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Abstract - In this paper, the Red-Black Gauss-Seidel (RBGS) algorithm is developed to solve the arithmetic Asian option pricing. 

Developing such an algorithm is crucial for optimizing computational resources and reducing the processing time of the 

financial instrument. The pricing of arithmetic Asian options is formulated by approximating the Black-Scholes Partial 

Differential Equation (PDE) through the Crank-Nicolson finite difference method. Subsequently, the RBSG iterative algorithm 

is employed to solve the system of linear equations derived from the Crank-Nicolson approximation. Extensive computational 

experiments are conducted to measure the accuracy and efficiency of the RBGS algorithm to the conventional Gauss-Seidel (GS) 

iterative method. The evaluation criteria include the iteration count, computational time, and root mean squared error (RMSE). 

The results indicate that the RBSG iterative algorithm significantly reduces the number of iterations and computational time 

compared to the GS iterative method. Moreover, both iterations yield accurate numerical solutions that align closely. These 

findings demonstrate the effectiveness of the RBSG algorithm in efficiently pricing arithmetic Asian options while maintaining 

a high level of accuracy.   

Keywords - Asian option, Black-Scholes PDE, Crank-Nicolson finite difference method, Red-Black Gauss-Seidel algorithm, 

Resource efficiency.  

1. Introduction  
Numerical computation plays an important role in the 

field of financial engineering, where it is essential for 

developing and implementing advanced mathematical models 

and computational techniques to solve complex financial 

problems [1]. As financial markets grow increasingly intricate 

and dynamic, numerical algorithms have become 

indispensable for analyzing risk, optimizing investment 

strategies, and pricing various financial derivatives. 

Numerical techniques enable the translation intricate financial 

models, such as option pricing models, into computationally 

solvable problems. These methods employ algorithms and 

mathematical approximations to discretize continuous 

equations, allowing for efficient computation on digital 

platforms. By harnessing the power of numerical computation, 

finance professionals can tackle intricate calculations and gain 

valuable insights into pricing, hedging, and portfolio 

management [2]. 

For instance, in option pricing, numerical techniques such 

as finite difference methods, Monte Carlo simulations, and 

numerical integration are employed to calculate option values 

when closed-form solutions are not attainable [3]. These 

methods discretize the underlying mathematical equations and 

allow for efficient approximation, enabling the valuation of 

various options, including exotic options and options with 

complex payoffs. 

 

Howison [4] asserted that while the future is expected to 

bring forth a growing array of exotic options in the market, 

their modeling can still be established using the Black-Scholes 

model as a foundation. However, the challenge is in 

developing efficient and fast numerical computation for 

option pricing involving a very large number of options [4].  

 

An option is a financial derivative that offers the holder 

the right to trade a stock or other underlying asset at a specific 

price in the future, known as the strike price. The holder of a 

call option possesses the privilege to purchase the stock or 

underlying asset at the strike price, whereas a put option holds 

the privilege to sell it. The style of options come in various 

forms, generally the vanilla options and exotic options. While 
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European and American options are considered vanilla 

options, Asian options fall under the category of exotic 

options. An Asian option is a type of path-dependent option 

whose payoff is determined by the average stock price over 

a specific time [5]. 

 

A second-order PDE can evaluate the values of the 

Asian options with three independent variables: time, stock 

price and the stock's average with a terminal condition and 

boundary conditions. The Black Scholes PDE for the Asian 

arithmetic option is [7]: 

𝜕𝑉

𝜕𝑡
+
𝜎2𝑆2

2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+ 𝑆

𝜕𝑉

𝜕𝐴
− 𝑟𝑉 = 0 (1) 

Where V is the value of the option, S is the stock price, A 

is the average of the stock price, σ is the volatility of the stock 

price, and r is the risk-free interest rate. The payoff function 

for a fixed strike Asian options is [8]: 

𝑉(𝑆, 𝐴𝑇 , 𝑇) = 𝑚𝑎𝑥(𝐴𝑇 − 𝐾,  0) for the call option,                   

𝑉(𝑆, 𝐴𝑇 , 𝑇) = 𝑚𝑎𝑥(𝐾 − 𝐴𝑇 ,  0)for the put option, 

Where T is the expiration time in the year, and K is the 

strike price. The terminal condition, represented by the 

payoff function, is incorporated into the Black-Scholes 

PDE in Equation 1 to facilitate the solution process. 

 

However, up to now, no closed-form solution is still 

available to solve arithmetic Asian option pricing based on 

Black-Scholes PDE in Equation 1 [6]. This is because the 

arithmetic average of a set of lognormal random variables 

is not lognormally distributed [7, 8]. Several 

transformations have been done by researchers to address 

the issue. Geman and Yor [9] used the Laplace transform 

to convert the Black-Scholes PDE in Equation 1 to an 

ordinary differential equation, which requires the 

evaluation of the inverse Laplace transform through direct 

numerical integration.  

 

As such, the computational of the solution is expensive 

for large values of t. Rogers and Shi [10] introduced the 

scaling property and lower bound methods. The scaling 

property method reduces the problem to a parabolic PDE in 

two variables. The lower bound method considered the fact 

that the price of an Asian option must be greater than or 

equal to the price of a European call option with the same 

strike price and maturity. Then, it is solved numerically. 

Vecer [11] introduced a one-dimensional PDE for Asian 

option pricing by viewing the Asian option as a special case 

on a traded account. 

 

Elshegmani et al. [7] solved it analytically by 

transforming the PDE in Equation 1 to a heat equation with 

constant coefficients. In addition, Elshegmani and Ahmad 

[8] applied the Laplace transform by transforming it into a 

two-dimensional Ordinary Differential Equation (ODE). 

Finally, they obtained an analytical solution for the fixed 

strike called the arithmetic Asian option. 

 

For numerical solutions of the PDE in Equation 1, Lee 

and Chin [12] approximated the PDE in Equation 1 using a 

simple Crank-Nicolson scheme and solved using the direct 

method. The Crank-Nicolson scheme used was the central 

difference for the stock price while the backward difference 

for the average stock price and time, respectively [12]. This 

resulted in a four-point computational node on each time level 

and solved the linear systems using the direct method [12].  

Nevertheless, Saad et al. [13] applied the standard Crank-

Nicolson scheme where both the stock price and average stock 

price were discretized with central difference schemes, 

respectively, while the time level was discretized using a 

backward difference scheme [14]. Then, Saad et al. [13] 

solved the linear systems on each time level backwardly using 

the Gauss-Seidel (GS) iterative method. 

 

There exists some research gap that should be addressed 

to enhance the numerical solutions of arithmetic Asian option 

pricing. Saad et al. [13] indeed utilized a higher order accuracy 

of the Crank-Nicolson scheme [14] compared to Lee and 

Chin’s work [12] to approximate the two-dimensional PDE in 

Equation 1. However, the study of Saad et al. [13] lacks a 

comprehensive stability analysis to demonstrate the scheme’s 

stability in the context of solving the PDE. This gap raises 

questions regarding the robustness and reliability of the finite 

difference scheme employed. 

 

While addressing the accuracy aspect through the study 

of approximation schemes remains a vital endeavor in Asian 

option pricing research, there is an equally compelling need 

for the development of faster computational iterative solvers. 

The existing literatures has appropriately emphasized the 

importance of accurate Asian option valuations 

[6][7][8][9][10][11][12]; however, it has somewhat 

overlooked the computational time required to achieve such 

accuracy. 

 

Although Gauss-Seidel methods have been employed in 

various financial modeling contexts [13][15][16][17], the 

application of the Red-Black strategy specifically tailored to 

Arithmetic Asian options pricing is notably underexplored.  

 

RBGS is a variant of the GS method, where the main 

difference is that RBGS updates the variables in a 

checkerboard pattern, while Gauss-Seidel updates all of the 

variables at once. It is an iterative technique that partitions the 

unknowns of a linear system into red and black groups [18]. 

The algorithm updates the values of the unknowns iteratively, 

alternating between red and black groups until convergence is 

achieved. This alternating pattern of updates helps to 

accelerate the convergence of the algorithm. 
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Zhang [19] provides a theoretical analysis of the RBGS 

algorithm. The paper showed that the method converges under 

certain conditions and provided estimates for the convergence 

rate. Yavneh [20] presented numerical results for the RBGS 

method, and the results showed that the method is typically 

more efficient than other iterative methods, namely the Jacobi 

and the GS methods.  

 

Thus far, the RBGS algorithm has been extensively 

applied by researchers for solving a wide variety of equations 

involving large systems of linear equations such as the 2D 

steady state heat conduction problem [21], Pennes bioheat 

equation [22], viscous forces computation in the simulation of 

droplet-jet collisions [23] as well as the time-dependent 

Ginzburg-Landau equations for anisotropic superconductors 

with spatially varying material properties [24].  The authors 

used the RBGS algorithm because it is a well-established 

method known to be efficient for solving large systems of 

equations.  

 

In this study, the PDE in Equation 1 is approximated with 

the standard Crank-Nicolson approximation scheme. Then, 

the approximated equations are expressed in the form of linear 

systems at each time level. Subsequently, the RBGS algorithm 

is developed to solve the linear systems formed. The 

algorithm's performance is evaluated through comprehensive 

numerical experiments in terms of the number of iterations, 

computational time and accuracy. 

 

2. Materials and Methods  
2.1. Crank-Nicolson Approximation Scheme 

The Crank-Nicolson approximation scheme is a finite 

difference method that combines the explicit and implicit 

approaches by taking the average of the forward difference 

and backward difference approximations. The Black-Scholes 

PDE in Equation 1 can be approximated as 

 
𝑉𝑖,𝑗,𝑘+1 − 𝑉𝑖,𝑗,𝑘

𝛥𝑡
 

+
𝜎2𝑆𝑖

2

2

(

 
 

𝑉𝑖−1,𝑗,𝑘+1 − 2𝑉𝑖,𝑗,𝑘+1 + 𝑉𝑖+1,𝑗,𝑘+1
+𝑉𝑖−1,𝑗,𝑘 − 2𝑉𝑖,𝑗,𝑘 + 𝑉𝑖+1,𝑗,𝑘

2𝛥𝑆2

)

 
 

 

+𝑟𝑆𝑖 (
𝑉𝑖+1,𝑗,𝑘+1 − 𝑉𝑖−1,𝑗,𝑘+1 + 𝑉𝑖+1,𝑗,𝑘 − 𝑉𝑖−1,𝑗,𝑘

4𝛥𝑆
) 

+𝑆𝑖 (
𝑉𝑖,𝑗+1,𝑘+1 − 𝑉𝑖,𝑗−1,𝑘+1 + 𝑉𝑖,𝑗+1,𝑘 − 𝑉𝑖,𝑗−1,𝑘

4𝛥𝐴
) 

−𝑟 (
𝑉𝑖,𝑗,𝑘+1+𝑉𝑖,𝑗,𝑘

2
) = 0  (2) 

 

Equation 2 can be derived and simplified as 

 

𝑎𝑖𝑉𝑖−1,𝑗,𝑘 + 𝑏𝑖𝑉𝑖+1,𝑗,𝑘 − 𝑐𝑖𝑉𝑖,𝑗−1,𝑘 + 𝑐𝑖𝑉𝑖,𝑗+1,𝑘 + 𝑉𝑖,𝑗,𝑘 

= 𝐹𝑖,𝑗,𝑘+1 (3) 

Where, 𝑎𝑖 =
𝛼𝑖−𝛽𝑖

𝑑𝑖
, 𝑏𝑖 =

𝛼𝑖+𝛽𝑖

𝑑𝑖
, 𝑐𝑖 =

𝛾𝑖

𝑑𝑖
, 𝐹𝑖,𝑗,𝑘+1 =

𝑓𝑖,𝑗,𝑘+1

𝑑𝑖
,𝛼𝑖 =

𝛥𝑡𝜎2𝑆𝑖
2

4𝛥𝑆2
, 𝛽𝑖 =

𝛥𝑡𝑟𝑆𝑖

4𝛥𝑆
, 𝛾𝑖 =

𝛥𝑡𝑆𝑖

4𝛥𝐴
,  𝑑𝑖 = −1 − 2𝛼𝑖 + 𝜃 , 𝜃 = −

𝛥𝑡𝑟

2
, 

𝑓𝑖,𝑗,𝑘+1 = 

(−𝛼𝑖 + 𝛽𝑖)𝑉𝑖−1,𝑗,𝑘+1 + (−𝛼𝑖 − 𝛽𝑖)𝑉𝑖+1,𝑗,𝑘+1 + 𝛾𝑖𝑉𝑖,𝑗−1,𝑘+1 

−𝛾𝑖𝑉𝑖,𝑗+1,𝑘+1 + (−1 + 2𝛼𝑖 − 𝜃)𝑉𝑖,𝑗,𝑘+1 

and i, j, and k denote the nodes for stock price, S, average stock 

price, A, and time, t, respectively, on a finite difference grid.  

A five-point approximation equation derived from the 

Crank-Nicolson approximation equation at each time level, k, 

can be illustrated in Figure. 1.  

 

 

 

 

 

 

 

 

 
 

Fig. 1 Computational nodes on each time level, k 

 

2.2. Red-Black Gauss-Seidel Algorithm 

The approximation equations in Equation 3 will generate 

a sequence of linear systems on each time level of the form 

 

𝐵𝑉
~
𝑘 = 𝐹

~
𝑘+1   (4) 

Where B is a penta-diagonal coefficient matrix, 𝐹
~

is the 

known column vector computed from the time level of 

k+1,𝑉
~

and is the unknown column vector for the option price 

at time level, k. 

Generally, the linear system in Equation 4 can be solved 

using Algorithm 1 (RBGS method). The computation started 

from the terminal time, and the loops continued backwards in 

time until the time level, k=0. 

Algorithm 1 (RBGS Method) 

i. Initializing all the parameters. Set h = 0. 

ii. Perform point iteration: 

a. Compute red point iteration: 

for(j=1;j<=m-1;j++) { 

           for (i=(j%2)+1;i<=m-1;i=i+2){ 

𝑉𝑖,𝑗
(ℎ+1)

= 𝐹𝑖,𝑗 − 𝑎𝑖𝑉𝑖−1,𝑗
(ℎ+1)

− 𝑏𝑖𝑉𝑖+1,𝑗
(ℎ)

+ 𝑐𝑖𝑉𝑖,𝑗−1
(ℎ+1)

− 𝑐𝑖𝑉𝑖,𝑗+1
(ℎ)

 

              } 

        } 

 

b. Compute black point iteration: 

for(j=1;j<=m-1;j++){  

i+1 , j 

i, j+1 

i-1,j 

i, j-1 
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for(i=2-(j%2);i<=m1;i=i+2){ 

𝑉𝑖,𝑗
(ℎ+1)

= 𝐹𝑖,𝑗 − 𝑎𝑖𝑉𝑖−1,𝑗
(ℎ+1)

− 𝑏𝑖𝑉𝑖+1,𝑗
(ℎ)

+ 𝑐𝑖𝑉𝑖,𝑗−1
(ℎ+1)

− 𝑐𝑖𝑉𝑖,𝑗+1
(ℎ)

 

                } 

           }        
iii. Convergence test.  

a. If the error tolerance is fulfilled, the value option at 

that time level is 𝑉𝑖,𝑗
(ℎ+1)

 , and the algorithm stops. 

b. Else, set h=h+1 and go to step ii. 

 
Fig. 2 Standard computational grid 

 
Fig. 3 Red-Black computational grid 

On each time level, a standard computational grid is 

illustrated in Figure 2, where the standard GS algorithm is 

implemented. Nonetheless, Algorithm 1 follows the red-black 

ordering sequence as depicted in Figure 3. The computational 

node runs alternatively with red and black phases, 

respectively. Note that the computational of the red node 

depends on the black neighbouring nodes and vice versa, as 

shown in Figure 3 [25].   

3. Stability Analysis 
Based on the approximation difference equation in 

Equation 3, suppose 𝑘 + 1 = 𝑁 − 𝑝 and 𝑘 = 𝑁 − (𝑝 + 1) , 

yield: 

 

𝑎𝑖𝑉𝑖−1,𝑗,𝑁−(𝑝+1) + 𝑏𝑖𝑉𝑖+1,𝑗,𝑁−(𝑝+1) − 𝑐𝑖𝑉𝑖,𝑗−1,𝑁−(𝑝+1) 

+𝑐𝑖𝑉𝑖,𝑗+1,𝑁−(𝑝+1) + 𝑉𝑖,𝑗,𝑁−(𝑝+1) 

=
(−𝛼𝑖 + 𝛽𝑖)

𝑑𝑖
𝑉𝑖−1,𝑗,𝑁−𝑝 +

(−𝛼𝑖 − 𝛽𝑖)

𝑑𝑖
𝑉𝑖+1,𝑗,𝑁−𝑝 

+
𝛾𝑖
𝑑𝑖
𝑉𝑖,𝑗−1,𝑁−𝑝 −

𝛾𝑖
𝑑𝑖
𝑉𝑖,𝑗+1,𝑁−𝑝 

+
(−1+2𝛼𝑖−𝜃)

𝑑𝑖
𝑉𝑖,𝑗,𝑁−𝑝   (4) 

 

The solutions of Equation 4 can be assumed to be the 

following: 

 

𝑉𝑖,𝑗,𝑁−(𝑝+1) = 𝜀
(𝑝+1)𝑒(𝑖+𝑗)2𝜋√−1/𝜔, 

𝑉𝑖,𝑗+1,𝑁−(𝑝+1) = 𝜀
(𝑝+1)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔, 

𝑉𝑖,𝑗−1,𝑁−(𝑝+1) = 𝜀
(𝑝+1)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔, 

𝑉𝑖+1,𝑗,𝑁−(𝑝+1) = 𝜀
(𝑝+1)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔, 

𝑉𝑖−1,𝑗,𝑁−(𝑝+1) = 𝜀
(𝑝+1)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔 

𝑉𝑖,𝑗,𝑁−𝑝 = 𝜀
𝑝𝑒(𝑖+𝑗)2𝜋√−1/𝜔, 

𝑉𝑖,𝑗+1,𝑁−𝑝 = 𝜀
𝑝𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔, 

𝑉𝑖,𝑗−1,𝑁−𝑝 = 𝜀
𝑝𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔, 

𝑉𝑖+1,𝑗,𝑁−𝑝 = 𝜀
𝑝𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔, 

𝑉𝑖−1,𝑗,𝑁−𝑝 = 𝜀
𝑝𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔.  (5) 

 

Next, by substituting Equation 5 into Equation 4, yield 

  

𝑎𝑖𝜀
(𝑝+1)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔 + 𝑏𝑖𝜀

(𝑝+1)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔 

−𝑐𝑖𝜀
(𝑝+1)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔 + 𝑐𝑖𝜀

(𝑝+1)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔 

+𝜀(𝑝+1)𝑒(𝑖+𝑗)2𝜋√−1/𝜔 = 
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(−𝛼𝑖 + 𝛽𝑖)

𝑑𝑖
𝜀(𝑝)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔 

+
(−𝛼𝑖 − 𝛽𝑖)

𝑑𝑖
𝜀(𝑝)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔 

+
𝛾𝑖
𝑑𝑖
𝜀(𝑝)𝑒(𝑖+𝑗−1)2𝜋√−1/𝜔 −

𝛾𝑖
𝑑𝑖
𝜀(𝑝)𝑒(𝑖+𝑗+1)2𝜋√−1/𝜔 

+
(−1 + 2𝛼𝑖 − 𝜃)

𝑑𝑖
𝜀(𝑝)𝑒(𝑖+𝑗)2𝜋√−1/𝜔 

 

Then, 

𝜀(𝑎𝑖𝑒
−2𝜋√−1/𝜔 + 𝑏𝑖𝑒

2𝜋√−1/𝜔 

−𝑐𝑖𝑒
−2𝜋√−1/𝜔 + 𝑐𝑖𝑒

2𝜋√−1/𝜔 + 1) 

=
(−𝛼𝑖 + 𝛽𝑖)

𝑑𝑖
𝑒−2𝜋√−1/𝜔 

+
(−𝛼𝑖 − 𝛽𝑖)

𝑑𝑖
𝑒2𝜋√−1/𝜔 +

𝛾𝑖
𝑑𝑖
𝑒−2𝜋√−1/𝜔 

−
𝛾𝑖
𝑑𝑖
𝑒2𝜋√−1/𝜔 +

(−1 + 2𝛼𝑖 − 𝜃)

𝑑𝑖
 

𝜺(
𝜶𝒊 − 𝜷𝒊
𝒅𝒊

𝒆−𝟐𝝅√−𝟏/𝝎 +
𝜶𝒊 + 𝜷𝒊
𝒅𝒊

𝒆𝟐𝝅√−𝟏/𝝎 

−
𝜸𝒊
𝒅𝒊
𝒆−𝟐𝝅√−𝟏/𝝎 +

𝜸𝒊
𝒅𝒊
𝒆𝟐𝝅√−𝟏/𝝎 + 𝟏) 

=
(−𝜶𝒊 + 𝜷𝒊)

𝒅𝒊
𝒆−𝟐𝝅√−𝟏/𝝎 

+
(−𝜶𝒊 − 𝜷𝒊)

𝒅𝒊
𝒆𝟐𝝅√−𝟏/𝝎 +

𝜸𝒊
𝒅𝒊
𝒆−𝟐𝝅√−𝟏/𝝎 

−
𝜸𝒊
𝒅𝒊
𝒆𝟐𝝅√−𝟏/𝝎 +

(−𝟏 + 𝟐𝜶𝒊 − 𝜽)

𝒅𝒊
 

𝜺[(𝜶𝒊 − 𝜷𝒊)𝒆
−𝟐𝝅√−𝟏/𝝎 + (𝜶𝒊 + 𝜷𝒊)𝒆

𝟐𝝅√−𝟏/𝝎 

−𝜸𝒊𝒆
−𝟐𝝅√−𝟏/𝝎 + 𝜸𝒊𝒆

𝟐𝝅√−𝟏/𝝎 
+(−𝟏 − 𝟐𝜶𝒊 + 𝜽)] 

= (−𝜶𝒊 + 𝜷𝒊)𝒆
−𝟐𝝅√−𝟏/𝝎 

+(−𝜶𝒊 − 𝜷𝒊)𝒆
𝟐𝝅√−𝟏/𝝎 + 𝜸𝒊𝒆

−𝟐𝝅√−𝟏/𝝎 

−𝜸𝒊𝒆
𝟐𝝅√−𝟏/𝝎 + (−𝟏 + 𝟐𝜶𝒊 − 𝜽) 

 

𝜺[𝜶𝒊(−𝟐 + 𝒆
−𝟐𝝅√−𝟏/𝝎 + 𝒆𝟐𝝅√−𝟏/𝝎) 

+𝜷𝒊(𝒆
𝟐𝝅√−𝟏/𝝎 − 𝒆−𝟐𝝅√−𝟏/𝝎) 

+𝜸𝒊(𝒆
𝟐𝝅√−𝟏/𝝎 − 𝒆−𝟐𝝅√−𝟏/𝝎) 

−𝟏 − 𝟐𝜶𝒊 + 𝜽] 

= 𝜶𝒊(𝟐 − (𝒆
−𝟐𝝅√−𝟏/𝝎 + 𝒆𝟐𝝅√−𝟏/𝝎) 

+𝜷𝒊(𝒆
−𝟐𝝅√−𝟏/𝝎 − 𝒆𝟐𝝅√−𝟏/𝝎) 

+𝜸𝒊(𝒆
−𝟐𝝅√−𝟏/𝝎 − 𝒆𝟐𝝅√−𝟏/𝝎) 

−𝟏 + 𝟐𝜶𝒊 − 𝜽 

 

By using identities, 

𝒄𝒐𝒔( 𝟐𝝅/𝝎) =
𝒆𝟐𝝅√−𝟏/𝝎 + 𝒆−𝟐𝝅√−𝟏/𝝎

𝟐
 

 

𝒔𝒊𝒏( 𝟐𝝅/𝝎) =
𝒆𝟐𝝅√−𝟏/𝝎 − 𝒆−𝟐𝝅√−𝟏/𝝎

𝟐√−𝟏
 

𝜺[𝜶𝒊(−𝟐 + 𝟐𝒄𝒐𝒔( 𝟐𝝅/𝝎)) 

+𝜷𝒊(𝟐√−𝟏𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 

+𝜸𝒊(𝟐√−𝟏𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 
−𝟏 − 𝟐𝜶𝒊 + 𝜽] 
= 𝜶𝒊(𝟐 − 𝟐𝒄𝒐𝒔( 𝟐𝝅/𝝎)) 

+𝜷𝒊(−𝟐√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 

+𝜸𝒊(−𝟐√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 
−𝟏 + 𝟐𝜶𝒊 − 𝜽 

 

𝜺[−𝟐𝜶𝒊(𝟏 − 𝒄𝒐𝒔( 𝟐𝝅/𝝎)) 

+𝟐𝜷𝒊(√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 

+𝟐𝜸𝒊(√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎)) − 𝟏 
−𝟐𝜶𝒊 + 𝜽] = 𝟐𝜶𝒊(𝟏 − 𝒄𝒐𝒔( 𝟐𝝅/𝝎)) 

−𝟐𝜷𝒊(√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎)) 

−𝟐𝜸𝒊√−𝟏 𝒔𝒊𝒏( 𝟐𝝅/𝝎) − 𝟏 + 𝟐𝜶𝒊 − 𝜽  (6) 

According to von Neumann stability analysis, the 

difference equation is considered stable if and only if ||1. 

From Equation 6,  

|𝜀| =

√
(2𝛼𝑖(1 − 𝑐𝑜𝑠( 2𝜋/𝜔)) − 1 + 2𝛼𝑖 − 𝜃)

2

+(𝑠𝑖𝑛( 2𝜋/𝜔)(2𝛽𝑖 + 2𝛾𝑖))
2

√
(−2𝛼𝑖(1 − 𝑐𝑜𝑠( 2𝜋/𝜔)) − 1 − 2𝛼𝑖 + 𝜃)

2

+(−𝑠𝑖𝑛( 2𝜋/𝜔)(2𝛽𝑖 + 2𝛾𝑖))
2

 

|𝜀| =

√
([2𝛼𝑖(1 − 𝑐𝑜𝑠( 2𝜋/𝜔)) + 2𝛼𝑖 − 𝜃] − 1)

2

+(𝑠𝑖𝑛( 2𝜋/𝜔)(2𝛽𝑖 + 2𝛾𝑖))
2

√
(−[2𝛼𝑖(1 − 𝑐𝑜𝑠( 2𝜋/𝜔)) + 2𝛼𝑖 − 𝜃] − 1)

2

+(− 𝑠𝑖𝑛( 2𝜋/𝜔)(2𝛽𝑖 + 2𝛾𝑖))
2

 

Since  2𝛼𝑖(1 − 𝑐𝑜𝑠( 2𝜋/𝜔)) + 2𝛼𝑖 − 𝜃 ≥ 0, then |𝜀| ≤
1, therefore, the approximation equation is considered to be 

stable. It can be concluded that the discretization scheme is 

unconditionally stable. 

4. Numerical Experiments 
In order to investigate the efficiency of the proposed 

method, several computational experiments were performed 

on two examples of fixed strike call arithmetic Asian option 

pricing. The criteria considered are the number of iterations, 

computational time, maximum relative error and root mean 

square error (RMSE) of the GS and RBGS iterative methods. 

The numerical results are compared with the analytical 

solution given by Elshegmani and Ahmad [8]. The matrix 

sizes tested are 100, 150, 200, 250, 300 and 350.  

4.1. Experiment 1  

Consider the values of the parameters are K = 20, r = 0.05, 
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 = 0.25, T = 1(year), Smax=Zmax=500 and Z0=20 [7]. The computational results are shown in Table 1 and Figure 4. 

Table 1. Computational results of experiment 1 

Number of iterations 

 Mesh Sizes 

Methods 100 150 200 250 300 350 

GS 5480 10237 16654 24689 34319 45516 

RBGS 4552 9082 15269 23074 32487 43464 

Computational Time (Seconds) 

GS 1.64 5.99 16.88 39.45 80.52 155.23 

RBGS 1.10 4.36 12.98 30.88 63.65 137.36 

Maximum Relative Errors 

GS 3.1298E-8 3.1529E-8 3.1642E-8 3.1706E-8 3.1746E-8 3.1772E-8 

RBGS 3.1305E-8 3.1539E-8 3.1654E-8 3.1721E-8 3.1763E-8 3.1790E-8 

   RMSE    

GS 5.0497E-8 3.3479E-8 2.5037E-8 1.9993E-8 1.6639E-8 1.4248E-8 

RBGS 5.0503E-8 3.3485E-8 2.5043E-8 2.0000E-8 1.6646E-8 1.4254E-8 

 
Fig. 4 Performance of RBGS algorithm for experiment 1: (a) Comparison of the number of iterations. (b) Comparison of computational time 

 

According to Table 1, the RBGS method requires less 

number of iterations and shorter computational time than the 

GS method. It can be seen clearly from the graphical 

illustrations of the performance of the RBGS method 

compared to the GS method in Figure 4.  

 

The number of iterations decreased by about 4.51% to 

16.93%, while the computational time accelerated by about 

11.51% to 32.93%, refer to Table 3. As for the accuracy, the 

maximum relative errors and RMSE shown in Table 1 for both 

iterative methods are in good agreement. 

4.2. Experiment 2 

Suppose the values of the parameters are K = 7, r = 0.3,  

= 0.3, T = 1(year), Smax=Zmax=500, S0=10 and  Z0=7 [12]. The 

computational results are tabulated in Table 2 and graphically 

presented in Figure 5. 

Based on the computational results shown in Table 2, the 

RBGS algorithm again displayed a reduction in iteration count 

and computational time compared to the GS algorithm. 

Similarly, Figure 5 provides a clear visual representation of 

the reduction in the number of iterations and computational 

time achieved by the RBGS algorithm from that of the GS 

algorithm. The number of iterations decreased by about 3.14% 

to 12.33%, while the computational time accelerated by about 

14.15% to 25.63%, as recorded in Table 3. Likewise, the 

accuracy of the RBGS algorithm is in good agreement with 

that of the GS algorithm, as presented at the maximum relative 

errors and  RMSE sections in Table 2. 
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Table 2. Recommended font sizes computational results of experiment 2 

Number of iterations 

 Mesh Sizes 

Methods 100 150 200 250 300 350 

GS 7083 13812 22917 34344 48052 64006 

RBGS 6210 12700 21576 32765 46271 61998 

Computational Time (Seconds) 

GS 1.99 7.93 23.36 54.29 111.55 210.79 

RBGS 1.48 6.14 17.41 41.73 90.50 180.97 

Maximum Relative Errors 

GS 8.7381E-7 8.8424E-7 8.8969E-7 8.9305E-7 8.9534E-7 8.9701E-7 

RBGS 8.7381E-7 8.8424E-7 8.8969E-7 8.9305E-7 8.9535E-7 8.9701E-7 

   RMSE    

GS 6.1139E-7 4.0493E-7 3.0270E-7 2.4167E-7 2.0112E-7 1.7222E-7 

RBGS 6.1140E-7 4.0494E-7 3.0270E-7 2.4168E-7 2.0113E-7 1.7223E-7 
 

 
Fig. 5 Performance of RBGS algorithm for experiment 2: (a) Comparison of the number of iterations. (b) Comparison of computational time 

 

Table 3. Percentage reduction of iterations count and computational 

time of RBGS method relative to GS method  

Experiment Iterations Reduced (%) Time reduced (%) 

1 4.51 – 16.93 11.51 – 32.93 

2 3.14 – 12.33 14.15 – 25.63 

 

5. Discussion 
Based on Experiments 1 and 2, both RBGS and GS 

iterative methods were computed to solve the Asian option 

pricing with different parameters. The results in Tables 1 

and 2 clearly show that the RBGS iterative method 

recorded less number of iterations and faster than the GS 

iterative method. Table 3 describes that RBGS managed to 

reduce the number of iterations by around 3 to 17% while 

accelerating the computational time by about 11 to 33%.  

 

In terms of accuracy, both methods are quite accurate, 

with an accuracy of E-7 and E-8, respectively, in Experiment 

1 and 2. Hence, the red-black ordering of the RBGS iterative 

method does not alter the accuracy of the numerical solution. 

The results in Table 1 and 2 show that the RMSE of the RBGS 

iterative method are in good agreement with the GS iterative 

method.  

The accurate results are due to the derivation of the 

standard Crank-Nicolson approximation scheme onto 

Equation 1. Compared to the simple Crank-Nicolson 

approximation scheme used by Lee and Chin [12], the 

standard Crank-Nicolson approximation scheme applied in 

this paper has a higher order of accuracy. This is supported by 

the simulation analysis of Lee and Chin [12] and the numerical 

results in section 4.  

The relative errors obtained by Lee and Chin [12] are 

about E-2 and E-3, whereas this study managed to achieve the 

maximum relative errors of about E-7 and E-8. Thus, the 

accuracy is improved by applying the standard Crank-

Nicolson approximation scheme, having a central difference 

between stock price and average stock price while remaining 

the backward difference for time level. 

Furthermore, the proposed RBGS method can enhance 

the GS method [13] efficiently regarding the number of 

iterations and computational time. As it is notable based on 

Table 3, the iteration count has been reduced to around 3 to 
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17%, while the computational time is accelerated by about 11 to 33%. 

6. Conclusion  
The Red-Black Gauss-Seidel (RBGS) algorithm has 

been developed as a means to efficiently solve the linear 

system arising from the Crank-Nicolson approximation 

equations in Equation 3 on each time level. Moreover, the 

Crank-Nicolson approximation equation in Equation 3 has 

been proven to be stable through von Neumann stability 

analysis. Numerical experiments have demonstrated that 

the RBGS algorithm outperforms the Gauss-Seidel (GS) 

algorithm in terms of the number of iterations and 

computational time required. The accuracy of the RBGS 

method is comparable to that of the GS method and quite 

accurate, as evidenced by the low RMSE values presented 

in Tables 1 and 2. The application of Red-Black ordering 

within the GS method, as exemplified by the RBGS 

algorithm, has shown to be an effective approach for 

solving arithmetic Asian option pricing. By exploiting the 

alternating red-black updates, the RBGS algorithm reduces 

the computational burden and improves the efficiency of 

the solution process. In conclusion, the RBGS algorithm 

presents a viable and efficient numerical method for 

solving arithmetic Asian options pricing. 
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