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Abstract - The objective of this work is to present the database tuning from relational databases to Big Data. It revisits the 

tools of the physical design. It examines their applicability to the main types of databases, in particular legacy (hierarchical 

or network), relational, object-oriented and NoSQL databases and Big Data. A literary review is done on database tuning 

tools to examine how to bring them closer to the DB lifecycle. It is noted that modern physical design techniques consider all 

phases of the DB lifecycle. Database tuning has evolved as new database types emerge. There is a vertical evolution of 

database tuning with the addition of new phases when a new database type appears and a horizontal evolution resulting in the 

enrichment of each phase of the DB lifecycle by considering new tools. This phenomenon with the Bigata data results vertically 

with multiple types of Big Data schemas and horizontally with the advent of the map-reduce technique. The database 

administrator has to consider these evolutions in the database tuning work. 

Keywords - Databases tuning, Queries optimization, Big Data, Databases evolution, Databases lifecycle, NoSQL. 

1. Introduction 
Tuning advanced databases that handle large volumes of 

data, such as data warehouses [1, 2], is an important issue for 

the database community. The concern to quickly have the 

result of a query executed on a Database (DB) remains 

constant for all users. The DB administrator is responsible for 

implementing the necessary data structures to guarantee the 

database performance to users.  

This aspect of the administrator's job is a matter of 

physical design called database tuning. Physical design is 

defined as the phase of the DB lifecycle where the 

implementation of structures to ensure the efficiency of the 

DB is done. The goal of physical design is query optimization 

so that query results are very quickly obtained [1].  

In the paper [3] titled Self-Tuning Database Systems: A 

Decade of Progress (10 Year Best Paper Award at the Very 

Large Databases conference, 2007 edition), Surajit 

Chaudhuri indicates that the first generation of relational 

execution engines was relatively simple, focused on OLTP 

(online transaction processing), making index selection less 

problematic. The importance of physical design has been 

magnified as query optimizers become sophisticated to deal 

with complex decision-support queries [3]. This 

amplification is due to the following characteristics linked to 

advanced databases: 

• The complexity of the database schema, where the tables 

do not have the same characteristics. Take the example 

of a diagram of a relational data warehouse and there are 

two types of tables: the normalized fact table containing 

a large number of instances and smaller dimension 

tables, often de-normalized to minimize the number of 

joins required to evaluate a query, 

• The complexity of queries, which increasingly require 

expensive operations such as join and aggregation; 

• The volume of data: more and more data in DB becomes 

important, especially with DB applications linked to the 

internet and social media; a lot of the data is saved in DB; 

• The requirements of decision-makers on the response 

time of queries and; 

• The diversity of optimization structures. 

 

Another diversity is the use of these optimization 

structures. Some are applied during database creation, like 

horizontal fragmentation and others during database 

exploitation, like materialized views. This complicates the 

process of selecting and using some sensitive structures. 

Among the physical design tools, some apply to several types 

of DB, and others are less so.  

The objective of this work is to revisit the physical 

design tools and examine their applicability to the main types 

of databases, particularly relational, object-oriented and 

NoSQL databases since database communities are interested 

in physical design topics, as testified in the paper of Eslami 

et al. [2] and Ding et al. [4].  

https://www.internationaljournalssrg.org/
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Query optimization in the context of databases has 

occupied an important place across the different generations 

of databases: traditional databases, XML databases, decision 

databases, statistical and scientific databases and semantic 

databases. Indeed, database applications are always looking 

for more efficient query processing time. Query optimization, 

therefore, consists of rewriting the query execution tree to 

choose the most efficient execution plan [3, 4]. Before 

executing a query, parsing is done for syntax checking and 

translation into algebraic operations. This analysis produces 

a tree of operations to be executed. However, it is possible to 

transform this tree to obtain other equivalents, which offer 

different means to get the same result. These trees are called 

execution plans [5-7]. The role of the optimization engine 

(also called optimizer) is to generate the different execution 

plans and choose the best one. Moreover, it is the latter that 

will be executed.  

 

Several works have been carried out to make query 

optimizers more efficient. In the relational database, various 

optimization algorithms have been proposed [4-7]. The 

guiding idea is to move the selections down the query tree as 

much as possible. Palermo [8] was the first to propose this 

optimization strategy. Gotlieb [9] proposed an alternative to 

calculate joins. Yao [10] analyzed alternatives for select-

project-join type queries. The QUEL decomposition 

algorithm was proposed by Yang [11], and the SEQUEL 

optimization by Astrahan et al. [12] and Selinger et al. [13]. 

Optimization of conjunctive queries has been the subject of 

the work of Chandra and Merlin [14]. This work was 

extended by considering multi-valued functional 

dependencies by Aho et al. [15] and by considering the union 

operator by Sagiv and Yannakakib [16]. 

 

In object-oriented DB, optimization techniques have 

been proposed, especially indexing [17-20], algebraic 

rewriting techniques [21, 22, 18], path expressions [15], etc. 

Kim et al. [17] have introduced and evaluated the path index. 

Kemper et al. [18] have proposed a generic optimizer called 

GOM, which uses path indexes in the form of support 

relations and a rewrite rule-based optimizer. Lanzelotte et al. 

[23] proposed an extensible optimizer allowing the complete 

taking into account new data types, with operators, rules, etc. 

The physical design has evolved and gradually addressed the 

entire DB lifecycle. Indeed, the query optimization process 

gradually took into account parameters from the phases of the 

database design lifecycle (conceptual design, logical design, 

physical design and deployment (Fig.1)) and the query 

language used by the target Database Manager System 

(DBMS). There are two main generations of query 

optimizers: optimizations directed by certain lifecycle phases 

(ODCP) and optimizations directed by all phases (ODAP). 

• ODCP optimizers are mainly based on studying the 

algebraic properties of the query language defined on the 

logical model of the database [6]. One example of these 

optimizers is the Rule-based Approach (RBA), which 

uses an intuitive set of rules to optimize queries. 

 

Indeed, some properties allow modifying the order of the 

algebraic operators in order to obtain performance gains. We 

have, for example: 

• The grouping of selections, which allows several 

restrictions to be carried out in a single browse of the 

table instead of performing one per restriction. The 

selection (Restriction (x = a), y = b) <=> Restriction (x 

= a AND y = b); 

• The descent of selections and projections in an algebraic 

tree, making it possible to reduce the size of relations 

and intermediate results. 

• The commutativity of restrictions and joins, which 

allows restrictions to be applied before joins; 

• The associativity of the joins, making it possible to 

change the order of the joins to use more efficient 

algorithms in some cases, etc. 

 

This type of optimization is easy to implement, which is 

why it has been considered in all commercial and academic 

DBMSs. The main limitation of this optimization is that it 

does not consider the physical parameters of the database and 

the deployment platform. 

• ODAP optimizers appeared to overcome the 

shortcomings of ODCP optimizers. They take into 

account conceptual, logical, physical and deployment 

parameters. As an example of these optimizers, we have 

the approach based on mathematical cost models, called 

the Cost-Based Approach (CBA) [10, 13]. This approach 

consists of first calculating the cost of the different 

possible strategies corresponding to the execution plans 

of a query according to the characteristics of the files on 

which the relationships are established and then 

choosing the plan with the minimum cost. One of the 

actions of ODAP optimizers is to order joins (and set 

operations) to process the fewest tuples possible, 

mobilize the existing indexes as much as possible, and 

use the most efficient algorithms. 

 

For this purpose, the optimization engine needs 

parameters from all phases of the life cycle (Figure 1): 

• The conceptual layer: the length of each attribute of 

each table; 

• The logical layer: the size (in terms of instances) of each 

table; 

• The physical layer: the storage model used to store 

tables (row store, column store) and data access 

methods; 

• Deployment layer: disk characteristics such as the size 

of a disk page. 
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Fig. 1 DB lifecycle phases and optimization process 

 

Thus, ODAP query optimization is sensitive to all phases 

of the database design lifecycle. Suppose the query language, 

database type, storage model, or deployment platform 

changes; then, the optimization process should be revisited. 

All optimizations are often addressed in the physical phase of 

the lifecycle. 

Non-object-oriented databases only take one parameter 

from the conceptual phase: the data dictionary. Remember 

that the conceptual model intelligibly expresses application 

needs and domain knowledge for a subsequent user. 

Unfortunately, the logic model is exploited, resulting from 

normalization (in the case of relational databases) and 

adaptation to the support system, which is generally very 

different from the conceptual model. In object-oriented 

databases, optimizers consider the object model's 

characteristics in the optimization: path expressions, object 

groupings, pointer scans, path indexes, and user methods 

[24]. 

In the rest of this paper, methods and materials are 

presented at point 2. Point 3 talks about the results, and point 

4 about the discussion focuses on the physical design tools 

most used by DBMS and their applicability in the different 

types of DB. Finally, the paper ends with a conclusion. 

2. Materials and Methods 
This article has two main objectives; the first objective 

is to provide a narrative review and analysis of the research 

studies focusing on physical design to optimize queries. The 

second aim is to report some problems when considering a 

physical design tool. The literature review is presented in a 

historical chronological of physical design tools. So, it starts 

from the indexing technique, the first optimization technique, 

to the more recent techniques. Redundant optimization 

structures and non-redundant optimization structures are 

considered: 

• Redundant optimization structures are structures that 

require memory space for storage and have maintenance 

costs. Examples of such structures include indexes [25], 

materialized views [26], replication and vertical 

fragmentation [27]. 

• Non-redundant optimization structures are those that do 

not require storage space. These are, for example, 

horizontal fragmentation [28] and parallel processing 

without replication [27]. 

 

Main redundant optimization structures, namely indexes, 

materialized views and parallel processing, main non-

redundant structures, horizontal fragmentation and 

clustering, are presented hereby. 

3. Results and Discussion 
Physical design tools are also called optimization 

structures. Some of these structures intervene very early in 

the lifecycle of DB; this is the case of fragmentation, parallel 

processing and clustering, which are considered from the 

conceptual phase before being created during the deployment 

phase. Others occur near the end of their lifecycle; this is the 

case of indexes and materialized views created during the 

exploitation phase. 

3.1. Indexes 

Indexing techniques are a very important option for 

database tuning for traditional and advanced databases. They 

are the oldest physical design techniques. Indexes are used to 

improve data access time [25]. The definition of indexes is 

often done while the database is running. A significant 

number of indexes have been proposed and supported by 

commercial and academic DBMSs. In the context of 

traditional databases, B-tree indexes, hash indexes, join 

indexes, bitmap indexes, etc., have been proposed [25]. Some 

indexing techniques have arisen in the context of data 

warehouses due to the nature of Online Analytical Processing 

(OLAP) queries. These are, for example, binary indexes, 

binary join indexes, star join indexes, etc. [29]. Indexes have 

the advantage of speeding up information searches. Indeed, 

an index represents the table sorted on a given field. But 
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indexes also have drawbacks: each time an index is created, 

the DBMS workload increases. Thus, data entry and 

maintenance operations are slowed down by the presence of 

indexes because they must be updated immediately. An index 

takes up space on the disk. Selecting a set of indexes to 

optimize a given query load is a difficult problem [30].  

To answer this problem, the first works proposed 

solutions following the ODCP approach, where certain rules, 

such as using candidate attributes for indexing and the 

frequency of queries, have been proposed [31]. These rules 

are not sufficient to offer a successful selection. To overcome 

this type of selection, other works have formalized the Index 

Selection Problem (ISP) as an optimization problem 

following the ODAP approach. Since given: 

• A load of queries Q, where each query has an access 

frequency, 

• A database or datawarehouse diagram deployed on a 

given platform, 

• An index storage space S. 

 

The problem of index selection is to find a better 

configuration of index, CI, allowing to optimize Q, that is to 

say, to reduce the total cost of running queries while 

respecting the storage constraint. This problem is NP-

complete [30]. Several approaches to solving this problem 

have been developed. They start by listing the entire 

candidate attributes for indexing. These attributes are chosen 

from those present in the WHERE, GROUP BY and ORDER 

BY clauses of the queries. Algorithms for selecting attributes 

that can be indexed have been proposed; they are guided by 

a mathematical cost model quantifying the quality of the 

solution obtained. These include genetic algorithms, 

simulated annealing, or full linear programming. One of these 

approaches is used in the What-if module of SQL Server 

DBMS [32]. Indexes are optimization structures that have 

gone through different types of databases. They have been 

applied to hierarchical databases and CODASYL networks to 

simplify the search for records. They are used and diversified 

in relational databases and data warehouses to facilitate 

access to tuples [25, 29-30]. In OODBs, in addition to 

classical indexes, path indexes have been proposed [19-18]. 

In NoSQL databases, indexes are created to guarantee a 

certain performance [33]. 

 

3.2. Materialized Views 

A Materialized View (MV) is a named query, the result 

of which is stored in the database permanently. Materialized 

views improve query execution by precomputing the most 

expensive operations, such as joining and storing their results 

in the database. Thus, some queries only require access to 

materialized views and, therefore, are executed faster [26]. 

Materialized views are used to meet several objectives, such 

as improving the performance of queries or providing 

duplicate data (cache in proxy servers, for example). The use 

of MVs has three major problems, namely (i) the problem of 

their selection, (ii) the problem of their maintenance and (iii) 

the rewriting of queries based on views. 

3.2.1. The Problem of their Selection 

As all the views cannot be materialized for storage 

reasons, the selection of materialized views consists of 

choosing a subset of candidate views, making it possible to 

reduce the cost of running a load of queries. The selection of 

views can be made under certain constraints, generally 

storage space and/or a maintenance time threshold not to be 

exceeded. The problem of selecting materialized views can, 

therefore, be formalized [34-35] as given: 

• A load of queries Q where each query has an access 

frequency; 

• A DB or datawarehouse schema deployed on a given 

platform; 

• A set of constraints C (storage space, maintenance time, 

etc.); 

 

The Materialized View Selection Problem (MVSP) 

consists of finding a set of views, which reduces the total cost 

of executing the queries of Q and respects the constraints of 

C. 

 

Like the index selection problem, the MVSP is NP-

complete [26]. MVSP in data warehouses has been 

extensively studied for both the MOLAP (Multidimensional 

OLAP) and the ROLAP (Relational OLAP) approach. In the 

MOLAP approach, the data cube is considered the main 

structure for selecting materialized views. Each cell in the 

cube is considered a potential view. In the ROLAP approach, 

each query is represented by an algebraic tree [36]. Each node 

(not leaf) is considered a potential view. 

 

3.2.2. The Problem of MV Maintenance 

The database tables change and evolve at the rate of 

updates. However, if these changes are not carried over to the 

materialized views, their contents will become obsolete, and 

their objects will no longer represent reality. The 

maintenance of materialized views consists of transferring 

the modifications on the database tables to the level of the 

materialized views. This can be done using three approaches: 

periodic, immediate and deferred. In the periodic approach 

[37], views are updated continuously at specific times. In the 

immediate approach [38], views are updated immediately at 

the end of each transaction. In the latter approach, changes 

are propagated in a deferred fashion [39]. 

 

The maintenance of the views can be performed by 

recalculating these views from the database tables. However, 

this approach is very expensive. Good maintenance of views 

is performed when changes (insertions, deletions, 

modifications) made in the source tables can be propagated 

to views without recalculating their content completely. To 

solve this problem, three types of maintenance have been 

proposed: incremental, autonomous and in batch [38].  
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Fig. 2 Query rewriting process in the optimization process 

 

Incremental maintenance consists of identifying the 

new set of tuples to be added to the view in the case of an 

insertion or the subset of tuples to be removed from the view 

in the case of a deletion without fully re-evaluating the view. 

Autonomous maintenance ensures that the maintenance of a 

view V can be calculated only from V and the changes that 

have occurred in the database tables on which it is defined. 

Batch maintenance is performed using updated transactions. 

 

3.2.3. Rewriting Queries using Materialized Views 

After selecting and creating views, all queries must be 

rewritten based on views. But, finding the best rewrite for a 

query is a difficult task [40]. The process of rewriting queries 

has been used as an optimization technique to reduce the cost 

of evaluating a query [40]. Figure 2 shows the rewrite process 

in the optimization process. The system evaluates the 

different execution plans (with MVs and without MVs) and 

selects the best optimal. 

3.3. Horizontal Fragmentation 

Horizontal fragmentation consists of partitioning a table 

according to its tuples to reduce the number of accesses not 

necessary to process queries. Two types of horizontal 

fragmentation exist primary fragmentation [42] and 

derivative fragmentation [29]. The primary horizontal 

fragmentation of a table is based on attributes defined on that 

table. Derived horizontal fragmentation is the propagation of 

fragmentation from one table to another table. 

Horizontal fragmentation was originally proposed as a 

logical design technique for distributed databases in the 

1980s [43]. Unlike other optimization structures like indexes 

and materialized views, where the selection of optimization 

schema is usually made when the database is operational (or 

created), the selection of a fragmentation schema of a 

database (or a datawarehouse) must be decided before its 

creation. This situation makes its selection more sensitive 

than the other structures. In addition, it can also be combined 

with other optimization structures such as indexes [44], 

materialized views [28] and parallel processing [45]. 

A significant amount of work on horizontal 

fragmentation has been developed in the context of 

traditional and advanced databases [43-45]. These works 

followed both optimization approaches (ODCP and ODAP). 

Early works used criteria such as affinities between selection 

predicates in a query payload to determine the fragmentation 

schema. Horizontal fragmentation is efficient if defined on 

attributes in the selection predicates. The affinity between 

two predicates is the sum of the access frequencies of queries 

using both predicates simultaneously. This approach is, 

therefore, less complex than that based on predicates. 

However, it only considers the frequency of access as a 

grouping criterion. However, to fragment a database, other 

parameters must be considered, such as predicate selectivity 

factors, the size of the table, the size of the disk page, the 

number of pages occupied by this table, etc. Approaches 

based on predicates and affinities do not provide any metrics 

to assess the quality of the resulting schema. To overcome 

these shortcomings, algorithms following the ODAP 

approach have been proposed in the context of object-

oriented databases and data warehouses [43-45]. These 

algorithms include a generator of fragmentation patterns, a 

cost model and a module for selecting the optimal pattern. 

Fragmentations are used in data warehouses [43], relational 

databases [28] and Object-oriented DB [22]. 

 

3.4. Parallel Processing 

Massively parallel processing is the use of a large 

number of processors or computers to perform a set of 

coordinated calculations in parallel (i.e. simultaneously). In 

the context of databases, mainly in Big Data, parallel 

processing is considered a technique for query optimization 

[48, 49]. Different approaches have been used to implement 

massively parallel processing, including: 

• Grid Computing: in this approach, the computing power 

of a large number of distributed computers is used 

opportunistically whenever a computer is available [46] 

for processing a query. 

• Computer Cluster: this approach uses a large number of 

processors located close to each other to process a query. 
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In such a centralized system, the speed and flexibility of 

the interconnection of the processors is very important. 

In the process of optimizing queries in parallel 

processing, the optimal sequential execution plan generated 

at the end of the optimization phase is transformed into a 

parallel execution plan following the parallelization step. For 

the parallel execution of queries, there are two levels of 

parallelism: inter-query parallelism and intra-query 

parallelism. 

• Inter-query parallelism consists of using several 

processors in the architecture to execute several queries 

at the same time; 

• Intra-query parallelism consists of using several 

processors in the architecture to execute a given query. 

There are two forms of intra-query parallelism: inter-

operation parallelism and intra-operation parallelism. 

Inter-operation parallelism is when we run multiple 

operations of the same query simultaneously. These 

operations are either independent or consecutive. Intra-

operator parallelism breaks down a given operation into 

a set of tasks, each of which is placed on a single 

processor and performs the algorithm operation on the 

part of the data [47]. Some operators, like selection and 

projection, can be easily broken down into parallel tasks. 

Others, like the join or the decomposition, are more 

complex. 

To facilitate the parallel processing of large data sets, 

MapReduce, a powerful algorithmic model using two 

functions (map and reduce), has been proposed [48, 49]. The 

queries are specified as Map and Reduce functions [48]. 

Tools have been developed to represent the parallel execution 

plan by a set of dependent MapReduce jobs [49]. A 

MapReduce job contains a Map phase and a Reduce phase. 

Each phase is instantiated by a set of parallel Map or Reduce 

type tasks. However, this model suffers from the problem of 

systematic reading and writing on a distributed file system 

between two jobs; this slows down query execution time.  

Another model has been proposed and integrated into 

some tools like Hive [50] and SparkSQL [51]. Reading from 

the distributed file system is done only at the start of query 

execution. The writing is done only at the end of the 

execution of the query.  

Relational operators are grouped into stages [52]. A set 

of parallel tasks instantiates each stage. A given task executes 

all the stadium operators on some input data. The 

communication between the tasks of two stages which follow 

one another is done either by diffusion (i.e. a tuple generated 

by a task of the producer stage is sent to all the tasks of the 

consumer stage) or by distribution (i.e. a tuple generated by a 

task of the producer stage is sent to a single task of the 

consumer stage). 

3.5. Object Grouping or Clustering 

Object grouping is a technique used to optimize object-

oriented databases. It consists of storing on the same page 

objects linked by an association in order to speed up access 

to these objects by navigation or join [53-54]. Grouping 

techniques allow objects from different collections to be 

placed in the same group. Grouping allows an autonomous 

life of linked objects, which can exist without associated 

objects. In the case of objects without a master or objects 

shared by several masters, the choice of the storage page is 

not obvious. It is possible to define groups by selection or 

association predicates to capture a broad class of grouping 

strategies. A selection predicate makes it possible, for 

example, to define a group according to the selection 

predicate. An association predicate makes it possible, for 

example, to define a group for each type of object. Gruber et 

al. [53] proposed a data structure called a grouping graph to 

visualize the specification information of groups. It is a graph 

whose nodes represent the extensions of classes and the 

edges, the predicates of links used for grouping, each edge 

having a priority varying from 0 to 10. Gardarin et al. [54] 

proposed grouping techniques with priority and the model 

cost for object-oriented DB. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3 Classic database lifecycle phases 
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Fig. 4 Databases and data warehouse lifecycle phases 

 

4. Discussion 
Indexes turn out to be a primary physical design tool and 

have the privilege of being considered in all types of 

databases. They are used in the first databases (hierarchical 

and network databases), relational, object-oriented, XML 

databases, warehouses and new types of databases (NoSQL 

databases and Big Data). Materialized views are very useful 

in situations where they deal with expensive queries and need 

to be partially or fully calculated in advance [55]. They 

appeared with data warehouses, but their design is used 

beyond DBs, for example, in proxy servers and Web caching. 

Indexes and Materialized views can be used together to 

optimize data warehouses [56]. Fragmentation is a solution 

that consists of bringing closer to user data that he tends to 

query frequently. It is more interesting in a distributed 

environment. As for parallel processing, their use has 

increased with new types of databases, in particular, NoSQL 

databases and MapReduce type programming. They have a 

bright future. 

Database's physical design has evolved as new database 

types emerge. We observe a vertical evolution of the 

database's physical design, resulting in the addition of new 

phases when a new database type appears, and a horizontal 

evolution of the physical design, resulting in the enrichment 

of each phase of the DB lifecycle by considering new tools. 

Figure 3 gives the phases of classical databases (BDR, 

BDOO and BD XML). The ETL phase was born with the 

advent of data warehouses, and new logical models (star 

schema and snowflake schema) were born. New physical 

design tools (materialized views) were proposed.  

 

Fig. 4 gives an illustration. The same thing can be 

observed in Big Data, vertically with the apparition of 

multiple NoSQL database types and horizontally with the 

advent of the map-reduce technique. Resource reallocation 

based on Service Level Agreement (SLA) appears as a 

physical design with the database in the cloud [57]. 

 

Data administrator has to deal with these different tools 

to face the query optimization problem according to the used 

database type. 

 

5. Conclusion  
 Database tuning is a very important phase to guarantee 

DB performance because it allows the implementation of 

tools to obtain query results quickly. It has received a lot of 

attention from the DB community. In this paper, the 

optimization process, which is the focal point of database 

tuning, is looked at. It is brought closer to the DB lifecycle 

and found that modern physical design techniques consider 

all stages of the DB lifecycle. Finally, an overview of 

physical design tools is presented, and their selection 

problems in a formal way are exposed. Physical design is not 

a stagnant process, i.e. it does not stop once the structures are 

chosen and created. It requires regular monitoring and 

reassessment to adapt structures to changes in data and 

platform parameters. The physical design has been enriched 

during the vertical evolution of the database with the 

apparition of new phases and during the horizontal evolution 

of DB with the development of new tools and algorithms. 

Data administrators must consider these tools according to 

the database type in the tuning work. 
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