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Abstract - Rice is one of the majorly utilized primary crops globally, providing sustenance for the worldwide population’s crucial 

segment. However, if left untreated, rice plants are susceptible to various diseases that can cause substantial yield losses. Hence, 

precise and timely recognition of rice plant diseases is substantial for effectively managing the disease and ensuring optimal 

crop production. Therefore, this study concentrates on constructing an Automated Rice Plant Disease Detection utilizing a 

Reptile Search Algorithm with Deep Learning (ARPDD-RSADL) technique. The purpose of the ARPDD-RSADL technique lies 

in the accurate and proficient classification of rice plant ailments using a parameter-tuned DL model. To accomplish this, the 

ARPDD-RSADL technique performs image preprocessing in two stages: Unsharp Masking (UM) based filtering and contrast 

enhancement. In addition, the ARPDD-RSADL technique designs the Squeeze and Excitation ResNet (SE-ResNet) model for 

feature extraction purposes. The Stacked Sparse Auto-Encoder (SSAE) model is used with RSA based hyperparameter optimizer 

for plant disease detection. The design of RSA helps to adjust the parameters relevant to the SSAE model optimally, and it assists 

in attaining advanced accuracy in detection. An extensive experimentation analysis was accomplished to validate the effectual 

rice plant disease classification results of the ARPDD-RSADL method. The simulation values portrayed the ARPDD-RSADL 

method's excellence in diverse evaluation measures. Investigational outcomes illustrate the effectiveness of the proposed model 

in accurately classifying and recognizing several rice plant diseases. 

Keywords - Rice plant disease, Computer vision, Agriculture, Deep learning, Reptile search algorithm. 

1. Introduction  
The majority of the world population relies upon rice 

food, and it becomes a great difficulty for the agriculture 

sector to ensure food security [1]. The primary reasons for 

diseases are microorganisms and fungi. Such unhealthy rice 

crops give rise to a reduction in rice productivity that affects 

the economy with immense loss to the agriculturalists every 

year [2]. Therefore, detecting diseases in agricultural goods in 

their previous stage is of utmost importance for quality 

improvement and to avoid production loss [3]. Commonly, the 

identification of rice plant disease can be performed either 

based on experimental outcomes by culturing microbes in the 

laboratories or based on the visual valuation of the indications 

[4]. Visual evaluation is a subjective approach and is 

predisposed to error. In addition to these limitations, the 

orthodox methods need specialists to find the disease, and it is 

hard for agronomists to gain admittance to professionals due 

to the interior area of the farming field [5]. Such issues have 

impelled researchers to inspect different methods to devise 

automatic categorization and identification methods for rice 

plant diseases. 

 

Computer Vision (CV) methods that can identify plant 

diseases would be useful tools for resistance breeding and 

disease management [6]. The latest pattern recognition and 

image processing methods have found some solutions for 

disease diagnosis to help agriculture experts and farmers [7]. 

Images of the various parts of the plant were captured for 

developing plant disease detection mechanisms. A precise and 

potent real-time recognition of disease mechanisms may assist 

in devising reduction methods to guarantee financial food 

safety on a large scale and rice crop protection on a small scale 

[8]. Further, precise disease detection of the rice plant using 

Deep Learning (DL) and CV can offer the basis for the site-

precise agrochemical application. 

 

Conversely, the outline of image analysis tools is a 

potential algorithm for identifying plant ailments and 
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continually detecting plant health conditions [9]. The 

application of CV and Artificial Intelligence (AI) to the 

automated diagnosis and detection of rice plant ailments is 

broadly studied, as manual plant disease monitoring is labour-

intensive, tedious, and time-consuming. Currently, DL 

methods are abundantly used in detecting diseases [10]. 

 

This study concentrates on constructing an Automated 

Rice Plant Disease Detection utilizing a Reptile Search 

Algorithm with Deep Learning (ARPDD-RSADL) technique. 

The purpose of the ARPDD-RSADL technique lies in the 

accurate and proficient classification of rice plant ailments 

using a parameter-tuned DL model. To accomplish this, the 

ARPDD-RSADL technique performs image preprocessing in 

two stages: Unsharp Masking (UM) based filtering and 

contrast enhancement. In addition, the ARPDD-RSADL 

technique designs the Squeeze and Excitation ResNet (SE-

ResNet) model for feature extraction purposes. The Stacked 

Sparse Auto-Encoder (SSAE) model is used with RSA based 

hyperparameter optimizer for plant disease detection. The 

design of RSA helps to adjust the parameters relevant to the 

SSAE model optimally, and it assists in attaining advanced 

accuracy in detection. An extensive experimentation analysis 

was accomplished to validate the effectual rice plant disease 

classification results of the ARPDD-RSADL method.   

 

2. Related Works 
Zhang et al. [11] introduced a High-Quality Image 

Augmentation (HQIA) approach for building higher-quality 

rice leaf ailment imageries related to dual Generative 

Adversarial Networks (GAN). Firstly, the initial instances are 

exploited for training Wasserstein GAN (WGAN-GP) to make 

pseudo-data instances. For generating higher-quality pseudo-

data instances, the above-mentioned instances are given into 

Optimized-Real-ESRGAN. Eventually, the higher quality 

pseudo-data instances are given into Convolutional Neural 

Networks (CNN) based classification of the disease, and 

pointers verify the efficacy of the approach. Lamba et al. [12] 

presented a new NN-related hybrid method (GCL). GCL was 

a dataset-augmenting combination of CNN with GAN and 

Long Short-Term Memory (LSTM). GAN was employed for 

dataset augmenting; CNN extracted the attributes, and LSTM 

categorized the different rice ailments. 

 

Zahro et al. [13] target to find ailments that happen in the 

rice plant leaves with the CNN approach. CNN is one of the 

effective approaches utilized for classifying an image. In [14], 

an Attention-relevant Depthwise Separable NN was designed, 

including Bayesian Optimization (ADSNN-BO) to categorize 

and find rice diseases from paddy leaf imagery. Still, rice 

ailment detection is mainly performed manually. The author 

devised the ADSNN-BO approach relevant to the augmented 

attention mechanism and MobileNet structure. To attain AI-

supported precise and rapid disease detection, in addition to 

tuning hyper-parameters of the method, the Bayesian 

optimization method was adopted. Jiang et al. [15] present a 

rice disease detection approach related to DenseNet. This 

approach utilizes DenseNet as a benchmark method and uses 

channel attention system squeeze-and-excitation to strengthen 

the favourable structures while overpowering unfavourable 

attributes.  

 

In [16] examined existing methods to find plant leaf 

disease utilizing DL and high-end imaging approaches, along 

with their difficulties. The conventional CNN has the problem 

of utilizing more computing power. To solve this problem, this 

study devised a Dilated CNN (DCNN) approach with Global 

Average Pooling (GAP) that can be built by varying usual 

CNN convolutional kernel having enlarged convolution 

kernel and Fully Connected (FC) in classical CNN substituted 

by GAP. In [17], a new Deep Neural Network (DNN) 

classifier algorithm was advanced for finding rice disease with 

the help of plant images. Classification errors are reduced by 

maximizing preconceptions and weightage in the DNN 

method through a Crow Search Algorithm (CSA) in the 

typical finetuning and pre-training. 

 

Tunio et al. [18] employ fusion deep CNN transfer 

learning with rice plant imaging or the recognition and 

categorization of several rice ailments; Transfer Learning 

(TL) is employed for generating the DL approach by 

implementing Rice_Leaf_Dataset from a subordinate source. 

In [19], the presented ECA-ConvNeXt approach integrated 

the Efficient Channel Attention (ECA) component that 

augmented the extracting process by implementing just a 

scarce parameter. TL was enforced for loading finetuning, and 

pre-training weights were utilized. Ramesh and Vydeki [20] 

presented a model utilizing Optimized DNN with the Jaya 

Algorithm. The elimination of the RGB imageries under the 

preprocessing is transformed into HSV, and depending on the 

saturation and hue parts, binary imageries are put under 

extraction for splitting the attacked and non-attacked regions. 

 

3. The Proposed Model 
The present study designed a novel ARPDD-RSADL 

approach for precisely classifying and recognizing plant 

disease. This approach exploits the CV and DL concepts with 

a tuning process. The method encompasses UM-based noise 

removal, contrast enhancement, SE-ResNet feature extraction, 

SSAE classification, and RSA-based tuning process to reach 

this. Fig. 1 exhibits the complete workflow. 

3.1. Image Preprocessing 

In the preliminary phase, the ARPDD-RSADL technique 

performs image preprocessing in two stages: UM-based 

filtering and contrast enhancement. UM is an image 

enhancement model used for sharpening the captured images 

[21]. The image with Gaussian blur used the original imagery, 

and imagery sharp details are calculated as a difference 

between the original images. In the beginning, the input 

imagery was blurred with a Gaussian blur filter. The blur 

amount and radius are two important variables for Gaussian 
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blurry imagery. The radius has a consequence on the edge size 

that should be extended. The amount of contrast, darkness, and 

lightness added to the edges of the images is based on the 

following expression. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−((𝑥2+𝑦2)/(2𝜎2))                 (1) 

 

In Eq. (1), 𝑥 and 𝑦 denote the horizontal and vertical 

distance from the source, and 𝜎 refers to the Gaussian 

distribution. 𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 represent attained image after 

improvement as follows: 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = (𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑣𝑎𝑙𝑢𝑒 ∗ (𝐼𝑏𝑙𝑢𝑟))             (2) 

 

In Eq. (2), 𝐼𝑏𝑙𝑢𝑟  denotes the unsharp image and 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

represents the original image. Next, the Contrast Limited 

Adaptive Histogram Equalization (CLAHE) approach was 

leveraged to improve the contrast level of the noise-removed 

images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Working flow of ARPDD-RSADL approach 

3.2. Feature Extraction 

Once the input images are preprocessed, the subsequent 

phase is to produce feature vectors using the SE-ResNet 

approach. ResNet added a shortcut connecting the branch 

exterior to the convolution layer to execute an easy constant 

mapping and for processing fundamental Residual Learning 

(RL) units. The next resolves the problem of network 

degradation, which can be complex to train once CNN is too 

deep by consecutively stacking RL units, making it feasible 

for training DCNNs [22]. The fundamental RL unit neither 

establishes novel variables nor enhances the computing 

complexity. 

The principle of ResNet is: 

 

𝑥𝑙 = ℎ(𝑥𝑙) + 𝐹(𝑥𝑙 , 𝑊𝐿)                               (3) 

 

𝑥𝑙+1 = 𝑓(𝑦1)                             (4) 

 

Whereas, ℎ() refers to direct mapping and 𝑓() denotes 

activation function. 

 

The residual block is formulated as: 

 

𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙 , 𝑊1)                               (5) 

 

The connection between the deeper 𝐿, and 𝑙 layer: 

𝑥𝐿 = 𝑥𝑙 + ∑ 𝐹

𝐿−1

𝑖=1

(𝑥𝑖 , 𝑊𝑖)                             (6) 

Based on the chain rule for derivative utilized in BP, a 

gradient of loss functions 𝜀 in terms of 𝑥𝑙  is 

𝜕𝜀

𝜕𝑥𝑙

=
𝜕𝜀

𝜕𝑥𝐿

𝜕𝑥𝐿

𝜕𝑥𝑙

=
𝜕𝜀

𝜕𝑥𝐿

(1 +
𝜕

𝜕𝑥𝑙
∑ 𝐹

𝐿−1

𝑖=1

(𝑥𝑖 , 𝑊𝑖))

=
𝜕𝜀

𝜕𝑥𝐿

+
𝜕𝜀

𝜕𝑥𝐿

𝜕

𝜕𝑥𝑙

∑ 𝐹

𝐿−1

𝑖=1

(𝑥𝑖 , 𝑊𝑖)                (7) 

 

During the trained model, 
𝜕

𝜕𝑥𝑙
∑ 𝐹𝐿−1

𝑖=1 (𝑥𝑖 , 𝑊𝑖) could not be 

−1 constantly; therefore, there was not an issue of gradient 

disappearance from the remaining networks, and 
𝜕𝜀

𝜕𝑥𝑙
 refers that 

the gradient of 𝑡ℎ𝑒 𝐿 layer was directly taken from some 𝑙 
layer that is lower than it. 

 

The feature extraction by CNN over convolution layer 

stacking is a high‐dimensional feature. A few cases are lost, 

whereas the remaining ResNet block was to skip feature 

extraction by any convolution layer and merge attributes 

before 𝑛 layers having convolution features after 𝑛 layers to 

either high‐ or low‐dimensional features can be maintained, 

and the network efficiency was enhanced. The GAP is also 

utilized for replacing the FC layer from the typical CNN. The 

GAP supports the correspondence among mapping features 

and classifications on the FC layer that is more appropriate for 

Input: Training Images 

 

Image Preprocessing 

Unsharp Masking based Filtering Process 

Contrast Enhancement 

Feature Extraction Process: Squeeze and 

Excitation ResNet Model 

 
Plant Disease Detection Process using 

Stacked Sparse Autoencoder Model 

Hyperparameter Tuning Process using 

Reptile Search Algorithm 

Performance Measures: 

Accuracy, Precision, F-Score, Sensitivity, Specificity 
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convolution structures. Besides, there are no parameters 

optimized from the GAP that avoid overfitting. Additionally, 

GAP combines spatial data and is further robust regarding the 

spatial transformation of input. 

 

SE‐ResNet concentrations on the interdependency among 

convolved feature channels utilizing 1-D convolutional. The 

SE block has been accomplished by a squeeze operation that 

provides a summary of the entire data of all the feature maps 

and an excitation operation that scales the significance of all 

the map features. During this method, the squeeze function 

extracts the important data of all the channels, and the 

excitation function calculates the dependency among channels 

utilizing an FC layer with a non-linear function.  

3.3. Image Classification 

For plant disease detection, the SSAE model is used. 

SSAE was introduced for higher-level feature learning from 

lapping imaging patches in the training process. SSAE refers 

to an unsupervised model of DL, which has a fundamental 

layer for feature learning [23]. First, the feature-learning 

model is discussed by SAE and later presents the stack SAE; 

lastly, sigmoid layers with unsupervised SSAE are applied for 

finetuning the SVseg method. Fig. 2 depicts the construction 

of the SSAE method. 

The basic element for SSAE, AE, works for feedforward 

non-linear NN training. It encompasses three major layers: 

hidden, input, and output layers. There exist many nodes that 

make every layer of AE; this node establishes a full connection 

between the nodes of neighbouring layers. The AE comprises 

the encoder-decoder processing stage.  

 

The input vector presentation can be encrypted at the 

encoding phase to connect the AE Hidden Layer (HL) and the 

input layer. At the same time, during the decoding process, the 

AE suggests an input vector reconstructed from encoded 

feature learning in the HL. The AE aims to define the input 

data representation that creates a better reconstruction. Input 

image patches 𝑥𝑗 are fed into AE during training, and reduces 

error factor for all network connection weights has been 

adopted by the following equation: 

𝐴𝑟𝑔Min𝑊,𝑏,�̂�,�̂� ∑|𝑥𝑖 − (�̂�(𝜎(𝑊𝑥𝑖 + 𝑏)) + �̂�)|

𝑁

𝑖=1

2
2

            (8) 

 

Where 𝑏 and 𝜎 denote weights, biases, and activation 

functions of AE parameters. Assume an input vector 𝑥𝑗, an AE 

initially encrypts input into representing ℎ𝑖 = 𝜎(𝑊𝑥𝑖 + 𝑏), 

here ℎ𝑖 denotes the 𝑥𝑖 response of HL neurons, and ℎ indicates 

the dimension associated with neurons in the HL. The AE 

needs the HL dimension to be lesser than the dimension of the 

input layer for feature extraction from the patches of an input 

image; otherwise, error minimization can result in a trivial 

solution.  

 

An alternative method termed SAE imposed sparsity 

regularization on AE-HLs rather than a limitation of HL 

dimension. SAE performs the regularization of HL response 

to evade trivial solutions that fundamental AEs tend towards. 

The AEs require the dimension of HL to be lesser than the 

input layer. Specifically, the sparsity regulation was executed 

on AE to make it infinitesimal. To construct a balance between 

reconstruction power and the HLs sparsity, for each input 

node, just the best-hidden nodes response which drives SAE 

for representing training sets in sparse feature: 

 

 

 

 

 

 

 

 

 

   

 

 

Fig. 2 Architecture of SSAE 
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𝐴𝑟𝑔Min𝑊,𝑏,�̂�,�̂� ∑|𝑥𝑖 − (�̂�(𝜎(𝑊𝑥𝑖 − 𝑏)) + �̂�)|

𝑁

𝑖=1

2
2

+ 𝛿 ∑ 𝐾

𝑀

𝑗=1

𝐿(𝜌|𝜌𝑗)                                     (9) 

𝐾𝐿(𝜌|𝜌𝑗) = 𝜌𝑙𝑜𝑔
𝜌

𝜌𝑗
+ (1 − 𝜌)𝑙𝑜𝑔

1 − 𝜌

1 − 𝜌𝑗
             (10) 

 

From the expression, 𝑀 represents the dimension of the 

HL, 𝑎𝑛𝑑 𝛿 indicates the balancing parameter between 

reconstruction and sparsity. The term (𝜌|𝜌𝑗), called the 

Kullback-Leibler equation, represents deviation in two 

Bernoulli distributions, which have 𝜌 and 𝜌𝑗 probabilities. 

The sparsity was minimalized once 𝜌𝑗 is closer to 𝜌 for all the 

𝑗𝑡ℎ hidden neurons. SAE learned the low‐level feature from 

image patches of vertebrae. However, lower-level feature 

learning is insufficient because of differences in the 

appearance of vertebrae. On the other hand, based on human 

perception, abstract high‐feature was more powerful to CT 

images’ inhomogeneity. Depending on low‐level feature 

representation, a study used SSAE for higher-level feature 

learning. The stacking of SAE, called SSAE, contracts deep 

hierarchy. The SAE is stacked to present the lower-level 

output layer of SAE as the input layer for higher-level SAEs 

to study abstract higher-level features from the input image 

patch.   

 

3.4. Hyperparameter Tuning using RSA 

In the last stage, the TSA adjusts the hyperparameter 

values of the SSAE method. RSA is simulated by the 

predatory approach of alligators, further precise by seeking for 

prey [24]. The heuristic is separated into 2 crocodile-hunting 

approaches: exploitation and exploration. The crocodile 

behaviour is fragmented into two classes of exploring 

strategy: (a) belly walking and (b) high walking. Hunting 

collaboration and coordination are considered. Between the 

exploitation and exploration foraging phases, the RSA method 

was modified. Based on these methodologies, the overall 

amount of iterations was given in the following.  

 

The exploration stage met dual conditions: belly-walking 

(𝑡 >
𝑇

4
 and 𝑡 ≤

2𝑇

4
) and high walking (𝑡 ≤

𝑇

4
). Furthermore, 

the exploitation phase was conditioned by hunting cooperation 

(𝑡 >
3𝑇

4
 and 𝑡 ≤ 𝑇) and hunting coordination (𝑡 >

2𝑇

4
 and 𝑡 ≤

3𝑇

4
). On real‐time optimization problems, this new 

metaheuristic has previously accomplished positive prospects.  

 

The stage-by-stage method of RSA is given below: 

The RSA method can be performed by starting with a 

solution selected randomly and producing it as 

 

𝑦(𝑖,𝑗) = 𝑟𝑎𝑛𝑑 × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,    𝑗 = 1,2, ⋯ , 𝑛            (11) 

 

In the encircling stage, the location update formula can be 

depicted as: 
𝑦(𝑖,𝑗)(𝑡 + 1)

= {
𝐵𝑒𝑠𝑡𝑗1

(𝑡) × −𝜂1(𝑡) × 𝛽1 − 𝑅1(𝑖,𝑗) × 𝑟𝑎𝑛𝑑,    𝑡 ≤
𝑇

4

𝐵𝑒𝑠𝑡𝑗1
(𝑡) × 𝑥(𝑟1,𝑗) × 𝐸𝑆1(𝑡) ×  𝑟𝑎𝑛𝑑,     𝑡 >

𝑇

4
 𝑎𝑛𝑑 𝑡 ≤

2𝑇

4

  

(12) 

 

The prior optimal solution accomplished is 𝑠𝑡𝑗1
(𝑡), 

whereas 𝑟𝑎𝑛𝑑 indicates a random integer within [0,1]. 

Moreover, 𝛽1 is a critical parameter which affected 

exploratory performance, while 𝑡 and 𝑇 reflect the prevailing 

and overall iteration numbers. 

 

𝐸𝑆 (𝑡) is the stochastic value amongst [−2, 2] across 

entire iterations estimated with Eq. (13), 𝑥(𝑟1,𝑗) denotes the 

arbitrary location of 𝑖-𝑡ℎ solutions and 𝑅1(𝑖,𝑗) is the reduced 

search region that is calculated by Eq. (15), 𝑟1 shows the 

random selection within [1𝑁], 𝑁 represents the overall 

amount of solutions, and Eq. (14) is used for calculating 𝜂1(𝑖,𝑗). 

It determines the hunting operator to the 𝑗𝑡ℎ location of the 𝑖𝑡ℎ 

solution. 

𝐸𝑆1(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇
)                      (13) 

 

𝜂1(𝑖,𝑗) = 𝐵𝑒𝑠𝑡𝑗1
(𝑡) × 𝑃1(𝑖,𝑗)                         (14) 

 

𝑅1(𝑖,𝑗) =
𝐵𝑒𝑠𝑡𝑗1

(𝑡) − 𝑥(𝑟2′𝑗)

𝐵𝑒𝑠𝑡𝑗1
(𝑡) + 𝜖

                      (15) 

 

Now 𝑒 signifies small values, 𝑟2 belongs to [1, 𝑁], and 𝑟3 

indicates the arbitrary number within [−1, 1]. Eq. (16) was 

utilized to calculate the new solution In the RSA algorithm’s 

exploitation stage. 
𝑦(𝑖,𝑗)(𝑡 + 1)

= {
𝐵𝑒𝑠𝑡𝑗1

(𝑡) × 𝑃1(𝑖,𝑗) × 𝑟𝑎𝑛𝑑, 𝑡 >
2𝑇

4
 𝑎𝑛𝑑 𝑡 ≤

3𝑇

4

𝐵𝑒𝑠𝑡𝑗1
(𝑡) − 𝜂1(𝑖,𝑗)(𝑡) × 𝜖 − 𝑅1(𝑖,𝑗) × 𝑟𝑎𝑛𝑑, 𝑡 >

3𝑇

4
 𝑎𝑛𝑑 𝑡 ≤ 𝑇

(16) 

 

Where 𝑃1(𝑖,𝑗)(𝑡) represents the discrepancy of percentage 

defined using Eq. (17) amongst 𝑡ℎ𝑒 𝑗𝑡ℎ location of the better 

one and the 𝑗𝑡ℎ  location of the existing one. 

 

𝑃1(𝑖,𝑗)(𝑡) = 𝛼 +
𝑥(𝑖,𝑗) − 𝑀1(xi)

𝐵𝑒𝑠𝑡𝑗1
(𝑡) × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝜖

              (17) 

 

In Eq. (17), 𝛼, another variable with a fixed value of 0.1, 

was utilized for restraining the exploration precision, and 

𝑀(𝑥) is computed as: 

𝑀1(xi) =
1

𝑛
∑ 𝑥(𝑖,𝑗)

𝑛

𝑗=1

                 (18) 

The pseudocode of RSA is given below. 
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Algorithm 1: Pseudocode of RSA 

Initializes the parameter randomly𝛼, 𝛽1, 𝜖, and so on. 

Setup the candidate solution: 𝑋 = 𝑥(𝑖,𝑗), 𝑖 =

1,2, ⋯ , 𝑁, 𝑗 = 1,2, ⋯ , 𝑁 

While (𝑡 < 𝑇) do 

Define the objective function for potential solutions 

(X).  

choose the better solution yet 

Upgrade the 𝐸𝑆 by Eq. (13), 

RSA’s beginning 

For (𝑖 = 1 𝑡𝑜 𝑁)𝑑𝑜 for (𝑗 = 1 𝑡𝑜 𝑛)𝑑𝑜 

Update the value of 𝜂, 𝑅, 𝑃 utilizing Eqs. (14), (15), 

and (16), correspondingly 

If (𝑡 ≤
𝑇

4
) then 

𝑦(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗1
× −𝜂1(𝑖,𝑗)(𝑡) × 𝛽1 − 𝑅1(𝑖,𝑗) ×

𝑟𝑎𝑛𝑑,  

Else if (𝑡 >
𝑇

4
 and 𝑡 ≤

2𝑇

4
) then 

𝑦(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗1
× 𝜒(𝑟1,𝑗) × 𝐸𝑆1(𝑡) × rand,  

Else if (𝑡 >
2𝑇

4
 and 𝑡 ≤

3𝑇

4
) then 

𝑦(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗1
(𝑡) × 𝑃1(𝑖,𝑗) × 𝑟𝑎𝑛𝑑,  

Else 

𝑦(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗1
(𝑡) − 𝜂1(𝑖,𝑗)(𝑡) × 𝑒 − 𝑅1(𝑖,𝑗) ×

𝑟𝑎𝑛𝑑,  
End if  

End for  

End for 

𝑡 = 𝑡 + 1   

End while 

Return the better solution (Best(X)) 

 

The RSA approach grows a fitness function (FF) to make 

superior results. It controls a positive value to exemplify the 

best solution for the candidate's performance. Here, the 

lessened classifier error rate is supposed to be FF, as written 

in Eq. (19).   

  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 
 

=
𝑛𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
× 100                  (19) 

4. Results and Discussion 
The rice plant leaf disease recognition outputs of the 

ARPDD-RSADL method are tested on the dataset [25], 

encompassing 115 samples and 3 classes, as illustrated in 

Table 1. Fig. 3 denotes the instance imageries. 

Table 1. Dataset description 

Class No. of Samples 

Bacterial Leaf Blight 40 

Brown Spot 37 

Leaf Smut 38 

Total Samples 115 

 
Fig. 3 Sample Images a) Bacterial Leaf Blight b) Brown Spot c) Leaf 

Smut 

 
Fig. 4 Classifier output of (a-b) Confusion matrix, Curves of (c) PR, and 

(d) ROC 

Fig. 4 specifies the classifier outputs of the ARPDD-

RSADL method on the test dataset. Fig. 4a specifies the 

confusion matrix portrayed by the ARPDD-RSADL method 

on 70% of TRP. 

The figure portrayed that the ARPDD-RSADL approach 

detected 28 samples on BLB, 24 samples on BS, and 25 

samples on LS. As well, Fig. 4b portrays the confusion matrix 

presented by the ARPDD-RSADL approach on 30% of TSP.  
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Table 2. Rice plant disease detection outcome of ARPDD-RSADL 

methodology on 70:30 of TRP/TSP  

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Bacterial Leaf 

Blight 
96.25 96.55 93.33 98.00 94.92 

Brown Spot 100.00 100.00 100.00 100.00 100.00 

Leaf Smut 96.25 92.59 96.15 96.30 94.34 

Average 97.50 96.38 96.50 98.10 96.42 

Testing Phase (30%) 

Bacterial Leaf 

Blight 
85.71 85.71 60.00 96.00 70.59 

Brown Spot 94.29 100.00 84.62 100.00 91.67 

Leaf Smut 85.71 70.59 100.00 78.26 82.76 

Average 88.57 85.43 81.54 91.42 81.67 
 

 
Fig. 5 Rice plant disease detection output of ARPDD-RSADL method on 

70% of TRP 

   

Fig. 6 Rice plant disease detection output of ARPDD-RSADL method on 

30% of TSP  

The outputs pointed out that the ARPDD-RSADL 

technique has detected 6 samples on BLB, 11 samples on BS, 

and 12 samples on LS. Similarly, Fig. 4c illustrates the PR 

examination of the ARPDD-RSADL technique. The figure 

specifies that the ARPDD-RSADL method has gained 

maximal PR performance in the overall class. Lastly, Fig. 4d 

shows the ROC examination of the ARPDD-RSADL method. 

The figure portrayed that the ARPDD-RSADL method has 

gained maximum ROC values on different class labels. 

 

In Table 2, the comprehensive rice plant disease detection 

results are given. Fig. 5 offers detailed disease detection and 

classification outputs of the ARPDD-RSADL method 

provided under 70% of TRP. The figure indicates that the 

ARPDD-RSADL method reaches effectual detection under 

distinct classes. On bacterial leaf blight, the ARPDD-RSADL 

technique obtains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 96.25%, 96.55%, 93.33%, 98%, and 94.92% 

respectively. Also, on the brown spot, the ARPDD-RSADL 

approach gains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 100%, 100%, 100%, 100%, and 100% respectively. 

In addition, on leaf smut, the ARPDD-RSADL method 

obtains an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

96.25%, 92.59%, 96.15%, 96.30%, and 94.34% 

correspondingly. 

 

Fig. 6 offers detailed disease detection and classification 

results of the ARPDD-RSADL method, which is provided 

under 30% of TSP. The figure indicates that the ARPDD-

RSADL approach reaches effectual detection under distinct 

classes. On bacterial leaf blight, the ARPDD-RSADL 

technique obtains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 

𝐹𝑠𝑐𝑜𝑟𝑒 of 85.71%, 85.71%, 60%, 96%, and 70.59% 

correspondingly. Similarly, on the brown spot, the ARPDD-

RSADL technique obtains an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 

𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.29%, 100%, 84.62%, 100%, and 

91.67% correspondingly. Moreover, on leaf smut, the 

ARPDD-RSADL method obtains an average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 85.71%, 70.59%, 100%, 78.26%, 

and 82.76% correspondingly. 

The average detection results of the ARPDD-RSADL 

model are given in Fig. 7. The result specifies that the 

ARPDD-RSADL model recognizes the diseases proficiently. 

As a sample, on 70% of TRP, the ARPDD-RSADL approach 

offers average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

97.50%, 96.38%, 96.50%, 98.10%, and 96.42% respectively. 

Additionally, on 30% of TSP, the ARPDD-RSADL approach 

offers average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑠𝑒𝑛𝑠𝑦 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 

88.57%, 85.43%, 81.54%, 91.42%, and 81.67% 

correspondingly. 

Fig. 8 examines the ARPDD-RSADL method’s accuracy 

in the process of training and validation of the test data. The 
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output portrayed the ARPDD-RSADL method as having 

greater accuracy values over greater epochs. Additionally, the 

greater validation accuracy over training portrayed that the 

ARPDD-RSADL approach learns productively on the test 

data. 

 

 

Fig. 7 Average output of ARPDD-RSADL methodology on 70:30 of 

TRP/TSP  

 
Fig. 8 Accuracy curve of the ARPDD-RSADL methodology 

 
Fig. 9 Loss curve of the ARPDD-RSADL method 

Table 3. Relative output of ARPDD-RSADL method with other 

approaches 

Approaches 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

DNN-JOA 94.25 81.24 83.70 94.04 88.74 

DNN 90.00 74.91 73.46 89.42 81.51 

DAE 86.04 67.58 68.02 87.18 77.03 

ANN 80.01 60.87 63.30 81.58 68.31 

CNN 94.00 94.00 94.00 94.00 94.00 

SIFT-SVM 91.10 86.66 86.66 90.03 86.66 

SIFT-KNN 93.33 90.60 90.00 92.34 90.14 

ARPDD-RSADL 97.50 98.10 96.38 96.50 96.42 

 

 
Fig. 10 Relative output of ARPDD-RSADL method with other 

approaches 

Fig. 9 examines the ARPDD-RSADL methodology’s loss 

in the training and validation depicted on the test data in Fig. 

9. The output highlights that the ARPDD-RSADL 

methodology attains greater training and validation loss 

values. The ARPDD-RSADL model learned effectually on 

test data. 

Table 3 and Fig. 10 offer a broad output of the ARPDD-

RSADL method [26, 27]. The figure demonstrates the 

improvements of the ARPDD-RSADL method over other 

ones. Based on 𝑎𝑐𝑐𝑢𝑦, the ARPDD-RSADL technique 

reaches an increased value of 97.50% while the DNN-JOA, 

DNN, DAE, ANN, CNN, SIFT-SVM, and SIFT-KNN models 

accomplish decreased 𝑎𝑐𝑐𝑢𝑦 values of 94.25%, 90%, 86.04%, 

80.01%, 94%, 91.10%, and 93.33% respectively.  
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Table 4. CT output of ARPDD-RSADL method with other approaches 

Approaches Computational time (sec) 

DNN-JOA 0.29 

DNN 0.26 

DAE 0.27 

ANN 0.25 

CNN 0.25 

SIFT-SVM 0.29 

SIFT-KNN 0.27 

ARPDD-RSADL 0.19 

 

 

Fig. 11 CT outcome of ARPDD-RSADL method with other methods 

Concurrently, based on 𝑝𝑟𝑒𝑐𝑛, the ARPDD-RSADL 

approach reaches an increased value of 98.10% while the 

DNN-JOA, DNN, DAE, ANN, CNN, SIFT-SVM, and SIFT-

KNN methods accomplish decreased 𝑝𝑟𝑒𝑐𝑛 values of 81.24%, 

74.91%, 67.58%, 60.87%, 94%, 86.66%, and 90.60% 

respectively. Eventually, based on 𝑠𝑒𝑛𝑠𝑦 , the ARPDD-

RSADL technique reaches an increased value of 96.38% 

while the DNN-JOA, DNN, DAE, ANN, CNN, SIFT-SVM, 

and SIFT-KNN methods accomplish decreased 𝑠𝑒𝑛𝑠𝑦 values 

of 83.70%, 73.46%, 68.02%, 63.30%, 94%, 86.66%, and 90%. 

Eventually, based on 𝑠𝑝𝑒𝑐𝑦, the ARPDD-RSADL method 

reaches an increased value of 96.50% while the DNN-JOA, 

DNN, DAE, ANN, CNN, SIFT-SVM, and SIFT-KNN 

methods accomplish decreased 𝑠𝑝𝑒𝑐𝑦 values of 94.04%, 

89.42%, 87.18%, 81.58%, 94%, 90.03%, and 92.34% 

correspondingly. 

At the final stage, the Computation Time (CT) 

investigation of the ARPDD-RSADL model is related with 

current approaches made in Table 4 and Fig. 11. 

The result highlighted that the ARPDD-RSADL 

technique reaches a minimal CT of 0.19s, whereas the DNN-

JOA, DNN, DAE, ANN, CNN, SIFT-SVM, and SIFT-KNN 

models obtain increased CT of 0.29s, 0.26s, 0.27s, 0.25s, 

0.25s, 0.29s, and 0.27s subsequently. Hence, the ARPDD-

RSADL technique can be implemented for robust rice plant 

ailment detection. 

5. Conclusion   
In this study, a new ARPDD-RSADL methodology for 

precisely classifying and recognizing the leaf diseases of the 

rice plant is designed. The ARPDD-RSADL methodology 

exploits the concept of CV and DL models with a 

hyperparameter tuning strategy. To achieve this, the ARPDD-

RSADL method encompasses several processes: UM-based 

noise removal, contrast enhancement, SE-ResNet feature 

extraction, SSAE classification, and RSA-based 

hyperparameter tuning.  

The construction of RSA helps to adjust the parameters 

associated with the SSAE method optimally, and it assists in 

attaining advanced accuracy in detection. A widespread 

experimentation assessment was achieved to validate the 

effectual rice plant ailment classification results of the 

ARPDD-RSADL model. The simulation values portrayed the 

authority of the ARPDD-RSADL model in terms of different 

evaluation measures.
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