges considering autonomous vehicle

functionalities. A model-based approach is followed, and it

has an application layer, functional model, software model,

hardware platform and design metrics. Dubey and Jasra [17]

focused on software reliability in distributed component-

based systems. They combined ANFIS and fuzzy approaches

towards it.

ANFIS is the neural network model that is coupled with

fuzzy logic in order to have better reliability of software. In

the future, they intend to use different factors to improve their

hybrid approach. Chiang et al. [21] proposed a framework for

fault-tolerant reliability prediction in distributed systems.

Maskura et al. [23] focused on maintainability and reliability

issues of software architecture for fault tolerance. From the

literature review, it is understood that there is a need for

improving fault tolerance dynamics in component-based

distributed applications.

3. System Model and Proposed Algorithm

The system model involves a distributed application in

the real world. It is meant for travel reservations. The

application is elaborated and discussed in Section 4. However,

this section focuses on the system model and the algorithm

proposed. The system model includes RMI client and RMI

server components. The distributed server components

include a car server (C), flight server (F), room server (R) and

middleware server (M) as presented in Figure 2. Out of the

server components reused with different configurations, M is

the component that helps access other components. The SOA-

based reservation system is essentially encapsulated by C, F

and R.

3.1. Problem Definition

Provided the components such as C, F and R, building a

component-based system and its implementation with an

underlying algorithm for fault tolerance in the travel

reservation system is the problem considered.

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

59

Fig. 2 The system model

In the case of SOA-based architecture with Single Sign

On (SSO), it is essential to have different configured services

that involve required server-side components. It is also

important that the components work in a reliable fashion. In

case of any fault, there needs to be fault tolerance, and the

client’s work is to be carried out without failing the job to be

done. The critical configurations are made fault-tolerant.

Table 1. Shows notations used in the proposed system

Notation Description

𝐹𝑗𝑘 the number of times configuration

𝐶𝑘
the number of configurations present in a

software system

𝐶𝑖 Configuration

𝑁 the number of configurations

𝑉𝑖 significance of 𝑖𝑡ℎconfiguration

𝑆(𝐶𝑖) set of configurations

ß parameter

X program/job processing requirement

C random variable

R repair time

As presented in Table 1, different notations are used to

represent the proposed system.

3.2. Mathematical Model

Consider G as a graph representing the system model; Ci,

C and Ck containing components of DRS are different critical

configurations. Let Ijk denote interactions between specific

components such as Cj and Ck. Each reservation activity is a

transaction that is made up of many operations that are

executed as units conforming to ACID properties of

transactions. By the end of different interactions, it is possible

to determine how many successful interactions there are

between pairs of components such as Cj and Ck using equation

1.

M(Ijk)=
Fjk

∑ Fjk
N
k=1

 (1)

Where N denotes the number of configurations, Cj and

Ck are two components between which successful interactions

are made, and Fjk represents the number of times Cj invoked

Ck. With every successful interaction, the value of Ijk

increases. When the jth configuration never interacts with the

kth configuration in its lifetime, the interaction value Ijk is set

to zero. In the case of recursive configuration invocation, such

as a component invoking itself, there is also increment Ijk. If

the jth configuration interacts with only the kth configuration,

then Ijk=1/N for all k=1 except j. Finally, a stochastic matrix

Distributed Reservation system

RMI

Client

Client Server

Flight Server

Room Server

Middleware

Request

Response

Reliable and

fault Tolerant

Services

RMI server Components

AFT algorithm

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

60

M is realized with all successful interactions. Fault tolerance

can be based on the frequency of interactions. Initially, each

component’s individual interaction value is considered zero.

As the critical configurations are used frequently in the

system’s interactions, it is important to keep track of failed and

successful interactions. It is possible to determine frequently

used configurations based on interactions.

The interaction value of Ci (ith configuration), which is

represented as P(Ci), is computed as in equation 2.

P(Ci)=
1−α

N
+ α ∑ P(Cj)jϵS(Ci) M(Iji) (2)

P(C_1)=1- /N + ∑

Where a set of configurations is denoted as S(Ci) that

involve interactions with the configuration such as Ci, finally,

the performance of critical configuration is computed as in Eq.

3.

P(Ci)=(1 − α)
β

|C|
+ α ∑ P(Cj)jϵS(Ci) M(Iji) (3)

Moreover, with respect to a non-critical configuration, the

performance of such configuration is computed as in Eq. 4.

P(Ck)=(1 − α)
1−β

|NC|
+ α ∑ P(Cj)jϵS(Ck) M(Ijk) (4)

With the recovery block approach where redundant

modules are used in programming, the probability of recovery,

denoted as F, can be computed as in Eq. 5.

F=∏ fi
n
i=1 (5)

3.3. Algorithm Design

The algorithm considers different components in the

DRS, such as C, F, R, and M. There needs to be an array of

fault tolerance candidates with values and a configuration

value that requires the algorithm’s fault tolerance candidate as

input. The algorithm’s outcome is finding the best fault

tolerance candidate for the given configuration.

Algorithm 1: Dynamic configuration of fault tolerance mechanisms

algorithm

Algorithm: Dynamic Configuration of Fault

Tolerance Mechanisms (DCFTM)

Inputs: Fault tolerance candidate values vector t,

configuration C

1. Initialize x to zero

2. Initialize i to one

Finding Eligible Candidates

3. For each i in 1 to n

4. If C>=t[i] Then

5. S[x]=t[i]

6. Increment x

7. End If

8. End For

Finding Candidate that has Minimum Failure

Probability

9. Assign S[1] to min

10. For each j from 2 to x

11. IF S[j]<min Then

12. min=S[j]

13. FT(C) =j

14. End If

15. End For

As presented in Algorithm 1, it is evident that the

algorithm takes two inputs. The first input is a set of fault-

tolerance candidate values, and the second parameter is a

fault-tolerant configuration. The algorithm’s output is to find

the best fault tolerance candidate for execution at runtime.

Based on the interaction value of the given configuration, the

suitable fault-tolerant candidates are identified, and finally,

the best one is determined.

The algorithm takes an array of FT candidates and returns

the best candidate for a given configuration. The best

candidate is the one which exhibits minimum failure

probability. Step 1 and Step 2 x and i are initialized to zero

and one, respectively. Both act as index values for vectors

such as S and T, where S is a vector to hold eligible candidates.

Step 3 through Step 8 is an iterative process that finds all the

suitable candidates for given C, and they are assigned to vector

S. Step 4 has a condition to check whether the given FT

candidate is suitable for given configuration requirement C.

Step 5 adds a suitable configuration to S. Step 6

increments the index x. By the end of the iterative process, S

holds all suitable FT candidates that can be used for given

configuration C. However, it is important to choose the best

candidate from S. As mentioned earlier, the best candidate is

the one which exhibits minimum failure probability. This

process is done in the algorithm from Step 9 through Step 15.

In Step 9, S[1] is the FT candidate assigned to the min

variable, which is going to keep track of the best FT candidate

in the ensuring iterative process takes place from Step 10

through Step 15. Step 11 iteratively checks whether the given

FT candidate has a failure probability less than min. Thus, by

the end of the process, the min holds the best FT candidate.

4. Case Study Application

This section presents different aspects of the case study

application built to prove the concept. It covers

implementation details.

4.1. Implementation Details

A distributed application is built to demonstrate proof of

the concept using Java’s RMI technology and API. The

application is built on component architecture, where each

component has self-contained functionality and can be

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

61

integrated into an application to serve a specific purpose. The

application is based on broker architecture, where components

are looked up by the RMI client from the RMI registry, and

then calls are made to appropriate server components.

The server components implement java.rmi—remote

interface to get features of a remotely callable component.

Different servers are implemented for different kinds of

reservations. For instance, car server implementation takes

care of car reservations. Similarly, flight server

implementation takes care of flight reservations, while room

server implementation helps with room reservations. A single

sign-on helps the user to have complete planning of a trip that

involves travel and staying in hotel rooms.

As presented in Figure 3, the implementation is made

with plenty of Java classes organized into several packages.

The main packages include common, object, resinterface,

servers and two-phase commit. These packages, in turn, can

have sub-packages for better and meaningful organization of

the code. The common package contains different classes that

are common to various server components. The server

package contains sub-packages and corresponding classes to

encapsulate specific server implementations. A

ResourceManager interface is defined in the resinterface

package, which is the basis for methods that can be invoked.

This interface extends java.rmi.Remote to support remote

method invocations.

The ResourceManager interface is implemented by

different server implementations such as CarServerImpl,

FlightServerImpl and RoomServerImpl. Since the DRS

application supports distributed monetary transactions, a two-

phase commit protocol is used to achieve a transaction’s

Atomicity, Consistency, Isolation and Durability (ACID)

properties.

4.2. Class Hierarchy

The hierarchy of classes defined in DRS includes abstract

classes, interfaces and implementations. The whole

application can be split into client-side and server-side

functionalities. The server-side classes represent remote

objects to be invoked by client applications. The overview of

different classes used to realize DRS is shown in the form of

a class diagram shown in Figure 4. It shows inheritance and

dependency relationships among classes.

The DRS application supports distributed architecture;

the server components can run on any machine

geographically. Car, Flight and Hotel are reservable items.

The classes such as Car, Flight and Hotel are sub-classes of a

ReservableItem class. The Middleware Server Impl acts as a

middleware server component to create and manage all server

objects. Middleware Server Impl implements Resource

Manager and uses it appropriately. Other server components

are encapsulated in the implementation classes, such as Car

Server Impl, Flight Server Impl and Room Server Impl.

Fig. 3 Java classes packages

ClassesSub-Package of JAVAJAVA Package

JAVA

lang

System.class

String.class

util

Map.class

ArrayList.class

io

I/O Stream

O/P Stream

net

Socket

URL

awt Button.class

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

62

Fig. 4 Overview of class hierarchy in DRS

Fig. 5 Very important API involved in DRS

client RoomServerImpl FlightServerImpl
<<abstract»

RMItem

clientLoopMultiple

ReservedItem

<interface>>
ResourceManager

<<abstract»
Reservableltem

Car

clientLoopSingle MiddlewareServerImpl

CarServerImpl

TransactionManager

Hotel
Flight

Abstract
 ››Remote‹‹

ResourceManager

Object

getRMEntry

writeRMEntry

removeRMEntry

connectToServers

ping Server

ping Others checkForTimeOuts

addFlight

addCars

addRooms

newCustomer

newCustomer

deleteFlight

deleteCars

deleteRooms

deleteCustomer

queryFlight

queryCars

queryRooms

queryCustomerInfo

queryFlightPrice

queryCarsPrice queryRoomsPrice

reserveFlight

reserveCar

reserveRoom

itinerary

start

commit

shutdown

abort

selfDestruct

transfer2PCMessage

abstract ››Serializable«

Reservableltem

RMItem

setCount

getCount

setPrice

getPrice

setReserved

getReserved getLocation

toString

getKey

abstract

››Serializable‹‹

RMItem
Object

CarReservableltem

getKey getKey

FlightReservableltem

getKey getKey

Hotel Reservableltem

getKey getKey

ReservedItem

RMItem

getReservableltemKey

getLocation

setCount

getCount

setPrice

getPrice

toString

getKey

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

63

Fig. 6 Client-side API involved in DRS

All these servers are implementing Resource Manager,

which is a remote interface[24]. The TransactionManager

class uses a middleware server component and reservable

items to complete transactions pertaining to travel

reservations. Different client-side applications encapsulated

by the classes client, clientLoopSingle and

clientLoopMultiple interact with server components through

ResourceManager. RMI technology is in place to support the

invocation of objects running in the Java Virtual Machine

(JVM) of a remote machine. All server objects are registered

in the RMI registry, which holds the references of server

objects. These references are looked up by the client

applications in order to interact with server components.

4.3. Important API

As the DRS is based on a distributed architecture, using

technology that supports remote object calling is

indispensable. ResourceManager is the class that encapsulates

remotely accessible functions accessed through various server

objects. Very important classes of DRS are presented in Figure

5. They include four abstract classes like: ResourceManager,

ReservableItem, RMItem and ReservedItem. The

ResourceManager class is abstract in nature, and it

implements the Remote interface of java.rmi package. Hence,

it is a very important class that encapsulates all remotely

invoked methods. The ResourceManager class has all the

methods required by the DRS for achieving various kinds of

reservations. It has methods to deal with car reservations,

flight reservations and room reservations. It has methods to

deal with customer requests to coordinate with different

remote server objects. It also has methods required by

distributed transactions and a two-phase commit protocol for

consistency. The API presented has different reservable items

such as Car, Flight and Hotel. It also has a class known as

ReservedItem to keep track of reserved items.

4.4. Client-Side API

RMI client applications are the ones that know how to

look up the RMI registry in order to obtain references of server

objects whose functions can be run from a remote location.

This is essential for invoking components that run in

geographically located machines. Moreover, clients can be of

many types. Different client applications are built to serve

different users making travel reservations using single sign-

on. The client-side applications are encapsulated in three

different classes: client, clientLoopSingle and

clientLoopMultiple, as presented in Figure 6. The first

application is not interactive, while the remaining two are

interactive in nature.

When compared with the second, the third model supports

multiple client threads to run and get services. Thus, it can

serve multiple users to have their reservations done. The three

applications have a main() method to run them as client

applications. They can be started and stopped as and when

needed. However, RMI server components run around the

clock and provide client services.

4.5. RMI Architecture and its Usage in DRS

RMI technology is one of the distributed technologies

supported by Java. It is widely used in the real world to build

applications that need service orientation. The implemented

classes (API) can be categorized into server-side and client-

side API.

client object

message

rm

main

parse

findchoice

listcommands

listspecific

wrongnumber

getint

getboolean

getstring

clientLoopSingle Object

message

rm

MINLOADIR

MAXLOADIR

accessAllRMS

carCommands

roomCommands

flightCommands

customerCommands

itineraryCommand

randomLocations

main

getint

getBoolean

getString

clientLoopMultiple Object

message

rm

MINLOADIR

MAXLOADIR

NUMTIMESEXECUTECOMMAND

GENERICFILENAME

SLEEPBETWEENTRANSACTIONS

RANDOMWAIT

accessAllRMs

carCommands

roomCommands

flightCommands

customerCommands

itineraryCommand

genericCommands

randomLocations

main

getint

getBoolean

getString

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

64

Fig. 7 Overview of RMI architecture on top of which DRS is built

There is communication between the client side and

server side API through RMI technology specification. Figure

7 shows the RMI architecture in which client and server

components interact.

Both RMI server and RMI client applications are

essentially software components that achieve remote method

invocation, thus leading to a distributed architecture. In other

words, the components or servers involved in the system can

run any machine located across the globe. Still, such

components can work together and realize an application that

serves the purpose per business rules. The client and server

cannot have direct communication. Instead, they will interact

through proxies known as Stub and Skeleton. The client-side

proxy is known as Stub, and the server-side proxy is known as

Skeleton. In other words, Stub represents a remote object

(server) at the client while Skeleton resides at the server to

take a request from Stub and pass it to the real server object.

The transport layer encapsulates the connectivity between

client and server machines. On the other hand, the Remote

Reference Layer (RRL) manages references made by the

client to the remote object. The client call first goes to Stub,

which passes it to the remote reference layer. RRL makes a

virtual connection to server-side RRL. Then, server-side RRL

sends a request to Skeleton. The Skeleton actually invokes the

method in the remote object (car server/flight server/room

server). Between the RMI client and server, there are

procedures taking place, such as marshalling and

unmarshalling. The client passes parameters to a remote

method, and the parameters and calls are bundled for proper

serialization. This process at the client side is known as

marshalling. When the server receives the request, the process

of unbundling parameters to known actual arguments and

method calls is known as unmarshalling. In the process, the

RMI registry plays a crucial role as the references of different

RMI servers are registered with the RMI registry. The entire

process is illustrated in Figure 8. The three RMI clients used

in the DRS application are known as client, clientLoopSingle

and clientLoopMultiple.

Fig. 8 Illustrates the flow of interactions between the DRS client and

DRS servers through the RMI registry

These three kinds of clients essentially represent an RMI

client (remote client). They cannot invoke methods on RMI

servers (remote objects) directly. Instead, RMI clients need to

get the reference of remote objects from the RMI registry, as

the server objects are registered in the registry using the

rebind() method. The client invokes the lookup() method on

the registry to obtain server objects’ references. Once the

remote reference is available, the client can make calls on the

remote objects as needed. This architecture resembles broker

architecture used in RMI technology to support the worldwide

reuse of distributed components.

5. Experimental Results
Experiments are made using the prototype application,

which is nothing but a DRS case study. The results are

observed in terms of the percentage of successful interactions

versus the number of interactions with different critical

configurations considered. The proposed method is compared

with existing fault-tolerant methods found in [1].

As presented in Table 2, the percentage of successful

interactions is provided against the number of interactions

when 1% of critical configurations are used in the empirical

study.

Table 2. Shows the percentage of successful interactions with 1%

critical configurations

Percentage of successful interactions

NoFT FCI-FT FI-FS DCFTM

92.5 97.5 98 100

92 97 97.8 100

91 96.5 97.7 100

90 96 97.6 100

89 95.5 97.5 100

88 95 97.3 100

86.9 94.5 97 100

86 94 96.9 100

84.9 93.5 96.8 99

83.9 93 96.6 98.8

82.5 92.5 96.5 98.7

Client

Stub

RRL

Transport Layer

Server

 Skelton

RRL

Transport Layer

Virtual

Network

Server

Invokes the Methods Using the fetched Object

RMI

Registry

Client

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

65

Fig. 9 Performance with 1% of critical configurations

As presented in Figure 9, the number of interactions is

provided in the horizontal axis, and vertical access shows the

percentage of successful interactions. The observations are

made when 1% of critical configurations are used for

empirical study. When no fault tolerance is used, the

performance deteriorates. When the proposed algorithm

DCFTM is used for fault-tolerant execution, it could achieve

the best results by identifying the ideal candidate

configuration.

As presented in Table 3, the percentage of successful

interactions is provided against the number of interactions

when 5% critical configurations are used in the empirical

study.

Table 3. Shows the percentage of successful interactions with 5%

critical configurations

Percentage of successful interactions

NoFT FCI-FT FI-FS DCFTM

86.5 94 97 100

86 93.8 96.7 100

85.8 93.7 96.5 100

85.5 93.6 96.3 100

84.9 93.5 96.1 100

83.9 93.4 95.8 99.7

83 92.9 95 99

82 91.9 94.9 98.7

80.5 91.8 93.7 97.9

79 91.7 93.5 97.7

76 91.6 93 97.4

As presented in Figure 10, the number of interactions is

provided in the horizontal axis, and vertical access shows the

percentage of successful interactions. The observations are

made when 5% critical configurations are used for empirical

study. When no fault tolerance is used, the performance

deteriorates. When the proposed algorithm DCFTM is used

for fault-tolerant execution, it could achieve the best results by

identifying the ideal candidate configuration.

As presented in Table 4, the percentage of successful

interactions is provided against the number of interactions

when 10% of critical configurations are used in the empirical

study.

Table 4. Shows the percentage of successful interactions with 10%

critical configurations

Percentage of successful interactions

NoFT FCI-FT FI-FS DCFTM

69.9 79 82 100

69.5 78.9 85 100

69 78.5 84.9 100

68 77 84.7 99.9

65 76 84.5 99.8

63 75 83.9 99.6

60 74 83.8 99

57 73 83.4 98.7

50 72.5 82 97.9

41 71 81.9 97.7

31 70 75 97.4

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

P
er

ce
n

ta
g

e
o

f
su

cc
e
ss

fu
l

in
te

ra
ct

io
n

s

No of Iterations

Percentage of successful interactions NoFT Percentage of successful interactions FCI-FT
Percentage of successful interactions FI-FS Percentage of successful interactions DCFTM

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

66

Fig. 10 Performance with 5% of critical configurations

Fig. 11 Performance with 10% of critical configurations

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

P
er

ce
n

ta
g

e
o

f
su

cc
e
ss

fu
l

in
te

ra
ct

io
n

s

No of Iterations

NoFT

FCI-FT

FI-FS

DCFTM

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

P
er

ce
n

ta
g

e
o

f
su

cc
e
ss

fu
l

in
te

ra
ct

io
n

s

No of Iterations

NoFT

FCI-FT

FI-FS

DCFTM

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

67

As presented in Figure 11, the number of interactions is

provided in the horizontal axis, and vertical access shows the

percentage of successful interactions. The observations are

made when 10% of critical configurations are used for

empirical study. When no fault tolerance is used, the

performance deteriorates. When the proposed algorithm

DCFTM is used for fault-tolerant execution, it could achieve

the best results by identifying the ideal candidate

configuration.

6. Conclusion and Future Work
In this paper, we proposed an algorithm known as

Dynamic Configuration of Fault Tolerance Mechanisms

(DCFTM) to ensure that the system can withstand different

kinds of faults at runtime and be resilient against faults. A case

study enterprise application with distributed component-based

architecture is built to evaluate the proposed fault-tolerant

architecture and underlying DCFTM algorithm to prove the

concept. The distributed reservation system supports various

components that work together. They facilitate reservations

pertaining to travel, including car, flight and hotel rooms. The

implementation is made using Java and its Remote Method

Invocation (RMI) technology. It has provisions for consistent

transactions and fault tolerance. Experiments are made with

the case study application. The empirical study revealed that

the DCFTM algorithm outperforms state of the art. Though

this paper proposes an algorithm for fault tolerance on top of

distributed architecture, we believe it can be improved further.

Therefore, in our future work, we intend to define an algorithm

that will have not only fault tolerance but also suggestions for

performance improvement.

References
[1] Mylara Reddy Chinnaiah, and Nalini Niranjan, “Fault Tolerant Software Systems Using Software Configurations for Cloud Computing,”

Journal of Cloud Computing, vol. 7, no. 3, pp. 1-17, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Noor Bajunaid, and Daniel A. Menascé, “Efficient Modeling and Optimizing of Checkpointing in Concurrent Component-Based Software

Systems,” Journal of Systems and Software, vol. 139, pp. 1-13, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[3] Horst Schirmeier et al., “FAIL*: An Open and Versatile Fault-Injection Framework for the Assessment of Software-Implemented

Hardware Fault Tolerance,” 2015 11th European Dependable Computing Conference (EDCC), pp. 245-255, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[4] D. Himabindu, and K. Pranitha Kumari, “Software Fault Prediction Using Machine Learning Algorithms,” International Journal of

Computer Engineering in Research Trends, vol. 9, no. 9, pp. 170-174, 2022. [Publisher Link]

[5] Mounya Smara et al., “Acceptance Test for Fault Detection in Component-Based Cloud Computing and Systems,” Future Generation

Computer Systems, vol. 70, pp. 74-93, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[6] Jing Liu, Jiantao Zhou, and Rajkumar Buyya, “Software Rejuvenation Based Fault Tolerance Scheme for Cloud Applications,” 2015 IEEE

8th International Conference on Cloud Computing, pp. 1115-1118, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[7] Thanh-Trung Pham, Xavier Défago, and Quyet-Thang Huynh, “Reliability Prediction for Component-Based Software Systems: Dealing

with Concurrent and Propagating Errors,” Science of Computer Programming, vol. 97, pp. 426-457, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Fedor Y. Chemashkin, and Andrei A. Zhilenkov, “Fault Tolerance Control in Cyber-Physical Systems,” 2019 IEEE Conference of Russian

Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1169-1171, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[9] Mukosi Abraham Mukwevho, and Turgay Celik, “Toward a Smart Cloud: A Review of Fault-Tolerance Methods in Cloud Systems,”

IEEE Transactions on Services Computing, vol. 14, no. 2, pp. 589-605, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Bentolhoda Jafary, and Lance Fiondella, “Component-Based System Reliability Considering Positive and Negative Correlation,” 2018

Annual Reliability and Maintainability Symposium (RAMS), pp. 1-5, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] Alexander Aponte-Moreno, Cesar Pedraza, and Felipe Restrepo-Calle, “Reducing Overheads in Software-Based Fault Tolerant Systems

Using Approximate Computing,” 2019 IEEE Latin American Test Symposium (LATS), pp. 1-6, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Divya Rohatgi, and Gurmit Singh, “Improving Web Services Maintenance through Regression Testing,” International Journal of

Computer Engineering in Research Trends, vol. 3, no. 5, pp. 261–265, 2016. [Publisher Link]

[13] Jiguo Song, Gedare Bloom, and Gabriel Parmer, “SuperGlue: IDL-Based, System-Level Fault Tolerance for Embedded Systems,” 2016

46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 227-238, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[14] Shaoguang Shu, Yichen Wang, and Yikun Wang, “A Research of Architecture-Based Reliability with Fault Propagation for Software-

Intensive Systems,” 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1-6, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Miruna Stoicescu, Jean-Charles Fabre, and Matthieu Roy, “Architecting Resilient Computing Systems: A Component-Based Approach

for Adaptive Fault Tolerance,” Journal of Systems Architecture, vol. 73, pp. 6-16, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1186/s13677-018-0104-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+tolerant+software+systems+using+software+configurations+for+cloud+computing%2C&btnG=
https://link.springer.com/article/10.1186/s13677-018-0104-9
https://doi.org/10.1016/j.jss.2018.01.032
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+modeling+and+optimizing+of+checkpointing+in+concurrent+component-based+software+systems%2C%22&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121218300116
https://doi.org/10.1109/EDCC.2015.28
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FAIL%3A+An+Open+and+Versatile+Fault-Injection+Framework+for+the+Assessment+of+Software-Implemented+Hardware+Fault+Tolerance&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FAIL%3A+An+Open+and+Versatile+Fault-Injection+Framework+for+the+Assessment+of+Software-Implemented+Hardware+Fault+Tolerance&btnG=
https://ieeexplore.ieee.org/abstract/document/7371972
https://www.ijcert.org/index.php/ijcert/article/view/679
https://doi.org/10.1016/j.future.2016.06.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Acceptance+Test+for+Fault+Detection+in+Component-based+Cloud+Computing+and+Systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X16302151
https://doi.org/10.1109/CLOUD.2015.164
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Rejuvenation+Based+Fault+Tolerance+Scheme+for+Cloud+Applications%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/7214174
https://doi.org/10.1016/j.scico.2014.03.016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reliability+prediction+for+component-based+software+systems%3A+Dealing+with+concurrent+and+propagating+errors%2C%22+&btnG=
https://www.sciencedirect.com/science/article/pii/S0167642314002172
https://doi.org/10.1109/EIConRus.2019.8656639
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+Tolerance+Control+in+Cyber-Physical+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8656639
https://ieeexplore.ieee.org/abstract/document/8656639
https://doi.org/10.1109/TSC.2018.2816644
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+a+Smart+Cloud%3A+A+Review+of+Fault-tolerance+Methods+in+Cloud+Systems%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/8318693
https://doi.org/10.1109/RAM.2018.8463110
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Component-Based+System+Reliability+Considering+Positive+and+Negative+Correlation&btnG=
https://ieeexplore.ieee.org/abstract/document/8463110
https://doi.org/10.1109/LATW.2019.8704586
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reducing+Overheads+in+Software-based+Fault+Tolerant+Systems+using+Approximate+Computing%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/8704586
https://www.ijcert.org/index.php/ijcert/article/view/843
https://doi.org/10.1109/DSN.2016.29
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SuperGlue%3A+IDL-Based%2C+System-Level+Fault+Tolerance+for+Embedded+Systems%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SuperGlue%3A+IDL-Based%2C+System-Level+Fault+Tolerance+for+Embedded+Systems%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/7579744
https://doi.org/10.1109/RAMS.2016.7447984
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+research+of+architecture-based+reliability+with+fault+propagation+for+software-intensive+systems%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/7447984
https://doi.org/10.1016/j.sysarc.2016.12.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architecting+resilient+computing+systems%3A+A+component-based+approach+for+adaptive+fault+tolerance%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1383762116302715

Lalu Banothu et al. / IJETT, 71(11), 56-68, 2023

68

[16] Bowen Zheng et al., “Model-Based Software Synthesis for Safety-Critical Cyber-Physical Systems,” Safe, Autonomous and Intelligent

Vehicles, pp. 163-186, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[17] Sanjay Kumar Dubey, and Bhat Jasra, “Reliability Assessment of Component Based Software Systems Using Fuzzy and ANFIS

techniques,” International Journal of System Assurance Engineering and Management, vol. 8, pp. 1319-1326, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Govind Prasad Arya, and Devendra Prasad, “Design of a System to Import Common Information of an Applicant from a Centralized

Database While Filling Online Recruitment Application Form,” International Journal of Computer Engineering in Research Trends, vol.

4, no. 1, pp. 30-32, 2017. [Publisher Link]

[19] Kuan-Li Peng, and Chin-Yu Huang, “Stochastic Modelling and Simulation Approaches to Analysing Enhanced Fault Tolerance on

Service-Based Software Systems,” Software Testing, Verification and Reliability, vol. 26, no. 4, pp. 276-293, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[20] Vidhyashree Nagaraju, Veeresh Varad Basavaraj, and Lance Fiondella, “Software Rejuvenation of A Fault-Tolerant Server Subject to

Correlated Failure,” 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1-6, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Meng-Chu Chiang et al., “Analysis of a Fault-Tolerant Framework for Reliability Prediction of Service-Oriented Architecture Systems,”

IEEE Transactions on Reliability, vol. 70, no. 1, pp. 13-48, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] R. Surendiran, “Secure Software Framework for Process Improvement,” SSRG International Journal of Computer Science and

Engineering, vol. 3, no. 12, pp. 19-25, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[23] Maskura Nafreen, Saikath Bhattacharya, and Lance Fiondella, “Architecture-Based Software Reliability Incorporating Fault Tolerant

Machine Learning,” 2020 Annual Reliability and Maintainability Symposium (RAMS), pp. 1-6, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[24] J. VijiPriya, S. Suppiah, and Adeela Ashraf, “A Study on Development of Multilingual Dictionary Software,” International Journal of

Computer Engineering in Research Trends, vol. 4, no. 9, pp. 367-372, Sep. 2017. [Publisher Link]

https://doi.org/10.1007/978-3-319-97301-2_9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-Based+Software+Synthesis+for+Safety-Critical+Cyber-Physical+Systems%2C%22+&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-97301-2_9
https://doi.org/10.1007/s13198-017-0602-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reliability+assessment+of+component+based+software+systems+using+fuzzy+and+ANFIS+techniques%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reliability+assessment+of+component+based+software+systems+using+fuzzy+and+ANFIS+techniques%2C&btnG=
https://link.springer.com/article/10.1007/s13198-017-0602-z
https://www.ijcert.org/index.php/ijcert/article/view/349
https://doi.org/10.1002/stvr.1596
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+modelling+and+simulation+approaches+to+analysing+enhanced+fault+tolerance+on+service-based+software+systems%2C%22+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+modelling+and+simulation+approaches+to+analysing+enhanced+fault+tolerance+on+service-based+software+systems%2C%22+&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1596
https://doi.org/10.1109/RAMS.2016.7448076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+rejuvenation+of+a+fault-tolerant+server+subject+to+correlated+failure%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/7448076
https://doi.org/10.1109/TR.2020.2968884
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+a+Fault-Tolerant+Framework+for+Reliability+Prediction+of+Service-Oriented+Architecture+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8995539
https://doi.org/10.14445/23488387/IJCSE-V3I12P105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22Secure+Software+Framework+for+Process+Improvement&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=191
https://doi.org/10.1109/RAMS48030.2020.9153718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architecture-based+Software+Reliability+Incorporating+Fault+Tolerant+Machine+Learning%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9153718
https://www.ijcert.org/index.php/ijcert/article/view/717

