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Abstract - Gears are the most fundamental unit for mechanical power transmission and play an important role in industrial 

applications. High-speed gearboxes are widely used in different applications, such as steam and gas turbines, pumps, 

compressors, etc. In this case study, a high-speed gearbox with a helical gear pair is considered using the DIN and AGMA 

standards, along with design factors including the face width, number of teeth on the pinion and gear, module, and helix angle. 

The DIN and AGMA standards are used to calculate the various gear geometry parameters, such as size and strength. A 

multivariable and constrained optimization problem is presented with a derived objective function. The volume minimization is 

performed using the cohort intelligence algorithm in MATLAB, and the results obtained are found to be satisfactory. Cohort 

intelligence is a modern technique that is applied for the optimization of different mechanical parts, systems, and processes. An 

optimized set of parameters models a helical gear pair in CAD software. The optimized design is then validated using FEA 

software, which shows that the stress value in the gear pair is below the allowable stress limit for the given material. 

Keywords - Helical gear pair, Nature-inspired optimization algorithm, Cohort Intelligence Algorithm, Genetic Algorithm, 

Particle Swarm Optimization, and FEA. 

1. Introduction  
Helical gear units are used as power transmission devices 

in various applications, such as generator units, compressors, 

pumps, gas turbines, and steam turbines. They enable smooth 

and quiet operation, increase load-carrying capacity, operate 

at faster speeds, and provide effective engagement, which 

enhances the speed of power transmission and maximizes 

efficiency. High-speed gearboxes are commonly used in 

industrial applications and power plants. This case study 

considers a high-speed gearbox for turbine generator 

applications. The layout of the high-speed gearbox is shown 

in Figure 1. A high-speed gearbox is primarily composed of a 

High-speed Shaft (HS) and a Low-speed Shaft (LS), both of 

which are supported by Drive End (DE) and Non-drive End 

(NDE) bearings. The turbine shaft is coupled to a high-speed 

shaft, and the generator shaft is coupled to a low-speed shaft. 

A helical gear pair transmits power from a high-speed shaft to 

a low-speed shaft. There is a demand for optimized gears with 

lower weight and volume to meet high-speed and industrial 

gearboxes' transmission requirements. Low-weight optimized 

gear can improve process efficiency while using less material 

and costing less to manufacture. 

 

Nature-inspired optimization techniques, such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), simulated annealing (SA), and 

Tabu search, have gained popularity due to their simplicity of 

implementation and rule-based functioning. GA operates on a 

population-based approach, which evolves using selection, 

crossover, and mutation operators. According to Deb [5] and 

Ray et al. [6], the effectiveness of GA depends on the quality 

of the population being evaluated, and it may require local 

improvement techniques to incorporate into it to reach close 

to the global optimal solution.  
 

Swarm Intelligence (SI) is a decentralized, self-

organizing optimization approach that takes inspiration from 

the social behavior of living organisms, such as insects, fishes, 

etc., that communicate with each other either directly or 

indirectly. PSO is a technique inspired by the social behavior 

of bird flocking and fish schools searching for food [7]. 
 

Similarly, ACO is based on the foraging behavior of ants, 

following the shortest path [8]. At the same time, the Bee 

Algorithm (BA) is modeled after the social behavior of honey 

bees finding food. However, it aims to optimize the use of the 

number of members involved in particular pre-decided tasks 

[9].  
 

Cohort Intelligence (CI) is a novel Artificial Intelligence 

(AI) technique introduced by Kulkarni et al. [10], which draws 

inspiration from the self-supervised learning patterns 

exhibited by a group of individuals within a cohort. 

https://www.internationaljournalssrg.org/
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Anand Kumar Gaurav and R. K. Ambikesh have taken 

care of business on the weight optimization of a helical gear 

pair using FEA [17]. Ketan Tamboli employed particle swarm 

optimization techniques to optimize the design of a heavy-

duty helical gear pair. They formulated an optimization 

problem and obtained a solution using the particle swarm 

optimization algorithm in their research [19]. 

 

In this case study, the cohort intelligence algorithm is 

used for volume optimization of a helical gear pair. Cohort 

intelligence is a modern algorithm for optimization that takes 

inspiration from the self-supervised learning behavior of the 

candidates in a cohort. Based on previous research, it has been 

found that it is widely used for the optimization of different 

mechanical systems as well as processes. Compared to other 

algorithms like GA, PSO, ACO, etc., the cohort intelligence 

algorithm has fewer algorithm-centric settings, making it easy 

to operate. The user only needs to input an objective function 

with upper and lower bounds, and the algorithm takes less 

time to produce results. 

 

 
Fig. 1 Layout of High-Speed gearbox 

 
1.1. Methodology 

In this case study, the cohort intelligence algorithm is 

used for volume optimization of a helical gear pair. Cohort 

intelligence is a modern algorithm for optimization that takes 

inspiration from the self-supervised learning behavior of the 

candidates in a cohort. Based on previous research, it has been 

found that it is widely used for the optimization of different 

mechanical systems as well as processes. When compared to 

other algorithms like GA, PSO, ACO, etc., the cohort 

intelligence algorithm has fewer algorithm-centric settings, 

making it easy to operate. The user only needs to input an 

objective function with upper and lower bounds, and the 

algorithm takes less time to produce results. 

 

2. Design of Helical Gear  
The helical gear pair is designed for high-speed gearbox 

applications, and the following input parameters are 

considered: 

1] Power Transmitted = 1270 KW; 2] Gear Ratio = 5.038; 

3] Helix Angle =5◦; 4] Module = 4; 5] Pinion Speed = 7500 

RPM; 6] Gear Speed = 1500 RPM.  

 

Material of the gear pair is case hardening steels 

(18CrNiMo 7-6) according to DIN EN 10084 standard. Table 

1 shows the properties of 18CrNiMo 7-6. 

 
Table 1. Properties of 18CrNiMo 7-6 material 

No Parameter Value 

1 Density (kg/m3) 7800 

2 Poisson’s Ratio 0.3 

3 Modulus of Elasticity (GPa) 210 

4 Shear Modulus (Gpa) 80 

5 Yield Tensile Strength (Mpa) 780 

6 Ultimate Tensile Strength (Mpa)) 1200 

 
Table 5 provides a summary of the key design parameters 

for a single-stage helical gear pair, which are based on DIN 

3960 and AGMA 6011 J14 standards [2, 3]. Additional 

geometrical parameters and strength-based factors for the 

pinion and gear wheels are listed in Tables 6 and 7, 

respectively, provided in the Appendix. A helical gear pair is 

modelled in PTC Creo software, as shown in Figure 2. 

 

 
Fig. 2 CAD model of helical gear pair 

 

3. Formulation of Mathematical Model 
To achieve volume minimization for the helical gear pair, 

several design variables are considered, including the module 

( mn,), face width (b), pinion teeth ( z1,), gear teeth ( z2), and 

helix angle (β). These parameters significantly impact the 

overall performance and efficiency of the gear pair, as well as 

its size and weight. Upper and lower bounds for each 

parameter are specified and summarized in Table 2. 

 

3.1. Formulation of Objective Function 

For the present case study, the volume of the cylindrical 

gear pair may be expressed as [19]. 
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Volume =  
π

4
∗ [

m𝑛
 2 b

cos2 (β)
 (z1

 2 + z2
 2)]             (1) 

The objective function of the above system is represented in 

the below format, 

           f(x) = f(mn, b,  z1, z2, β )                       

f(x) =
π

4
∗ [

m𝑛
 2 b

cos2 (β)
 (z1

 2 + z2
 2)]                     (2) 

Table 2. Variable parameter of helical gear pair 

No Parameter 
Lower 

Bound 

Upper 

Bound 

1 Module (mn) 4 8 

2 Face Width (b) 80 250 

3 No of Teeth on Pinion (z1) 23 52 

4 No of Teeth on Gear (z2) 110 280 

5 Helix Angle (β ) 5◦ 14◦ 

 
3.2. Formulation of Constraints 

The various strength factors for helical gear pairs include 

load distribution factors, safety factors for bending, safety 

factors for pitting, and safety factors for geometry, among 

others. Geometric constraints such as the number of teeth, face 

width, and helix angle are calculated and summarized in 

Tables 5, 6, and 7, respectively. 

 

The mathematical model for the gear pair system is 

expressed below. The transverse contact ratio for helical gears 

is given by, 

= 
1

2π
[Z1{tan(θ1) −  tan(ϕw)} −  Z2{tan(θ2) −  tan(ϕw)}]      () 

For the present problem, the expression for transverse 

contact ratio for pinion and gear, respectively, may be 

expressed as, 

εα1 =

 z1  [tan {cos−1 (
db1

da1
)} − tan

[
 
 
 
 

cos−1 [

mn

cos(β )
∗ (z1 + z2 )

2a′

cos (ϕt)

]

]
 
 
 
 

]

  2π
 

() 

εα2 =

 z2  [tan {cos−1 (
db1

da1
)} − tan

[
 
 
 
 

cos−1 [

mn

cos(β )
∗ (z1 + z2 )

2a′

cos (ϕt)

]

]
 
 
 
 

]

  2π
 

() 
3.2.1. Safety Factor for Pitting 

       The safety factor constraints for pitting in both the pinion 

and gear are calculated based on the elasticity, Poisson’s ratio, 

transverse contact ratio, and contact stress of the pinion and 

gear. 

[SH]1 = 1.2 − 
985.5

189.65 ∗ √
1

εα1 + εα2 
∗ √cos(β ) ∗ √1

b
∗ 1.06 ∗ 48.55 

 

() 

[SH]2 = 1.2 − 
1078.5

189.65 ∗ √
1

εα1 + εα2 
∗  √cos(β ) ∗  √

1
b

∗  1.06 ∗ 48.45  

 

() 

3.2.2. Safety Factor for Bending 

The safety factor constraints for bending in both the 

pinion and gear are calculated based on various factors, 

including the life, size, and relative toughness of the gears and 

the dynamic load, load distribution, helix angle, reliability, 

application, and bending stress. 

[SF]1

= 1.4 − 
392.5

30390.31
mn ∗ b

∗ [0.25 + 
0.75

εα1 + εα2 
] ∗ [1 − 

b sin(β) 
π ∗ mn

] ∗ 1.20 ∗ 3.06 
  

() 

[SF]2

= 1.4 − 
413.5

30390.31
mn ∗ b

∗ [0.25 + 
0.75

εα1 + εα2 
] ∗ [1 − 

b sin(β) 
π ∗ mn 

] ∗ 1.20 ∗ 3.06 
 

() 

4. Constraints Handling Technique 
Optimization algorithms inspired by nature are usually 

developed to handle unconstrained optimization problems. 

However, the majority of engineering problems in the real 

world are constrained optimization problems [14-22]. 

 

The static penalty function approach is a technique used 

to handle constraints in optimization problems. This approach 

converts a constrained optimization problem into an 

unconstrained one by adding a penalty function to the 

objective function. The penalty function assigns a penalty 

value to any solution that violates the problem constraints. A 

simple way to penalize infeasible solutions is to apply a 

constant penalty to any solution that violates the feasibility 

constraints. The penalty function for a problem with equality 

and inequality constraints can be added to form the pseudo-

objective function 𝑓𝑞(𝑥) as follows. 

 

𝑓𝑝(𝑥) = 𝑓(𝑥) + ∑ 𝑞𝑖 ∗  𝑆 ∗  {𝑔𝑖(𝑥)}2
𝑛

𝑖=0

+ ∑ 𝐵𝑗 ∗  𝑆 ∗  ℎ𝑗(𝑥)

𝑛

𝑗=0

 

() 
Here, 𝑓𝑝(𝑥)  is the expanded penalized objective function 

S is a penalty for violating a constraint. 

𝑞𝑖 = 1, if constraint i is violated.  

𝑞𝑖 = 0, if constraint i is satisfied. 

𝐵𝑗  = 1, if constraint i is violated. 

𝐵𝑗  = 0, if constraint i is satisfied. 
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Let 𝑛 be the number of inequality constraints, and 𝑚 be 

the number of equality constraints in an optimization problem. 

If the constraint is violated, the value of the 𝑞𝑖 will be one else; 

it will be zero. The penalty 𝑆 can be chosen based on 

preliminary trials of the algorithm, and as the optimization 

algorithm progresses, the violation of constraints may 

decrease, and the penalty coefficient can be adjusted 

accordingly. Eventually, the algorithm may converge to the 

optimum value for the problem. 
 

5. Volume Optimization by using Cohort 

Intelligence Algorithm 
The Cohort Intelligence (CI) algorithm models the ability 

of candidates in a cohort to self-supervise and improve their 

independent behavior. Each candidate possesses unique 

qualities that determine their behavior, and in each learning 

attempt, they seek to improve their behavior through 

interaction and competition with their peers. As candidates 

learn from one another, their individual qualities converge to 

form a shared behavior for the entire cohort. This convergence 

occurs after a series of learning attempts, at which point the 

behavior of each candidate becomes saturated, resulting in a 

unified behavior for the entire cohort [10]. 

 

      Figure 3 indicates the flow process through which the 

Cohort Intelligence (CI) algorithm applies its logic to the 

given condition. Consider a general constrained problem (in 

the minimization sense) as follows [13]. 

 

Minimize  𝑓(𝑥) = 𝑓(𝑥1, … 𝑥𝑖 … , 𝑥𝑁) 

Subject   𝑔𝑖(𝑥) ≤ 0,   i = 1, 2, ….,n  

ℎ𝑗(𝑥) = 0, j = 1, 2,….,m 

  Ψ𝑖
𝑙𝑜𝑤𝑒𝑟   ≤ Ψ𝑖

𝑢𝑝𝑝𝑒𝑟
  

In the context of CI, the objective function 𝑓(𝑥) i.e., 

equation 1, is considered the behavior of an individual 

candidate in the cohort, and the variable x=(𝑥1, … 𝑥𝑖 … , 𝑥𝑁) 

i.e.,mn, b, z1, z2, β are considered as qualities. The CI 

optimization procedure begins with the initialization of the 

number of candidates 𝐶, the sampling interval 𝛹𝑖 for each 

quality 𝑥𝑖=1, 2… N, learning attempt counter 𝑙=1, and setting 

up of static sampling interval reduction factor 𝑟 ∈ [0, 1], 

convergence parameter. 

 

6. Finite Element Analysis 
Finite Element Analysis (FEA) refers to the utilization of 

the Finite Element Method (FEM), a numerical technique, for 

simulating and analyzing physical phenomena. The optimized 

parameters for a helical gear pair are obtained from a cohort 

intelligence optimization algorithm after 1800 iterations. The 

CI algorithm is coded in MATLAB (R2021a) and runs on a 

Windows 10 platform with a 2 GHz Intel (R) Core (TM) i3-

5005U CPU and 8 GB of RAM. The CAD modelling and FEA 

analysis of the optimized helical gear pair are conducted using 

PTC Creo and Ansys, respectively. Contact stress analysis is 

performed in Ansys to determine the contact stresses 

generated in the helical gear pair. 

 

6.1. Modelling 

PTC Creo is used to create a CAD model of an optimized 

helical gear pair, as shown in Figure 7. Then, for FEA 

analysis, a step file of an optimized helical gear pair from PTC 

Creo is imported to ANSYS. 

 

6.2. Meshing 

After importing the CAD model into Ansys, fine meshing 

is performed. As the helical gear pair is a solid component, 3D 

meshing is required, and tetrahedral elements are utilized for 

this purpose. At the contact point, a very fine mesh is applied. 

The mesh's total number of nodes and elements is 1,516,966 

and 351,461, respectively. 

 

6.3. Boundary Condition 

The driven gear and driving pinion are subjected to a 

remote displacement, while a moment of 1.619 × 106 N mm 

is applied to the driving pinion under the boundary condition, 

as shown in Figure 8. Remote displacement is a type of 

boundary condition that can be applied to both displacements 

and rotations at any given location in space. It is commonly 

used to restrict a particular displacement or rotation to a 

required direction.  

 

In this case, the remote displacement allows rotation of 

the driving pinion and driven gear in the X direction only 

while restricting rotation in the Y and Z directions. The 

tangential load acting on the gear pair and the reference 

diameter of the pinion are used to calculate the moment. 

 

6.4. Post Processing 

The post-processing phase involves estimating the Von 

Mises stress and total deformation. Contact stress is 

determined at the tooth contact point while bending stress is 

determined at the root fillet of the helical gear pair. 

 

6.5. Convergence in FEA 

The convergence is a crucial aspect of Finite Element 

Analysis (FEA) that involves achieving an accurate solution 

to Partial Differential Equations (PDEs) by refining the mesh 

or reducing the element size in the spatial domain. The mesh 

convergence process involves analyzing the impact of 

decreasing the element size on the accuracy of the solution. 

Generally, a finer mesh size yields a more precise solution 

because it provides a better sampling of the physical domain, 

enabling a more accurate representation of the design or 

product's behavior. 
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Fig. 3 Cohort Intelligence Algorithm (CI) flow chart [11] 

 

 Initialize number of candidate C in the cohort, quality variations t, 

and set up interval reduction quality variation t, and set up interval 
reduction 

START 

Every candidate shrinks/ expands the sampling interval of every 
quality i based on whether condition of saturation is satisfied 

Using roulette wheel approach every candidate selects behavior to 
follow from within the C available choice 

The probability associated with the behavior being followed by every 
candidate in the cohort is calculated   

Every candidate forms t behaviors by sampling the qualities from within 

the updated sampling intervals 

Every candidate follow the best behavior from within its t behaviors 

Accept the current cohort behavior  as  

final solution  

Cohort behavior                        
saturated? 

Convergence ? 
 

STOP 

N
B 

N
B 

Y 



Pratik Patil et al. / IJETT, 71(11), 247-256, 2023 

 

252 

Table 3. Comparison of CIA, GA and PSO results with design parameters of helical gear pair 

No. Parameter 
Technique 

Design Value CIA GA PSO 

1 Module (mn) 4 4 4 4 

2 Face Width (b) 130 110 110 110 

3 No of Teeth on Pinion (z1) 26 25 25 25 

4 No of Teeth on Gear (z2) 131 126 126 126 

5 Helix Angle (β) 7◦ 8◦ 9◦ 9◦ 

6 Volume (𝑚𝑚3) 2.9578 X 107 2.325 X 107 2.345 X 107 2.345X107 

 

 
Fig. 4 Graph obtained from FEA for converging the solution 

 

Figure 4 shows the convergence criteria used in the FEA 

for the analysis of an optimized helical gear pair. From the 

graph below, it is clear that the solution is converged, and von 

Mises stress is achieved at 351,461 number of elements. 
 

7. Result and Discussion 
The cohort intelligence algorithm (CIA) is a technique 

utilized to optimize the volume of a helical gear pair. To 

validate the effectiveness of CIA and compare the results, the 

optimization problem is also solved using the genetic 

algorithm (GA) and particle swarm optimization algorithm 

(PSO). The constraint considered is the safety factor for the 

pitting and bending of gear teeth. The CI, GA and PSO 

algorithm is coded in MATLAB (R2021a) and runs on a 

Windows 10 platform with a 2 GHz Intel (R) Core (TM) i3-

5005U CPU and 8 GB of RAM.The results of the CI 

optimization algorithm are compared with the designed 

results, GA results, and PSO results, as presented in Table 3. 

From the above results, it is clear that CIA provides optimal 

results for a helical gear pair compared to GA and PSO. The 

optimal parameters of a helical gear pair obtained by the 

cohort intelligence optimization algorithm are 𝑚𝑛= 4, b=110 

mm, 𝑧1=25, 𝑧2=126, β =8◦. 

The cohort intelligence optimization algorithm can 

produce better and more optimal results than the current 

design, GA, and PSO results by minimizing the volume of the 

helical gear pair with optimal values. After obtaining the 

optimized parameters, the helical gear pair is analyzed using 

Ansys software under the given boundary conditions. The 

FEA analysis yields the Von Mises stress and total 

deformation in the gear pair.  

 

The results obtained from the finite element analysis for 

the designed gear pair are presented in Figures 5 and 6, while 

the FEA result for the optimized gear pair is presented in 

Figures 9 and 10.  

 

Table 4 compares the analytical results and the FEA 

results for the optimized helical gear pair. The results obtained 

from the FEA analysis indicate that the contact stresses in the 

helical gear pair are within the permissible limits of the 

material, indicating that the assigned constraints are fully 

satisfied. 

Table 4. Comparison of analytical and FEA results for optimized helical 

gear pair 

No Stresses 
Analytical Value 

(Mpa) 

FEA Value 

(Mpa) 

1 Contact Stress 572.22 558.07 

2 Bending Stress 176.4 168.52 
 

 
Fig. 5 Total deformation in designed gear pair 
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Fig. 6 Von-Mises stress in designed gear pair 

 

Fig. 7 CAD model of optimized gear pair 

 
Fig. 8 Boundary condition 

 
Fig. 9 Total deformation in optimized gear pair 

 

Fig. 10 Von-Mises stress in optimized gear pair 

 

8. Conclusion 
The gear is the most important component in a power 

transmission system and has a wide range of applications. The 

helical gear pair optimization problem is formulated in this 

paper with volume minimization as the objective function. 

The safety factor for pitting and bending gear teeth is 

considered a constraint in the problem. The design variables 

include the normal module, face width, number of teeth, and 

helix angle of the helical gear pair. To convert constrained 

optimization problems into unconstrained ones, the static 

penalty approach is employed as a constraint-handling 

method. The optimization problem is solved using the cohort 

intelligence algorithm, the genetic algorithm (GA), and the 

particle swarm optimization algorithm (PSO). The cohort 

intelligence algorithm (CIA) provided the optimal values for 

the helical gear pair, resulting in the minimization of volume. 

A helical gear pair with optimal parameters is designed in PTC 

Creo, followed by an FEA analysis in Ansys software for 
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specific boundary conditions. The von Mises stress obtained 

from the FEA analysis is within the permissible limit for the 

material. The cohort intelligence algorithm (CIA) gives the 

optimal volume of a helical gear pair as 2.325 × 107, which is 

lower than the actual design value, as well as the results 

obtained from the GA and PSO algorithms. The results 

indicate that the cohort intelligence algorithm can be 

effectively apply to real-world engineering design problems. 

 

List of abbreviations 
σH Contact stress number  

σb Bending stress number  

σHP Allowable contact stress number 

σFP Allowable bending stress number 

[𝜎𝐻]𝑒𝑓𝑓  Effective allowable contact stress number 

[𝜎𝐹]𝑒𝑓𝑓  Effective allowable bending stress number 

εα Transverse contact ratio 

gβ Overlap ratio 

mn Normal Module  

b Face width  

𝟇 Pressure angle  

β Helix angle  

Z1 Number of teeth on the pinion 

Z2 Number of teeth on gear 

YZ Reliability factor 

KB Rim thickness factor 

εα1 Transverse contact ratio for pinion 

εα2 Transverse contact ratio for gear 

KH Load distribution factor 

ZR Surface condition factor for pitting resistance 

ZI Geometry factor for pitting resistance 

YI Geometry factor for bending resistance 

ZW Hardness ratio factor  

SH Safety factor for pitting 

SF Safety factor for bending 

ZN Stress cycle factor for pitting resistance 

YN Stress cycle factor for bending resistance 

KV Dynamic factor 

kg Kilogram 

mm millimeter 

Mpa Megapascal 

Gpa Gigapascal 

N Newton 

KW Kilowatt 
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Appendix A. 
The expressions for safety factor, permissible bending and 

contact stresses are given below [2]. 

Effective allowable contact stress number 

            [𝜎𝐻]𝑒𝑓𝑓  ≤   
𝜎𝐻𝑃 

[𝑆𝐻]𝑚𝑖𝑛

∗  
𝑍𝑁

𝑌𝜃

∗  
𝑍𝑤

𝑌𝑧

 

Contact stress number   

               𝜎𝐻 = 𝑍𝐸 ∗ √𝐹𝑡  𝐾𝑂𝐾𝑣  𝐾𝐵  
𝐾𝐻

𝑑1𝑏
 
𝑍𝑅

𝑍𝐼
   

Safety factor for pitting    

𝑆𝐻 = 
[𝜎𝐻]𝑒𝑓𝑓

𝜎𝐻

 ≥   [𝑆𝐻]𝑚𝑖𝑛  

Effective allowable bending stress number 

              [𝜎𝐹]𝑒𝑓𝑓  ≤   
𝜎𝐹𝑃 

[𝑆𝐹]𝑚𝑖𝑛
∗  

𝑌𝑁

𝑌𝜃 𝑌𝑧
 

Bending Stress number 

𝜎𝐹= 𝐹𝑡  𝐾𝑂𝐾𝑣 𝐾𝑠  
1

𝑏 𝑚𝑡  

𝐾𝐻  𝐾𝐵

𝑌𝑗
  

Safety factor for bending    

𝑆𝐹 = 
[𝜎𝐹]𝑒𝑓𝑓

𝜎𝐹

 ≥   [𝑆𝐹]𝑚𝑖𝑛 

Table 5. Designed Parameters for Pinion and Gear 

mn Normal module (mm) 4 

P Input Power (KW) 1270 

ϕt Transverse pressure angle 20.138 

α Helix angle (degree) 7 

fr Radial force (N) 11144.23 

fa Axial force (N) 3731.46 

ϕw Working pressure angle (degree) 21.847 

xe Sum of profile shift coefficient 0.8192 

Pn Normal base pitch 11.808 

en Normal space width 4.754 

εα Transverse contact ratio 1.55 

ZE Elastic coefficient 189.65 

KHα Transverse load distribution factor 1 

KO Overload factor 1 

YN Stress life cycle factor for pitting 0.657 

Ch Helical factor 1.18 

KB Rim thickness factor 1 

ZR 
Surface condition factor for pitting 

resistance 
1 

mt Transverse Module (mm) 4.030 

𝟇 Pressure angle (degree) 20 

r Gear ratio 5.038 

ft Tangential force (N) 30390.31 

βb Base helix angle (degree) 5.5759 

a′ Working centre distance (mm) 320 

h Whole depth (mm) 9.450 

x 
Sum of addendum modification 

coefficient 
0.9489 

Pt Transverse base pitch 11.886 

et space width 4.796 

gβ Overlap ratio 1.26 

Kv Dynamic factor 1.11 

KHβ Face load distribution factor 1.202 

Kz Reliability factor 1 

ZN Stress life cycle factor for pitting 0.785 

KΨ Helical overlap factor 1 

Yθ Temperature factor 1 

ZN Stress cycle factor for  pitting resistance 0.657 

σHP Allowable contact stress number (Mpa) 1500 

YN 
Stress cycle factor for bending 

resistance 
0.785 

σFP Allowable bending stress number (Mpa) 500 
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Table 6. Geometrical Parameter for Pinion and Gear 

  Pinion Gear 

Z Number of teeth 26 131 

Zv Virtual no of teeth 26.5901 133.973 

d Reference diameter (mm) 104.781 527.93 

Sn Normal tooth thickness 7.521 7.805 

ha Addendum (mm 5.55 5.55 

hf Dedendum (mm) 3.8992 3.8992 

db Base diameter (mm) 98.375 495.65 

df Root diameter (mm) 96.982 520.91 

da Tip diameter (mm) 115.881 539.81 

db Base diameter (mm) 98.375 495.65 

 
Table 7. Other Factors for Pinion and Gear 

  Pinion Gear 

𝐊𝐟 Stress correction factor 1.504 1.577 

Y Tooth form factor 0.553 0.588 

𝐦𝐍 Load sharing ratio 0.69 

𝐊𝚿 Helix angle factor 0.98 

  
 


