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Abstract - This article investigates the mechanical and tribological properties of 3D-printed Polyetheretherketone (PEEK) 

composites containing Molybdenum disulphide MoS2 and graphite fillers. 7 filament strands were created with varying weight 

percentages to print 35 dog bones and 7-disc samples for further analysis. The results showed a 61% increase in tensile strength 

of MoS2-filled PEEK (MoS2/PEEK) composite compared to plain PEEK. The filled PEEK had a reduced frictional response 

time and an average coefficient of friction of about 36% and 69 %, respectively. MoS2/PEEK showed superior wear resistance 

of about 50% compared to graphite-impregnated PEEK (Gr./PEEK). 
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1. Introduction  
In the current time of Industry 4.0, there has been a lack 

of significant progress in innovative manufacturing 

techniques, thus paving the way for revolutionary 

opportunities in product design and the achievement of 

unparalleled efficiencies in the production process. Although 

traditional manufacturing methodologies have often been 

celebrated for their ability to achieve impressive production 

rates, meticulous control over material characteristics, and 

cost-effectiveness, there has been a simultaneous increase in 

the importance of Additive Manufacturing (AM), thus 

supplementing and enhancing the existing manufacturing 

landscape. [1-5] AM is a revolutionary technology 

transforming traditional product design and manufacturing 

methods. Through the progressive stacking of material, three-

dimensional items are constructed from a computer-aided 

design model, giving professionals more geometrical freedom 

and design flexibility. This process provides greater design 

freedom and complexity, reduction of waste material, cost 

efficiency and faster production time compared to traditional 

manufacturing methods. [1, 2, 6–11] Major AM technology 

includes Material Extrusion (MEX.), Vat polymerisation, 

Laser Sinster (SLS or EBM), and Binder jetting. [5, 9, 10, 12-

20] 

The Stratasys corporation patented a MEX technique 

called Fused Deposition Modelling (FDM) or Fused filament 

fabrication (FFF), which creates 3D objects by depositing 

layers of melted thermoplastic material. The process's key 

parameters include layer height, nozzle diameter, printing 

speed, and extrusion temperature. [21–24] The MEX 

technique offers several advantages. It is a cost-effective 3D 

printing technique, making it accessible to many users. It 

supports various thermoplastic materials, allowing users to 

choose based on specific requirements. The process is user-

friendly and does not require extensive training. Additionally, 

material extrusion enables the creation of support structures 

for printing complex geometries. [1, 12, 18, 25-27].  

Visible layer lines called lamination may be present, 

requiring additional post-processing for smoother finishes. 

The layer-by-layer construction can result in lower strength 

compared to other methods. The MEX method is slower and 

has size restrictions, limiting large-scale production. 

Removing support structures can be challenging for intricate 

designs, potentially requiring manual effort and tools. [5, 28, 

29] MEX. technique has gained popularity among various 

additive manufacturing techniques due to its cost-

effectiveness and ease of use [30]. FFF, which uses a 

thermoplastic filament as a raw material, is one of the most 

appreciated additive manufacturing techniques. [26, 31, 32] 

The inherent advantages of the FFF process, including 

affordability, speed, and ease of use, make it an attractive 

method for manufacturing high-performance components 

using plastic composite. [15-17] 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In the polymer domain in AM trends, producing 

functional components requires using a semi-crystalline 

polymer to modify material properties across a wide range, 

varying from the best mechanical and thermal to the lowest. 

This prerequisite renders commonly employed materials for 

AM, such as ABS and nylon, unsuitable due to their 

classification as lower-temperature plastics. PLA, another 

frequently employed material in AM, is a semi-crystalline 

polymer; however, its level of crystallinity and thermal 

resistivity is relatively low, and the range of temperature 

within which its crystalline characteristics can be altered is 

restricted, thereby rendering it unsuitable for the creation of a 

demonstrable AM functionally graded material (FGM). [1, 

33–35] 

 

Furthermore, studies have indicated that components 

manufactured through the FFF process using filled polymers 

exhibit enhanced mechanical performance and have the 

potential to acquire novel and improved attributes that are not 

observed in unfilled polymers or conventional production 

methods. [23, 36–39]. It is generally known that compositing 

polymers with fibre can affect properties like resistivity and 

other electrical properties; therefore, modification should be 

considered for a target set of material properties while 

sacrificing some. 

 

PEEK composite is a favoured choice in contemporary 

MEX manufacturing assignments due to its exceptional 

mechanical and chemical attributes. The crystal arrangement 

of semi-crystalline polymers like PEEK is easily altered by the 

reheating that occurs during the MEX techniques, which 

makes the filling procedure involving the impregnation of the 

polymer easier than other plastics. [23, 40-42] 

 

However, it is noted that MEX production in an open 

structure can be complex due to the high heat temperature 

requirement of PEEK composites, as most MEX printers' 

nozzles are made of low-temperature plastic like PLA. [1, 2, 

43, 44] Incorporating a solid lubricant into PEEK, which 

possesses a high melt viscosity and is prone to extrusion and 

printing issues, can effectively mitigate the viscosity-related 

concerns at the nozzle. However, this addition also introduces 

alterations to the properties of the resulting printed parts. 

These incorporations will alter the tensile properties and 

tribological characteristics. [37, 45-48] 

 

In some recent studies on MEX-PEEK, there has been a 

lack of investigations into the tribological characteristics of 

MEX's PEEK composites, with particular oversight of the 

influence of filler materials, such as solid lubricants, on the 

mechanical and tribological properties of these composites. 

Therefore, this research aims to examine and explain how 

different solid lubricants and their quantities affect the 

tribological behaviour of MEX-produced PEEK composites, 

as well as comprehensively analyse the impact of solid 

lubricants on the mechanical properties of these composites. 

2. Materials and Methods  
2.1. Sample Preparation  

Inorganic graphite (Gr.), Molybdenum disulfide (MoS2), 

and PEEK 45) nanoparticles, with mean diameters of 45 µm, 

100 µm, and 150 µm, respectively, were provided by Kayla 

Africa, a supplier and distributor at the Vaal University of 

Technology. The matrix (PEEK) 450, which was delivered by 

Kayla Africa, a supplier and distributor, comes with a data 

sheet that includes the following information: an average 

molecular weight (Mw) of 44,000 g⁄mol, a glass temperature 

(Tg) of 143 oC, and a melting temperature (Tm) of 343 oC. A 

particle size distribution analysis was conducted for each 

powder to confirm that the supplied powder was below 300 

microns to avoid agglomeration.  

 

Each of the solid lubricants, specifically Molybdenum 

disulphide (MoS2) and graphite (Gr), with varying volumes of 

3 wt%, 5 wt%, and 10 wt%, were incorporated into the PEEK 

material in distinct manners utilising a mechanical mixer as 

illustrated in Figure 1. Figure 1 further shows the process chart 

used in filament production for this experiment. The initial 

step involved the mechanical mixing process, which 

facilitated the uniform dispersion of the lubricants throughout 

the PEEK matrix using the mechanical blender. Subsequently, 

this homogenised mixture was extruded into filaments, 

ensuring the consistent distribution of the lubricant. The 

powder created due to the mixing and blending process 

was further transformed into a filament through a 

Filastruder filament-making machine. Modifications were 

conducted on the Filastruder to enhance its performance by 

replacing the default PTFE-insulated Type K thermocouple 

with an E3D glass fibre-insulated Type K Cartridge 

Thermocouple, enabling the machine to operate at a 

temperature higher than its designated limit. The filament 

extrusion setup involving the Filastruder and Filawinder is 

shown in Figure 3(b). 

Additionally, the power supply input was increased from 

12 volts to 20 volts, thereby enhancing the heating capacity of 

the filament maker extruder. To minimise the impact of die 

swelling, the Filastruder underwent PID-tuning, which 

involved adjusting its parameters to effectively manage both 

the temperature and the torque, which refers to the speed at 

which the screw rotates during extrusion. A top table setup 

called Filawinder was employed to facilitate the filament 

reeling onto a spool. The Filawinder played a crucial role in 

mitigating die swelling by utilising an optical laser to monitor 

and rectify any variations in filament diameter. This was 

reached by modifying the stressing or compressing of the fibre 

in response to the speed of the engines. As for the Filastruder 

itself, it was configured to operate at the highest attainable 

temperature, reaching approximately 4200C. This was 

executed using a single rotating screw and a nozzle diameter 

of 1.75 mm. 
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Fig. 1 Process chart for filament production 

A control filament composed entirely of pure PEEK was 

also subjected to the extrusion process. Subsequently, seven 

groups of filament strands were meticulously printed using a 

retrofitted MEX technology printer known as the Fabbster. To 

establish the printing parameters, the open-sourced 3D Printer 

Slic3r software was employed, and these parameters are 

meticulously documented in Table 1. It is worth mentioning 

that during the printing process, the heated printing bed 

maintained a constant temperature of 120 oC, while the 

ambient room temperature remained at a consistent 23 oC. To 

acquire a substantial sample size, five tensile dog bones were 

printed from each of the seven groups of filaments, ultimately 

resulting in the production of 35 specimens per Type 1 of the 

ASTM D638 standard for plastic tensile testing.[49] It is 

essential to mention that the build orientation and printing 

direction were strictly adhered to during this process. The 

resulting tensile dog bones obtained from this carefully 

orchestrated procedure can be observed in Figure 2. 

Table 1. presents the printing parameters 

Printing parameters Value 

Layer thickness Extrusion 300 µm 

Raster angle 0o 

Extrusion temperature 345 oC± 20 oC 

Printing Speed 20 mm/s 

External Perimeter 3 

Infill density 80% 

 

 
Fig. 2 Dog bone samples (a) graphite (b) MoS2 

 

Peek Powder 

Solid Lubricants 

(Molybdenum 

Disulphide or 

Graphite) Powder 

(Peek/mos2 or 

peek/gr.) Powder in 

3wt.%, 5wt.% and 

10 wt.% 

Mechanical 

Blending and 

Mixing Process 

Filament extrusion process 
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Fig. 3 (a) The altered Fabbster 3D printer during operation and (b) the filament extrusion and spooling setup 

 

2.2. Printer Modification 

The Fabbster 3D printer was modified to enable pure and 

filled PEEK printing. This was achieved by increasing the hot 

end temperature from 280°C to 470°C and setting the bed 

temperature to 150°C. The modifications included replacing 

the stock hot end with a micro-Swiss direct drive mounted on 

aluminium. 

 

The printer's software was modified using VS-code with 

PlatformIO, and the firmware was edited from the Marlin 2 

repository. At the same time, the control board was upgraded 

to the MKS Rumba 32-bit controller, allowing for heat bed 

configuration, high-temperature hot end, and sensor-less 

homing, eliminating the need for optical or mechanical end-

stops, with the micro-stepping of the motors set to 1/32 for 

each axis, the motor current limited to 750 mA to prevent 

overheating of the stepper motors, and the printer's axes 

equipped with dual stepper motors, and sensorless homing 

activated using the TMC2226 driver. 

 

The extrusion system of the printer was modified by 

replacing the Bowden tube style with a direct drive system 

using custom brackets, and a custom bracket was used to hang 

the micro-Swiss drive, resulting in a successful retrofitting of 

the printer for high-temperature PEEK printing with enhanced 

control and safety features.  

Figure 3(a) depicts the altered Fabbster 3D printer while 

it is engaged in the intricate and complex process of printing, 

wherein layers upon layers of material are meticulously 

deposited to form the tensile dogbone. 

2.3. Characterisation 

The Mechanical tests were carried out using UTM by 

Inston 3369 with an extensometer, loaded with a cell of 30 kN 

as per ASTM D 638-14 test standards for plastics.[49] All the 

tensile properties were carried out at room temperature of 23 
oC and 101.33 kPa and controlled displacement of a constant 

crosshead speed of 5 mm/min as per ASTM standard on 

plastics. The tensile strength, Elongation and young modulus 

were calculated using Instron software and exported as a CSV 

file. 

Tribological properties were tested on the manufactured 

Samples per ASTM G99 in the Standard Test Method for 

Wear Testing with a Pin-on-Disk Apparatus.[50] The 

tribological test was carried out under a dry condition for an 

average of 1000 seconds at a speed of 3.5 ms-1 under a load of 

10 N with a steel pin of diameter 6 mm as per ASTM G99 on 

the tribological test. The Coefficient of Friction was 

automatically plotted based on the friction response by the 

surface, and the wear rate was investigated using a mass scale 

and a tribometer per ASTM G99. 

Table 2. Experimental average values of tensile strength, Elongation at break, and Young's modulus of the 3D printed plain PEEK and lubricant-

filled PEEK composites 

Composite Averaged Tensile Strength (MPa) Averaged Young's Modulus (GPa) Averaged Elongation at Break (%) 

Plain PEEK 96.9 ± 1.02 3.90 ± 0.217 26.59 ± 3.70 

MoS2/PEEK 3wt.% 94.5 ± 0.90 3.95 ± 0.647 4.77 ± 0.45 

MoS2/PEEK 5wt.% 98.6± 0.59 3.99 ± 0.527 4.80 ± 0.36 

MoS2/PEEK 10wt.% 101.40 ± 1.64 4.48 ± 0.012 4.68 ± 1.32 

Gr./PEEK 3wt.% 70.6 ± 0.47 3.99 ± 0.088 5.20 ± 0.31 

Gr./PEEK 5wt.% 61.6 ± 4.53 4.16 ± 0.738 4.05 ± 0.20 

Gr./PEEK 10wt.% 36.6 ± 0.65 4.49 ± 0.866 2.31 ± 0.9 
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3. Results and Discussion  
3.1. Mechanical Properties  

Table 1 presents the averaged values of Tensile properties 

of pure PEEK and loaded PEEK resulting from the 

experiment. The addition of Graphite to PEEK (Gr./PEEK) 

resulted in a non-linear decrease in tensile strength within the 

weight fraction range of 3% to 10%. Similarly, the Elongation 

at break exhibited a similar downward trend as the graphite 

fraction, depicted in Figure 4 and Figure 5.  

 

In contrast, Young's modulus demonstrated a non-linear 

increase. The significant drop in Elongation at break can be 

attributed to the brittleness and agglomeration of graphite 

within the PEEK matrix, which is consistent with the finding 

of Chen et al. (2018). [51]   

 

The declining tensile strength observed upon the addition 

of graphite can be attributed to the agglomeration of graphite 

particles within the PEEK matrix, possibly due to the 

substantial disparity in particle size and density between the 

two materials. 

 

Moreover, the decrease in tensile strength may be 

influenced by the reduced adhesion forces between PEEK 

molecules and the further oxidation of graphite during 

filament production and printing. A sharp drop elongation was 

observed between 0 wt.% and 3 wt.% for both PEEK 

composites, followed by a gradual reduction.  

 

The increasing presence of solid lubricants was associated 

with increased brittleness and weakened interfacial bonds 

within the PEEK matrix. Furthermore, the reinforcement of 

solids in PEEK may lead to reduced Elongation or crack 

initiation due to agglomeration. 

 

 
Fig. 4 Tensile Strength of PEEK, Gr/PEEK and MoS2/PEEK 

 
Fig 5 Elongation at break of PEEK, Gr/PEEK and MoS2/PEEK 

 

On the other hand, the inclusion of MoS2 in PEEK 

(MoS2/PEEK) exhibited a non-linear increase in tensile 

strength and Young's modulus, reaching a maximum increase 

of 61%. This increase can be attributed to the uniform 

distribution of MoS2 within the PEEK matrix. Similar 

findings were reported in a study by Yan et al. on 

MoS2/PEEK. [52] 

 

MoS2/PEEK demonstrated improved mechanical 

properties compared to PEEK/Gr. The highest recorded 

tensile strength was 101 MPa for a 10 wt.% MoS2 infill. 

Incorporating the two solid lubricants in 3D-printed PEEK has 

distinct effects on tensile strength. However, it should be 

noted that the experimental tensile strength exhibited a slight 

reduction compared to the known theoretical values, which is 

consistent with the trend observed in other studies on 3D-

printed polymers. This reduction in tensile strength was 

attributed to the inherent characteristics of 3D-printed objects, 

which typically exhibit 70% to 80% of the tensile strength of 

traditionally fabricated counterparts. [53, 54] 

 

Young's modulus, representing the ratio of stress to strain 

with an elastic limit, also exhibited distinct behaviour in 

response to the two solid lubricants. Figure 6 illustrates the 

reaction of PEEK to the two solids, with the control 3D-

printed PEEK having a modulus of elasticity of 3.89 GPa. 

Gr/PEEK showed a nearly linear increase in Young's modulus 

as the additive fraction increased. In contrast, Young's 

modulus for MoS2/PEEK reached a plateau between 3 wt.% 

and 5 wt.%. The addition of solid lubricants increased the 

matrix of PEEK, resulting in a consistent increase in the elastic 

modulus of the printed PEEK composite. The highest recorded 

modulus values were 4.49 GPa for Gr./PEEK and 4.48 GPa 

for MoS2/PEEK at a 10 wt.% filler content, surpassing the 

control sample. This increase can be attributed to the stiffness 

of the solids, which enhances as solids increase. 
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Fig. 6 Young's Modulus of PEEK, Gr/PEEK and MoS2/PEEK 

 

Adding MoS2 to PEEK enhances stress strength when the 

loading surpasses 3 wt.%, likely because of MoS2's higher 

matrix density and better dispersion within PEEK. In contrast, 

graphite fillers show a consistent decline in strength, 

suggesting agglomeration within the PEEK matrix. Chen et al. 

(2018) and Fu et al. (2008) indicated that graphite addition 

exceeding 0.3 wt.% in PEEK leads to accumulation, resulting 

in weaker bonds and reduced fatigue resistance. [51, 55] 

Further research by Fu et al. (2008) highlighted the 

significance of matrix interfacial adhesion in determining the 

tensile strength of polymer composites, as it influences the 

effectiveness of stress transfer between fillers and the 

polymer. MoS2/PEEK exhibits improved stress strength, 

possibly due to its higher matrix density and dispersion, while 

graphite fillers tend to agglomerate, weakening the 

material.[56] The interfacial adhesion between the matrix and 

fillers plays a crucial role in the overall tensile strength of 

composite materials. 

 

Albano et al. (2011) proposed various models to validate 

mechanical properties; one was Einstein's model from 1905 in 

Equation. 1 assumes that perfect adhesion and dispersion 

between fillers and polymer determines the effective shear 

viscosity.[55] The Einstein equation was simplified and 

modified into Guth and Smallwood's model in Equation 2. 

Guth's mathematical model suggests a linear relationship 

between the young modulus and viscosity for filler volume 

fractions less than 10%. Whilst a quadratic relationship is 

observed for higher loadings. The interaction and iteration of 

the models with experimental data of MoS2/PEEK and 

Gr./PEEK were graphically presented in Figure 7. Guth's work 

indicates that the tensile strength initially decreases at low 

filler fractions due to stress concentration. Equation 3 is the 

Boundary condition of modulus derived from the Voigt-Reuss 

model on a filled composite.

 

 
Fig. 7 Prediction of young's modulus with mathematical models
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𝐸𝐶

𝐸𝑚
= 1 + 1.25𝑉𝑓   (1) 

 
𝐸𝑐

𝐸𝑚
= 1 + 2.5𝑉𝑓 + 14.1𝑉𝑓

2  (2) 

 

𝐸𝑐 = 𝐸𝑚𝑉𝑚 + 𝐸𝑓𝑉𝑓     (3) 

 

Where 𝐸𝑚 is the Modulus of unfilled Polymer, 𝐸𝑐 is the 

Modulus of the filled Composite, and 𝑉𝑓 is the Volume 

fraction of fillers. 

 

Fu et al. (2008) found that the modulus of elasticity 

increases linearly with filler loading, regardless of interfacial 

adhesion. [56] The Nielsen model in Equation 4 explains the 

rapid decrease in Elongation at the break with increasing filler 

content and predicts enhanced tensile strength for perfect 

adhesion cases seen in Figures 4 and 5.  

𝜀𝑐 = 𝜀𝑚(1 − 𝑉
𝑓

1

3)   (4) 

Where 𝜀𝑐 , 𝜀𝑚 and 𝑉𝑓 are the Elongation at break for 

filled composite, Elongation at break for unfilled polymer, and 

volume fraction of fillers, respectively.  
 

3.2. Tribology Properties 

The average Coefficient of Friction (COF) of plain PEEK 

is around the nominal value of 0.25, indicating its weak 

capacity to minimise friction. This finding is consistent with 

previous research conducted by Zalaznik et al. (2016) and Yan 

et al. (2020). [52, 57]  

The initial 300 seconds of testing were considered 

unreliable as the friction properties of impregnated PEEK 

stabilised after that.  

Similarly, Yan et al. (2020) observed that the response 

time for PEEK implanted with MoS2 stabilises at 

approximately 350 seconds, while for PEEK alone takes about 

950 seconds, as shown in Figures 8 and 9. 

 

 
Fig. 8 The COF of Gr./PEEK in real-time response 
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Fig. 9 The COF of MoS2. /PEEK in real-time response 

 

Table 3. The average coefficient of friction and volume loss composite 

Composite Coefficient of Friction Volume Loss (mm3) 

Plain PEEK 0.251 0.05362 

MoS2/PEEK 3wt.% 0.213 0.02246 

MoS2/PEEK 5wt.% 0.178 0.02934 

MoS2/PEEK 10wt.% 0.171 0.03761 

Gr./PEEK 3wt.% 0.217 0.03322 

Gr./PEEK 5wt.% 0.219 0.04866 

Gr./PEEK 10wt.% 0.223 0.09086 

 

 
Adding MoS2 to the PEEK matrix gradually lowers the 

average COF, as seen in Figure 10 and Table 3, as confirmed 

by the trends discovered by Zalaznik et al. (2016). [57, 58] 

The self-lubrication properties of MoS2 contribute to the 

significant reduction in the average COF. Additionally, the 

low hardness, strong adhesion of particles, poor heat 

dissipating properties, and susceptibility to plastic 

deformation of unfilled PEEK contribute to its high COF. The 

wear volume of MoS2/PEEK is lower than that of Gr./PEEK, 

primarily due to the density of the crystal matrix. However, 

when graphite loading exceeds 5 wt.%, the volumetric Wear 

of PEEK increases due to the agglomeration of graphite 

particles within the matrix. 
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Fig. 10 The COF and weight ratio of solid lubricants 

 

 
Fig. 11 The wear rate of Gr./PEEK and MoS2/PEEK 

In contrast, adding MoS2 to PEEK reduces wear volume, 

especially at higher weight content, likely due to improved 

dispersion or thermal capacity. The trends of MoS2/PEEK and 

Gr./PEEK in terms of wear rate are depicted in Figure 11 and 

Table 3. The MoS2/PEEK composite shows a relative 

reduction in volumetric Wear at higher loading than the 

graphite-filled counterpart. The wear rate of 3D-processed 

PEEK initially decreases with the addition of both solid 

lubricant loadings, but it eventually stabilises after the further 

introduction of the fillers, following the trends of Elongation. 

4. Conclusion  
 The following conclusions were drawn based on the 

findings of this study: 

• In general, MoS2-filled PEEK showed the highest tensile 

strength, approximately 104 MPa at 10 wt.%. On the 

other hand, graphite-filled PEEK exhibited the lowest 

tensile strength, with a value of approximately 36 MPa at 

the same concentration. It is worth noting that these 

values represent the highest and lowest tensile strengths 

recorded in the experiment. 

• The Elongation at failure dropped after adding both 

lubricants. The MoS2-lubricated PEEK showed an almost 

plateaued effect at about 4.7% elongation for 10 wt.%. In 

contrast, the graphite lubricated showed a further decline 

in Elongation to about 2.3% for 10 wt.% 

•  The modulus of elasticity result obtained from the 

experiment followed the linear upward trend as predicted 

by both Esitein and modified Guth models on the 

mechanical properties of the composite. 

• Young's modulus of elasticity of MoS2-filled PEEK 

recorded the lowest value of 3.95 GPa at 3 wt.%, which 

is lower than the 3.99 GPa graphite-filled PEEK at 3 

wt.%. 

• The addition of graphite and MoS2 particles in PEEK 

polymer by up to 10% wt reduces the composite's 

frictional response time and coefficient of friction. 

• The printed loaded composite has the lowest reduction in 

wear rate, averaging 58% and 38% for a volume fraction 

of 3 wt.% for both MoS2 and graphite, respectively.  

• The MoS2-filled PEEK resists wearing better than the 

graphite-filled PEEKs in the lattice of the PEEK due to 

massive agglomeration and poor graphite dispersion in 

PEEK. 

 

 Overall, the study highlighted the significance of solid 

lubricant content and dispersion in influencing the mechanical 

and tribological properties of 3D-printed PEEK composites. 
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