
International Journal of Engineering Trends and Technology Volume 71 Issue 11, 90-99, November 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I11P209 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Database Tuning from Relational Database to Big Data

Bery Leouro MBAIOSSOUM1*, Ladjel BELLATRECHE2, Narkoy BATOUMA1, Ahmat

Mahamat DAOUDA1

1Faculty of Exact and Applied Sciences (F.S.E.A), University of N’Djamena, NDjamena Chad.
2Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Chasseneuil-du-Poitou (France).

*Corresponding Author : bery.mbaiossoum@gmail.com

Received: 09 December 2022 Revised: 29 March 2023 Accepted: 10 October 2023 Published: 04 November 2023

Abstract - The objective of this work is to present the database tuning from relational databases to Big Data. It revisits the

tools of the physical design. It examines their applicability to the main types of databases, in particular legacy (hierarchical

or network), relational, object-oriented and NoSQL databases and Big Data. A literary review is done on database tuning

tools to examine how to bring them closer to the DB lifecycle. It is noted that modern physical design techniques consider all

phases of the DB lifecycle. Database tuning has evolved as new database types emerge. There is a vertical evolution of

database tuning with the addition of new phases when a new database type appears and a horizontal evolution resulting in the

enrichment of each phase of the DB lifecycle by considering new tools. This phenomenon with the Bigata data results vertically

with multiple types of Big Data schemas and horizontally with the advent of the map-reduce technique. The database

administrator has to consider these evolutions in the database tuning work.

Keywords - Databases tuning, Queries optimization, Big Data, Databases evolution, Databases lifecycle, NoSQL.

1. Introduction
Tuning advanced databases that handle large volumes of

data, such as data warehouses [1, 2], is an important issue for

the database community. The concern to quickly have the

result of a query executed on a Database (DB) remains

constant for all users. The DB administrator is responsible for

implementing the necessary data structures to guarantee the

database performance to users.

This aspect of the administrator's job is a matter of

physical design called database tuning. Physical design is

defined as the phase of the DB lifecycle where the

implementation of structures to ensure the efficiency of the

DB is done. The goal of physical design is query optimization

so that query results are very quickly obtained [1].

In the paper [3] titled Self-Tuning Database Systems: A

Decade of Progress (10 Year Best Paper Award at the Very

Large Databases conference, 2007 edition), Surajit

Chaudhuri indicates that the first generation of relational

execution engines was relatively simple, focused on OLTP

(online transaction processing), making index selection less

problematic. The importance of physical design has been

magnified as query optimizers become sophisticated to deal

with complex decision-support queries [3]. This

amplification is due to the following characteristics linked to

advanced databases:

• The complexity of the database schema, where the tables

do not have the same characteristics. Take the example

of a diagram of a relational data warehouse and there are

two types of tables: the normalized fact table containing

a large number of instances and smaller dimension

tables, often de-normalized to minimize the number of

joins required to evaluate a query,

• The complexity of queries, which increasingly require

expensive operations such as join and aggregation;

• The volume of data: more and more data in DB becomes

important, especially with DB applications linked to the

internet and social media; a lot of the data is saved in DB;

• The requirements of decision-makers on the response

time of queries and;

• The diversity of optimization structures.

Another diversity is the use of these optimization

structures. Some are applied during database creation, like

horizontal fragmentation and others during database

exploitation, like materialized views. This complicates the

process of selecting and using some sensitive structures.

Among the physical design tools, some apply to several types

of DB, and others are less so.

The objective of this work is to revisit the physical

design tools and examine their applicability to the main types

of databases, particularly relational, object-oriented and

NoSQL databases since database communities are interested

in physical design topics, as testified in the paper of Eslami

et al. [2] and Ding et al. [4].

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bery.mbaiossoum@gmail.com

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

91

Query optimization in the context of databases has

occupied an important place across the different generations

of databases: traditional databases, XML databases, decision

databases, statistical and scientific databases and semantic

databases. Indeed, database applications are always looking

for more efficient query processing time. Query optimization,

therefore, consists of rewriting the query execution tree to

choose the most efficient execution plan [3, 4]. Before

executing a query, parsing is done for syntax checking and

translation into algebraic operations. This analysis produces

a tree of operations to be executed. However, it is possible to

transform this tree to obtain other equivalents, which offer

different means to get the same result. These trees are called

execution plans [5-7]. The role of the optimization engine

(also called optimizer) is to generate the different execution

plans and choose the best one. Moreover, it is the latter that

will be executed.

Several works have been carried out to make query

optimizers more efficient. In the relational database, various

optimization algorithms have been proposed [4-7]. The

guiding idea is to move the selections down the query tree as

much as possible. Palermo [8] was the first to propose this

optimization strategy. Gotlieb [9] proposed an alternative to

calculate joins. Yao [10] analyzed alternatives for select-

project-join type queries. The QUEL decomposition

algorithm was proposed by Yang [11], and the SEQUEL

optimization by Astrahan et al. [12] and Selinger et al. [13].

Optimization of conjunctive queries has been the subject of

the work of Chandra and Merlin [14]. This work was

extended by considering multi-valued functional

dependencies by Aho et al. [15] and by considering the union

operator by Sagiv and Yannakakib [16].

In object-oriented DB, optimization techniques have

been proposed, especially indexing [17-20], algebraic

rewriting techniques [21, 22, 18], path expressions [15], etc.

Kim et al. [17] have introduced and evaluated the path index.

Kemper et al. [18] have proposed a generic optimizer called

GOM, which uses path indexes in the form of support

relations and a rewrite rule-based optimizer. Lanzelotte et al.

[23] proposed an extensible optimizer allowing the complete

taking into account new data types, with operators, rules, etc.

The physical design has evolved and gradually addressed the

entire DB lifecycle. Indeed, the query optimization process

gradually took into account parameters from the phases of the

database design lifecycle (conceptual design, logical design,

physical design and deployment (Fig.1)) and the query

language used by the target Database Manager System

(DBMS). There are two main generations of query

optimizers: optimizations directed by certain lifecycle phases

(ODCP) and optimizations directed by all phases (ODAP).

• ODCP optimizers are mainly based on studying the

algebraic properties of the query language defined on the

logical model of the database [6]. One example of these

optimizers is the Rule-based Approach (RBA), which

uses an intuitive set of rules to optimize queries.

Indeed, some properties allow modifying the order of the

algebraic operators in order to obtain performance gains. We

have, for example:

• The grouping of selections, which allows several

restrictions to be carried out in a single browse of the

table instead of performing one per restriction. The

selection (Restriction (x = a), y = b) <=> Restriction (x

= a AND y = b);

• The descent of selections and projections in an algebraic

tree, making it possible to reduce the size of relations

and intermediate results.

• The commutativity of restrictions and joins, which

allows restrictions to be applied before joins;

• The associativity of the joins, making it possible to

change the order of the joins to use more efficient

algorithms in some cases, etc.

This type of optimization is easy to implement, which is

why it has been considered in all commercial and academic

DBMSs. The main limitation of this optimization is that it

does not consider the physical parameters of the database and

the deployment platform.

• ODAP optimizers appeared to overcome the

shortcomings of ODCP optimizers. They take into

account conceptual, logical, physical and deployment

parameters. As an example of these optimizers, we have

the approach based on mathematical cost models, called

the Cost-Based Approach (CBA) [10, 13]. This approach

consists of first calculating the cost of the different

possible strategies corresponding to the execution plans

of a query according to the characteristics of the files on

which the relationships are established and then

choosing the plan with the minimum cost. One of the

actions of ODAP optimizers is to order joins (and set

operations) to process the fewest tuples possible,

mobilize the existing indexes as much as possible, and

use the most efficient algorithms.

For this purpose, the optimization engine needs

parameters from all phases of the life cycle (Figure 1):

• The conceptual layer: the length of each attribute of

each table;

• The logical layer: the size (in terms of instances) of each

table;

• The physical layer: the storage model used to store

tables (row store, column store) and data access

methods;

• Deployment layer: disk characteristics such as the size

of a disk page.

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

92

Fig. 1 DB lifecycle phases and optimization process

Thus, ODAP query optimization is sensitive to all phases

of the database design lifecycle. Suppose the query language,

database type, storage model, or deployment platform

changes; then, the optimization process should be revisited.

All optimizations are often addressed in the physical phase of

the lifecycle.

Non-object-oriented databases only take one parameter

from the conceptual phase: the data dictionary. Remember

that the conceptual model intelligibly expresses application

needs and domain knowledge for a subsequent user.

Unfortunately, the logic model is exploited, resulting from

normalization (in the case of relational databases) and

adaptation to the support system, which is generally very

different from the conceptual model. In object-oriented

databases, optimizers consider the object model's

characteristics in the optimization: path expressions, object

groupings, pointer scans, path indexes, and user methods

[24].

In the rest of this paper, methods and materials are

presented at point 2. Point 3 talks about the results, and point

4 about the discussion focuses on the physical design tools

most used by DBMS and their applicability in the different

types of DB. Finally, the paper ends with a conclusion.

2. Materials and Methods
This article has two main objectives; the first objective

is to provide a narrative review and analysis of the research

studies focusing on physical design to optimize queries. The

second aim is to report some problems when considering a

physical design tool. The literature review is presented in a

historical chronological of physical design tools. So, it starts

from the indexing technique, the first optimization technique,

to the more recent techniques. Redundant optimization

structures and non-redundant optimization structures are

considered:

• Redundant optimization structures are structures that

require memory space for storage and have maintenance

costs. Examples of such structures include indexes [25],

materialized views [26], replication and vertical

fragmentation [27].

• Non-redundant optimization structures are those that do

not require storage space. These are, for example,

horizontal fragmentation [28] and parallel processing

without replication [27].

Main redundant optimization structures, namely indexes,

materialized views and parallel processing, main non-

redundant structures, horizontal fragmentation and

clustering, are presented hereby.

3. Results and Discussion
Physical design tools are also called optimization

structures. Some of these structures intervene very early in

the lifecycle of DB; this is the case of fragmentation, parallel

processing and clustering, which are considered from the

conceptual phase before being created during the deployment

phase. Others occur near the end of their lifecycle; this is the

case of indexes and materialized views created during the

exploitation phase.

3.1. Indexes

Indexing techniques are a very important option for

database tuning for traditional and advanced databases. They

are the oldest physical design techniques. Indexes are used to

improve data access time [25]. The definition of indexes is

often done while the database is running. A significant

number of indexes have been proposed and supported by

commercial and academic DBMSs. In the context of

traditional databases, B-tree indexes, hash indexes, join

indexes, bitmap indexes, etc., have been proposed [25]. Some

indexing techniques have arisen in the context of data

warehouses due to the nature of Online Analytical Processing

(OLAP) queries. These are, for example, binary indexes,

binary join indexes, star join indexes, etc. [29]. Indexes have

the advantage of speeding up information searches. Indeed,

an index represents the table sorted on a given field. But

Conceptual

phase
Logical phase

Deployment

phase Physical phase

Generation II

Generation I

Needs

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

93

indexes also have drawbacks: each time an index is created,

the DBMS workload increases. Thus, data entry and

maintenance operations are slowed down by the presence of

indexes because they must be updated immediately. An index

takes up space on the disk. Selecting a set of indexes to

optimize a given query load is a difficult problem [30].

To answer this problem, the first works proposed

solutions following the ODCP approach, where certain rules,

such as using candidate attributes for indexing and the

frequency of queries, have been proposed [31]. These rules

are not sufficient to offer a successful selection. To overcome

this type of selection, other works have formalized the Index

Selection Problem (ISP) as an optimization problem

following the ODAP approach. Since given:

• A load of queries Q, where each query has an access

frequency,

• A database or datawarehouse diagram deployed on a

given platform,

• An index storage space S.

The problem of index selection is to find a better

configuration of index, CI, allowing to optimize Q, that is to

say, to reduce the total cost of running queries while

respecting the storage constraint. This problem is NP-

complete [30]. Several approaches to solving this problem

have been developed. They start by listing the entire

candidate attributes for indexing. These attributes are chosen

from those present in the WHERE, GROUP BY and ORDER

BY clauses of the queries. Algorithms for selecting attributes

that can be indexed have been proposed; they are guided by

a mathematical cost model quantifying the quality of the

solution obtained. These include genetic algorithms,

simulated annealing, or full linear programming. One of these

approaches is used in the What-if module of SQL Server

DBMS [32]. Indexes are optimization structures that have

gone through different types of databases. They have been

applied to hierarchical databases and CODASYL networks to

simplify the search for records. They are used and diversified

in relational databases and data warehouses to facilitate

access to tuples [25, 29-30]. In OODBs, in addition to

classical indexes, path indexes have been proposed [19-18].

In NoSQL databases, indexes are created to guarantee a

certain performance [33].

3.2. Materialized Views

A Materialized View (MV) is a named query, the result

of which is stored in the database permanently. Materialized

views improve query execution by precomputing the most

expensive operations, such as joining and storing their results

in the database. Thus, some queries only require access to

materialized views and, therefore, are executed faster [26].

Materialized views are used to meet several objectives, such

as improving the performance of queries or providing

duplicate data (cache in proxy servers, for example). The use

of MVs has three major problems, namely (i) the problem of

their selection, (ii) the problem of their maintenance and (iii)

the rewriting of queries based on views.

3.2.1. The Problem of their Selection

As all the views cannot be materialized for storage

reasons, the selection of materialized views consists of

choosing a subset of candidate views, making it possible to

reduce the cost of running a load of queries. The selection of

views can be made under certain constraints, generally

storage space and/or a maintenance time threshold not to be

exceeded. The problem of selecting materialized views can,

therefore, be formalized [34-35] as given:

• A load of queries Q where each query has an access

frequency;

• A DB or datawarehouse schema deployed on a given

platform;

• A set of constraints C (storage space, maintenance time,

etc.);

The Materialized View Selection Problem (MVSP)

consists of finding a set of views, which reduces the total cost

of executing the queries of Q and respects the constraints of

C.

Like the index selection problem, the MVSP is NP-

complete [26]. MVSP in data warehouses has been

extensively studied for both the MOLAP (Multidimensional

OLAP) and the ROLAP (Relational OLAP) approach. In the

MOLAP approach, the data cube is considered the main

structure for selecting materialized views. Each cell in the

cube is considered a potential view. In the ROLAP approach,

each query is represented by an algebraic tree [36]. Each node

(not leaf) is considered a potential view.

3.2.2. The Problem of MV Maintenance

The database tables change and evolve at the rate of

updates. However, if these changes are not carried over to the

materialized views, their contents will become obsolete, and

their objects will no longer represent reality. The

maintenance of materialized views consists of transferring

the modifications on the database tables to the level of the

materialized views. This can be done using three approaches:

periodic, immediate and deferred. In the periodic approach

[37], views are updated continuously at specific times. In the

immediate approach [38], views are updated immediately at

the end of each transaction. In the latter approach, changes

are propagated in a deferred fashion [39].

The maintenance of the views can be performed by

recalculating these views from the database tables. However,

this approach is very expensive. Good maintenance of views

is performed when changes (insertions, deletions,

modifications) made in the source tables can be propagated

to views without recalculating their content completely. To

solve this problem, three types of maintenance have been

proposed: incremental, autonomous and in batch [38].

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

94

Fig. 2 Query rewriting process in the optimization process

Incremental maintenance consists of identifying the

new set of tuples to be added to the view in the case of an

insertion or the subset of tuples to be removed from the view

in the case of a deletion without fully re-evaluating the view.

Autonomous maintenance ensures that the maintenance of a

view V can be calculated only from V and the changes that

have occurred in the database tables on which it is defined.

Batch maintenance is performed using updated transactions.

3.2.3. Rewriting Queries using Materialized Views

After selecting and creating views, all queries must be

rewritten based on views. But, finding the best rewrite for a

query is a difficult task [40]. The process of rewriting queries

has been used as an optimization technique to reduce the cost

of evaluating a query [40]. Figure 2 shows the rewrite process

in the optimization process. The system evaluates the

different execution plans (with MVs and without MVs) and

selects the best optimal.

3.3. Horizontal Fragmentation

Horizontal fragmentation consists of partitioning a table

according to its tuples to reduce the number of accesses not

necessary to process queries. Two types of horizontal

fragmentation exist primary fragmentation [42] and

derivative fragmentation [29]. The primary horizontal

fragmentation of a table is based on attributes defined on that

table. Derived horizontal fragmentation is the propagation of

fragmentation from one table to another table.

Horizontal fragmentation was originally proposed as a

logical design technique for distributed databases in the

1980s [43]. Unlike other optimization structures like indexes

and materialized views, where the selection of optimization

schema is usually made when the database is operational (or

created), the selection of a fragmentation schema of a

database (or a datawarehouse) must be decided before its

creation. This situation makes its selection more sensitive

than the other structures. In addition, it can also be combined

with other optimization structures such as indexes [44],

materialized views [28] and parallel processing [45].

A significant amount of work on horizontal

fragmentation has been developed in the context of

traditional and advanced databases [43-45]. These works

followed both optimization approaches (ODCP and ODAP).

Early works used criteria such as affinities between selection

predicates in a query payload to determine the fragmentation

schema. Horizontal fragmentation is efficient if defined on

attributes in the selection predicates. The affinity between

two predicates is the sum of the access frequencies of queries

using both predicates simultaneously. This approach is,

therefore, less complex than that based on predicates.

However, it only considers the frequency of access as a

grouping criterion. However, to fragment a database, other

parameters must be considered, such as predicate selectivity

factors, the size of the table, the size of the disk page, the

number of pages occupied by this table, etc. Approaches

based on predicates and affinities do not provide any metrics

to assess the quality of the resulting schema. To overcome

these shortcomings, algorithms following the ODAP

approach have been proposed in the context of object-

oriented databases and data warehouses [43-45]. These

algorithms include a generator of fragmentation patterns, a

cost model and a module for selecting the optimal pattern.

Fragmentations are used in data warehouses [43], relational

databases [28] and Object-oriented DB [22].

3.4. Parallel Processing

Massively parallel processing is the use of a large

number of processors or computers to perform a set of

coordinated calculations in parallel (i.e. simultaneously). In

the context of databases, mainly in Big Data, parallel

processing is considered a technique for query optimization

[48, 49]. Different approaches have been used to implement

massively parallel processing, including:

• Grid Computing: in this approach, the computing power

of a large number of distributed computers is used

opportunistically whenever a computer is available [46]

for processing a query.

• Computer Cluster: this approach uses a large number of

processors located close to each other to process a query.

Query
Plans

generation

Rewritten

Query

Plans

generation

Plans

evaluation
Best

Plan

Structure

MV

Index

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

95

In such a centralized system, the speed and flexibility of

the interconnection of the processors is very important.

In the process of optimizing queries in parallel

processing, the optimal sequential execution plan generated

at the end of the optimization phase is transformed into a

parallel execution plan following the parallelization step. For

the parallel execution of queries, there are two levels of

parallelism: inter-query parallelism and intra-query

parallelism.

• Inter-query parallelism consists of using several

processors in the architecture to execute several queries

at the same time;

• Intra-query parallelism consists of using several

processors in the architecture to execute a given query.

There are two forms of intra-query parallelism: inter-

operation parallelism and intra-operation parallelism.

Inter-operation parallelism is when we run multiple

operations of the same query simultaneously. These

operations are either independent or consecutive. Intra-

operator parallelism breaks down a given operation into

a set of tasks, each of which is placed on a single

processor and performs the algorithm operation on the

part of the data [47]. Some operators, like selection and

projection, can be easily broken down into parallel tasks.

Others, like the join or the decomposition, are more

complex.

To facilitate the parallel processing of large data sets,

MapReduce, a powerful algorithmic model using two

functions (map and reduce), has been proposed [48, 49]. The

queries are specified as Map and Reduce functions [48].

Tools have been developed to represent the parallel execution

plan by a set of dependent MapReduce jobs [49]. A

MapReduce job contains a Map phase and a Reduce phase.

Each phase is instantiated by a set of parallel Map or Reduce

type tasks. However, this model suffers from the problem of

systematic reading and writing on a distributed file system

between two jobs; this slows down query execution time.

Another model has been proposed and integrated into

some tools like Hive [50] and SparkSQL [51]. Reading from

the distributed file system is done only at the start of query

execution. The writing is done only at the end of the

execution of the query.

Relational operators are grouped into stages [52]. A set

of parallel tasks instantiates each stage. A given task executes

all the stadium operators on some input data. The

communication between the tasks of two stages which follow

one another is done either by diffusion (i.e. a tuple generated

by a task of the producer stage is sent to all the tasks of the

consumer stage) or by distribution (i.e. a tuple generated by a

task of the producer stage is sent to a single task of the

consumer stage).

3.5. Object Grouping or Clustering

Object grouping is a technique used to optimize object-

oriented databases. It consists of storing on the same page

objects linked by an association in order to speed up access

to these objects by navigation or join [53-54]. Grouping

techniques allow objects from different collections to be

placed in the same group. Grouping allows an autonomous

life of linked objects, which can exist without associated

objects. In the case of objects without a master or objects

shared by several masters, the choice of the storage page is

not obvious. It is possible to define groups by selection or

association predicates to capture a broad class of grouping

strategies. A selection predicate makes it possible, for

example, to define a group according to the selection

predicate. An association predicate makes it possible, for

example, to define a group for each type of object. Gruber et

al. [53] proposed a data structure called a grouping graph to

visualize the specification information of groups. It is a graph

whose nodes represent the extensions of classes and the

edges, the predicates of links used for grouping, each edge

having a priority varying from 0 to 10. Gardarin et al. [54]

proposed grouping techniques with priority and the model

cost for object-oriented DB.

Fig. 3 Classic database lifecycle phases

Types of databases

RDB OODB XMLDB

Conceptual phase Logical phase Physical phase Needs

E-A UML Relational, 00 Index, join algorithms (h-join)

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

96

Fig. 4 Databases and data warehouse lifecycle phases

4. Discussion
Indexes turn out to be a primary physical design tool and

have the privilege of being considered in all types of

databases. They are used in the first databases (hierarchical

and network databases), relational, object-oriented, XML

databases, warehouses and new types of databases (NoSQL

databases and Big Data). Materialized views are very useful

in situations where they deal with expensive queries and need

to be partially or fully calculated in advance [55]. They

appeared with data warehouses, but their design is used

beyond DBs, for example, in proxy servers and Web caching.

Indexes and Materialized views can be used together to

optimize data warehouses [56]. Fragmentation is a solution

that consists of bringing closer to user data that he tends to

query frequently. It is more interesting in a distributed

environment. As for parallel processing, their use has

increased with new types of databases, in particular, NoSQL

databases and MapReduce type programming. They have a

bright future.

Database's physical design has evolved as new database

types emerge. We observe a vertical evolution of the

database's physical design, resulting in the addition of new

phases when a new database type appears, and a horizontal

evolution of the physical design, resulting in the enrichment

of each phase of the DB lifecycle by considering new tools.

Figure 3 gives the phases of classical databases (BDR,

BDOO and BD XML). The ETL phase was born with the

advent of data warehouses, and new logical models (star

schema and snowflake schema) were born. New physical

design tools (materialized views) were proposed.

Fig. 4 gives an illustration. The same thing can be

observed in Big Data, vertically with the apparition of

multiple NoSQL database types and horizontally with the

advent of the map-reduce technique. Resource reallocation

based on Service Level Agreement (SLA) appears as a

physical design with the database in the cloud [57].

Data administrator has to deal with these different tools

to face the query optimization problem according to the used

database type.

5. Conclusion
 Database tuning is a very important phase to guarantee

DB performance because it allows the implementation of

tools to obtain query results quickly. It has received a lot of

attention from the DB community. In this paper, the

optimization process, which is the focal point of database

tuning, is looked at. It is brought closer to the DB lifecycle

and found that modern physical design techniques consider

all stages of the DB lifecycle. Finally, an overview of

physical design tools is presented, and their selection

problems in a formal way are exposed. Physical design is not

a stagnant process, i.e. it does not stop once the structures are

chosen and created. It requires regular monitoring and

reassessment to adapt structures to changes in data and

platform parameters. The physical design has been enriched

during the vertical evolution of the database with the

apparition of new phases and during the horizontal evolution

of DB with the development of new tools and algorithms.

Data administrators must consider these tools according to

the database type in the tuning work.

References
[1] Dimitri Theodoratos, and Timos Sellis, “Designing Data Warehouses,” Data and Knowledge Engineering, vol. 31, no. 3, pp. 279-301,

1999. [CrossRef] [Google Scholar] [Publisher Link]

[2] Mehrad Eslami et al., “Query Batching Optimization in Database Systems,” Computers and Operations Research, vol. 121, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

Types of databases

RDB OODB XMLDB

Conceptual

phase
Logical phase ETL Physical phase Needs

Star schema, snow flake Index, materialized views, etc.

Data

warehouse

https://doi.org/10.1016/S0169-023X(99)00029-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+data+warehouses.+Data+%26+knowledge+engineering&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169023X99000294
https://doi.org/10.1016/j.cor.2020.104983
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+batching+optimization+in+database+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305054820301003

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

97

[3] Surajit Chaudhuri, and Vivek Narasayya, “Self-tuning Database Systems: A Decade of Progress,” Proceedings of the 33rd International

Conference on Very Large Data Bases, pp. 3-14, 2007. [Google Scholar] [Publisher Link]

[4] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya, “Bitvector-Aware Query Optimization for Decision Support Queries,” Proceedings

of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 2011-2026, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Robert M. Pecherer, “Efficient Evaluation of Expressions in a Relational Algebra,” Association for Computing Machinery Pacific, vol.

75, pp. 44-49, 1975. [Google Scholar] [Publisher Link]

[6] John Miles Smith, and Philip Yen-Tang Chang, “Optimizing the Performance of a Relational Algebra Database Interface,”

Communications of the ACM, vol. 18, no. 10, pp. 568-579, 1975. [CrossRef] [Google Scholar] [Publisher Link]

[7] P.A.V. Hall, “Optimization of a Single Relational Expression in a Relational Data Base Management System,” IBM Journal of Research

and Development, vol. 20, no. 3, pp. 247-257, 1976. [CrossRef] [Google Scholar] [Publisher Link]

[8] Frank P. Palermo, “A Database Search Problem,” Information Systems, pp. 67-101, 1974. [CrossRef] [Google Scholar] [Publisher Link]

[9] Leo R. Gotlieb, “Computing Joins of Relations, Proceedings of the 1975 ACM SIGMOD International Conference on Management of

Data, pp. 55-63, 1975. [CrossRef] [Google Scholar] [Publisher Link]

[10] S. Bing Yao, “Optimization of Query Evaluation Algorithms,” ACM Transactions on Database Systems, vol. 4, no. 2, pp. 133-155, 1979.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Eugene Wong, and Karel Youssefi, “Decomposition-a Strategy for Query Processing,” ACM Transactions on Database Systems, vol. 1,

no. 3, pp. 223-241, 1976. [CrossRef] [Google Scholar] [Publisher Link]

[12] M.M. Astrahan et al., “System R: Relational Approach to Database Management,” ACM Transactions on Database Systems, vol. 1, no.

2, pp. 97-137, 1976. [CrossRef] [Google Scholar] [Publisher Link]

[13] P. Griffiths Selinger et al., “Access Path Selection in a Relational Database Management System,” Proceedings of the 1979 ACM SIGMOD

International Conference on Management of Data, pp. 23-34, 1979. [CrossRef] [Google Scholar] [Publisher Link]

[14] Ashok K. Chandra, and Philip M. Merlin, “Optimal Implementation of Conjunctive Queries in Relational Data Bases,” Proceedings of

the 9th Annual ACM Symposium on Theory of Computing, pp. 77-90, 1977. [CrossRef] [Google Scholar] [Publisher Link]

[15] Alfred Aho, Y. Sagiv, and Jeffrey Ullman, “Equivalences among Relational Expressions,” Society for Industrial and Applied Mathematics

Journal on Computing, vol. 8, no. 2, pp. 218-246, 1979. [CrossRef] [Google Scholar] [Publisher Link]

[16] Yehoshua Sagiv, and Mihalis Yannakakis, “Equivalences among Relational Expressions with the Union and Difference

Operators,” Journal of the Association for Computing Machinery, vol. 27, no. 4, pp. 633-655, 1980. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Won Kim, Kyung-Chang Kim, and Alfred Dale, Indexing Techniques for Object-Oriented Databases, Object-Oriented Concepts,

Databases, and Applications, pp. 371-394, 1987. [CrossRef] [Google Scholar] [Publisher Link]

[18] Alfons Kemper, and Guido Moerkotte, “Advanced Query Processing in Object Bases Using Access Support Relations,” Proceedings of

the 16th International Conference on Very Large Data Bases, pp. 290-301, 1990. [Google Scholar] [Publisher Link]

[19] E. Bertino, and W. Kim, “Indexing Techniques for Queries on Nested Objects,” IEEE Transactions on Knowledge and Data Engineering,

vol. 1, no. 2, pp. 196-214, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[20] E. Bertino, “An Indexing Technique for Object-Oriented Databases,” Proceedings Seventh International Conference on Data Engineering,

pp.160-170, 1991. [CrossRef] [Google Scholar] [Publisher Link]

[21] M. Tamer Ozsu, and Jose A. Blakeley, “Query Processing in Object-Oriented Database Systems,” Modern Database Systems, pp. 1-19,

1995. [Google Scholar] [Publisher Link]

[22] Georges Gardarin, Jean-Robert Gruser, and Zhao-Hui Tang, “A Cost Model for Clustered Object-Oriented Databases,” Proceedings of

21st International Conference on Very Large Databases, pp. 323-334, 1995. [Google Scholar] [Publisher Link]

[23] Rosana S.G. Lanzelotte, and Patrick Valduriez, “Extending the Search Strategy in a Query Optimizer,” Proceedings of the 17th

International Conference on Very Large Data Bases, vol. 91, pp. 363-373, 1991. [Google Scholar] [Publisher Link]

[24] E. Bertino et al., “Object-Oriented Query Languages: The Notion and the Issues,” IEEE Transactions on Knowledge and Data

Engineering, vol. 4, no. 3, pp. 223-237, 1992. [CrossRef] [Google Scholar] [Publisher Link]

[25] Himanshu Gupta et al., “Index Selection for OLAP,” Proceedings 13th International Conference on Data Engineering, pp. 208-219, 1997.

[CrossRef] [Google Scholar] [Publisher Link]

[26] Himanshu Gupta, “Selection of views to Materialize in a Data Warehouse,” International Conference on Database Theory, pp. 98-112,

1997. [CrossRef] [Google Scholar] [Publisher Link]

[27] Alexandre A.B. Lima et al., “Parallel OLAP Query Processing in Database Clusters with Data Replication,” Distributed and Parallel

Databases, vol. 25, pp. 97-123, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[28] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang, “Integrating Vertical and Horizontal Partitioning into Automated Physical Database

Design,” Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 359-370, 2004. [CrossRef]

[Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-tuning+database+systems%3A+a+decade+of+progress&btnG=
https://dl.acm.org/doi/10.5555/1325851.1325856
https://doi.org/10.1145/3318464.3389769
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bitvector-aware+Query+Optimization+for+Decision+Support+Queries&btnG=
https://dl.acm.org/doi/abs/10.1145/3318464.3389769
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Evaluation+of+Expressions+in+a+Relational+Algebra&btnG=
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/28808.html
https://doi.org/10.1145/361020.361025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+the+performance+of+a+relational+algebra+database+interface&btnG=
https://dl.acm.org/doi/abs/10.1145/361020.361025
http://doi.org/10.1147/rd.203.0244
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+a+single+relational+expression+in+a+relational+data+base+management+system&btnG=
https://ieeexplore.ieee.org/document/5391125
https://doi.org/10.1007/978-1-4684-2694-6_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+database+search+problem+Information+systems+COINS+IV%23+J+r+TOU&btnG=
https://link.springer.com/chapter/10.1007/978-1-4684-2694-6_4
https://doi.org/10.1145/500080.500089
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computing+joins+of+relations&btnG=
https://dl.acm.org/doi/abs/10.1145/500080.500089
https://doi.org/10.1145/320071.320072
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+query+evaluation+algorithms&btnG=
https://dl.acm.org/doi/abs/10.1145/320071.320072
https://doi.org/10.1145/320473.320479
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decomposition%E2%80%94a+strategy+for+query+processing&btnG=
https://dl.acm.org/doi/abs/10.1145/320473.320479
https://doi.org/10.1145/320455.320457
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=System+R%3A+relational+approach+to+database+management&btnG=
https://dl.acm.org/doi/abs/10.1145/320455.320457
https://doi.org/10.1145/582095.582099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Access+path+selection+in+a+relational+database+management+system&btnG=
https://dl.acm.org/doi/abs/10.1145/582095.582099
https://doi.org/10.1145/800105.803397
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+implementation+of+conjunctive+queries+in+relational+data+bases&btnG=
https://dl.acm.org/doi/abs/10.1145/800105.803397
https://doi.org/10.1137/0208017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Equivalences+among+relational+expressions&btnG=
https://epubs.siam.org/doi/abs/10.1137/0208017
https://doi.org/10.1145/322217.322221
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Equivalences+among+relational+expressions+with+the+union+and+difference+operators&btnG=
https://dl.acm.org/doi/10.1145/322217.322221
https://doi.org/10.1145/63320.66510
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Won+Kim%2C+Kyung-Chang+Kim%2C+and+Alfred+Dale%2C+Indexing+Techniques+for+Object-Oriented+Databases&btnG=
https://dl.acm.org/doi/10.1145/63320.66510
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advanced+query+processing+in+object+bases+using+access+support+relations&btnG=
https://dl.acm.org/doi/10.5555/645916.671989
http://doi.org/10.1109/69.87960
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Indexing+techniques+for+queries+on+nested+objects&btnG=
https://ieeexplore.ieee.org/document/87960
http://doi.org/10.1109/ICDE.1991.131463
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Indexing+Technique+for+Object-Oriented+Databases&btnG=
https://ieeexplore.ieee.org/document/131463
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Query+Processing+in+Object-Oriented+Database+Systems&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=842edd9d93b55f8096bb6b0cc9b69a64fd0b7a6a
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Cost+Model+for+Clustered+Object-oriented+Databases&btnG=
https://dl.acm.org/doi/abs/10.5555/645921.673169
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extending+the+Search+Strategy+in+a+Query+Optimizer&btnG=
https://dl.acm.org/doi/10.5555/645917.672305
http://doi.org/10.1109/69.142014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Object-oriented+query+languages%3A+The+notion+and+the+issues&btnG=
https://ieeexplore.ieee.org/abstract/document/142014
http://doi.org/10.1109/ICDE.1997.581755
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Index+selection+for+OLAP&btnG=
https://ieeexplore.ieee.org/abstract/document/581755
https://doi.org/10.1007/3-540-62222-5_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Selection+of+views+to+materialize+in+a+data+warehouse&btnG=
https://link.springer.com/chapter/10.1007/3-540-62222-5_39
https://doi.org/10.1007/s10619-009-7037-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallel+OLAP+query+processing+in+database+clusters+with+data+replication&btnG=
https://link.springer.com/article/10.1007/s10619-009-7037-8
https://doi.org/10.1145/1007568.1007609
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+vertical+and+horizontal+partitioning+into+automated+physical+database+design&btnG=
https://dl.acm.org/doi/abs/10.1145/1007568.1007609

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

98

[29] Kamel Boukhalfa, “From Physical Design to Data Warehouse Administration and Tuning Tools,” Isae-Ensma Ecole Nationale Supérieure

de Mécanique et d’Aérotechique - Poitiers, 2009. [Google Scholar] [Publisher Link]

[30] Douglas Comer, “The Difficulty of Optimum Index Selection,” ACM Transactions on Database Systems, vol. 3, no. 4, pp. 440-445, 1978.

[CrossRef] [Google Scholar] [Publisher Link]

[31] Nicolas Pasquier et al., “Discovering Frequent Closed Itemsets for Association Rules,” International Conference on Database Theory,

pp. 398-416, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[32] Surajit Chaudhuri, and Vivek Narasayya, “Auto Admin “what-if” Index Analysis Utility,” ACM SIGMOD Record, vol. 27, no. 2, pp. 367-

378, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[33] Rupali Chopade, and Vinod Pachghare, “MongoDB Indexing for Performance Improvement,” ICT Systems and Sustainability, pp. 529-

539, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Himanshu Gupta, Selection and Maintenance of Views in a Data Warehouse, Stanford University, pp. 1-114, 1999. [Google Scholar]

[Publisher Link]

[35] Jeffrey D. Ullman, “Efficient Implementation of Data Cubes Via Materialized Views,” Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, pp. 386-388, 1996. [Google Scholar] [Publisher Link]

[36] Philip A. Bernstein, and Dah-Ming W. Chiu, “Using Semi-Joins to Solve Relational Queries,” Journal of the Association for Computing

Machinery, vol. 28, no. 1, pp. 25-40, 1981. [CrossRef] [Google Scholar] [Publisher Link]

[37] Michel E. Adiba, and Bruce G. Lindsay, “Database Snapshots,” Proceedings of the Sixth International Conference on Very Large Data

Bases, vol. 6, pp. 86-91, 1980. [Google Scholar] [Publisher Link]

[38] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa, “Efficiently Updating Materialized Views,” ACM SIGMOD Record, vol. 15,

no. 2, pp. 61-71, 1986. [CrossRef] [Google Scholar] [Publisher Link]

[39] A. Segev, and J. Park, “Maintaining Materialized views in Distributed Databases,” Proceedings Fifth International Conference on Data

Engineering, pp. 262-270, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[40] Divesh Srivastava et al., “Answering Queries with Aggregation Using Views,” Proceedings of the 22th International Conference on Very

Large Data Bases, pp. 318-329, 1996. [Google Scholar] [Publisher Link]

[41] Pavan Edara, and Mosha Pasumansky, “Big Metadata: When Metadata is Big Data,” Proceedings of the VLDB Endowment, vol. 14, no.

12, pp. 3083-3095, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[42] Sharma Chakravarthy et al., “An Objective Function for Vertically Partitioning Relations in Distributed Databases and its Analysis,”

Distributed and Parallel Databases, vol. 2, pp. 183-207, 1994. [CrossRef] [Google Scholar] [Publisher Link]

[43] Stefano Ceri, Mauro Negri, and G. Pelagatti, “Horizontal Data Partitioning in Database Design,” Proceedings of the 1982 ACM SIGMOD

International Conference on Management of Data, pp. 128-136, 1982. [CrossRef] [Google Scholar] [Publisher Link]

[44] Pankaj Gupta, and Prakashkumar Patel, “Demystifying Databases: Exploring their Use Cases,” SSRG International Journal of Computer

Science and Engineering, vol. 10, no. 6, pp. 43-53, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[45] Thomas Stöhr, Holger Märtens, and Erhard Rahm, “Multi-Dimensional Database Allocation for Parallel Data Warehouses,” Proceedings

of the 26th International Conference on Very Large Data Bases, pp. 273-284, 2000. [Google Scholar] [Publisher Link]

[46] Radu Prodan, and Thomas Fahringer, Grid Computing: Experiment Management, Tool Integration, and Scientific Workflows, Springer,

pp. 1-317, 2007. [Google Scholar] [Publisher Link]

[47] Bonneau Sophie, and Hameurlain Abdelkader, “Placement of SQL Query(s) on a Parallel Distributed Memory Architecture: From Static

to Dynamic,” PhD Thesis, University of Toulouse, pp. 1-213, 1999. [Google Scholar] [Publisher Link]

[48] Jeffrey Dean, and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Communications of the ACM, vol.

51, no. 1, pp. 107-113, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[49] Tom White, Hadoop: The Definitive Guide, O’Reilly, pp. 1-657, 2012. [Google Scholar] [Publisher Link]

[50] Bikas Saha et al., “Apache Tez: A Unifying Framework for Modeling and Building Data Processing Applications,” Proceedings of the

2015 ACM SIGMOD International Conference on Management of Data, pp. 1357-1369, 2015. [CrossRef] [Google Scholar] [Publisher

Link]

[51] Michael Armbrust et al., “Spark SQL: Relational Data Processing in Spark,” Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 1383-1394, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[52] Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan, “SQL-on-Hadoop: Full Circle Back to Shared-Nothing Database

Architectures,” Proceedings of the Very Large Data Bases Endowment, vol. 7, no. 12, pp. 1295-1306, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[53] Olivier Gruber, and Laurent Amsaleg, “Object Grouping in EOS,” Unite De Recherche Inria-Rocquencourtpp, pp. 1-20, 1992. [Google

Scholar] [Publisher Link]

[54] Georges Gardarin, Jean-Robert Gruser, and Zhao-Hui Tang, “Cost-Based Selection of Path Expression Processing Algorithms in Object-

Oriented Databases,” Very Large Data Base, pp. 1-26, 1996. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=De+la+conception+physique+aux+outils+d%27administration+et+de+tuning+des+entrep%C3%B4ts+de+donn%C3%A9es+&btnG=
https://theses.hal.science/tel-00410411/
https://doi.org/10.1145/320289.320296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+difficulty+of+optimum+index+selection&btnG=
https://dl.acm.org/doi/abs/10.1145/320289.320296
https://doi.org/10.1007/3-540-49257-7_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Discovering+frequent+closed+itemsets+for+association+rules&btnG=
https://link.springer.com/chapter/10.1007/3-540-49257-7_25
https://doi.org/10.1145/276305.276337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AutoAdmin+%E2%80%9Cwhat-if%E2%80%9D+index+analysis+utility&btnG=
https://dl.acm.org/doi/abs/10.1145/276305.276337
https://doi.org/10.1007/978-981-15-0936-0_56
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MongoDB+Indexing+for+Performance+Improvement&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-0936-0_56
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Selection+and+maintenance+of+views+in+a+data+warehouse&btnG=
https://www.google.co.in/books/edition/Selection_and_Maintenance_of_Views_in_a/mWlsHQAACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Implementation+of+Data+Cubes+Via+Materialized+Views&btnG=
https://dl.acm.org/doi/abs/10.5555/3001460.3001553
https://doi.org/10.1145/322234.322238
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+semi-joins+to+solve+relational+queries&btnG=
https://dl.acm.org/doi/10.1145/322234.322238
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+snapshots&btnG=
https://dl.acm.org/doi/abs/10.5555/1286887.1286896
https://doi.org/10.1145/16856.16861
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficiently+updating+materialized+views&btnG=
https://dl.acm.org/doi/abs/10.1145/16856.16861
http://doi.org/10.1109/ICDE.1989.47225
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maintaining+materialized+views+in+distributed+databases&btnG=
https://www.computer.org/csdl/proceedings-article/icde/1989/00047225/12OmNxb5huh
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Answering+queries+with+aggregation+using+views&btnG=
https://dl.acm.org/doi/10.5555/645922.673627
https://doi.org/10.14778/3476311.3476385
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+metadata%3A+when+metadata+is+big+data&btnG=
https://dl.acm.org/doi/abs/10.14778/3476311.3476385
https://doi.org/10.1007/BF01267326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+objective+function+for+vertically+partitioning+relations+in+distributed+databases+and+its+analysis&btnG=
https://link.springer.com/article/10.1007/BF01267326
https://doi.org/10.1145/582353.582376
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Horizontal+Data+Partitioning+in+Database+Design&btnG=
https://dl.acm.org/doi/abs/10.1145/582353.582376
https://doi.org/10.14445/23488387/IJCSE-V10I6P106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Demystifying+Databases%3A+Exploring+their+Use+Cases&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=501
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-dimensional+database+allocation+for+parallel+data+warehouses&btnG=
https://dl.acm.org/doi/10.5555/645926.671843
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Grid+computing%3A+experiment+management%2C+tool+integration%2C+and+scientific+workflows&btnG=
https://www.google.co.in/books/edition/Grid_Computing/d9nuZfAaN3wC?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Placement+de+requ%C3%AAte+%28s%29+sql+sur+une+architecture+parall%C3%A8le+%C3%A0+m%C3%A9moire+distribu%C3%A9e%3A+du+statique+au+dynamique&btnG=
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=197757
https://doi.org/10.1145/1327452.1327492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MapReduce%3A+simplified+data+processing+on+large+clusters&btnG=
https://dl.acm.org/doi/abs/10.1145/1327452.1327492
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hadoop%3A+The+definitive+guide&btnG=
https://www.google.co.in/books/edition/Hadoop_The_Definitive_Guide/drbI_aro20oC?hl=en&gbpv=0
https://doi.org/10.1145/2723372.2742790
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Apache+tez%3A+A+unifying+framework+for+modeling+and+building+data+processing+applications&btnG=
https://dl.acm.org/doi/abs/10.1145/2723372.2742790
https://dl.acm.org/doi/abs/10.1145/2723372.2742790
https://doi.org/10.1145/2723372.2742797
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark+sql%3A+Relational+data+processing+in+spark&btnG=
https://dl.acm.org/doi/abs/10.1145/2723372.2742797
https://doi.org/10.14778/2732977.2733002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sql-on-Hadoop%3A+full+circle+back+to+shared-nothing+database+architectures&btnG=
https://dl.acm.org/doi/abs/10.14778/2732977.2733002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Object+grouping+in+EOS&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Object+grouping+in+EOS&btnG=
https://inria.hal.science/inria-00076910/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cost-based+selection+of+path+expression+processing+algorithms+in+object-oriented+databases&btnG=
https://www.vldb.org/conf/1996/P390.PDF

Bery Leouro MBAIOSSOUM et al. / IJETT, 71(11), 90-99, 2023

99

[55] Mitesh Athwani, “A Novel Approach to Version XML Data Warehouse,” SSRG International Journal of Computer Science and

Engineering, vol. 8, no. 9, pp. 5-11, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[56] Abbassi Kamel, and Tahar Ezzedine, “Dynamic Selection of Indexes and Views Materialize with Algorithm Knapsack,” 2019

International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), pp. 214-219, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[57] Mohamed Mehdi Kandi, Shaoyi Yin, and Abdelkader Hameurlain, “SLA-Driven Resource Re-Allocation for SQL-Like Queries in the

Cloud,” Knowledge and Information Systems, vol. 62, pp. 4653-4680, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.14445/23488387/IJCSE-V8I9P102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Approach+to+Version+XML+Data+Warehouse&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=456
https://doi.org/10.1109/IINTEC48298.2019.9112126
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+selection+of+indexes+and+views+materialize+with+algorithm+Knapsack&btnG=
https://ieeexplore.ieee.org/abstract/document/9112126
https://doi.org/10.1007/s10115-020-01501-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SLA-driven+resource+re-allocation+for+SQL-like+queries+in+the+cloud&btnG=
https://link.springer.com/article/10.1007/s10115-020-01501-z

