
International Journal of Engineering Trends and Technology Volume 71 Issue 12, 90-97, December 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I12P210 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Software Engineering Learning Model Framework using

Agile Techniques

Davit Sanpote1, Worrakit Sanpote2

1,2School of Information and Communication Technology, University of Phayao, Thailand

1Corresponding Author : davit.sa@up.ac.th

Received: 01 August 2023 Revised: 12 October 2023 Accepted: 25 October 2023 Published: 06 December 2023

Abstract - Agile testing contains significant factors of success in implementing software products with good productivity. This

is an important skill for software developers and software testers. Moreover, agile testing also needs to be taught appropriately

to students studying in the field area of computers and technology. This research will describe some drawbacks and benefits

aspects in a case study from an undergraduate Software Engineer at the University of Phayao (SEUP). At the end of the paper

will be a discussion in terms of successful teaching methods of agile testing in testing classes.

Keywords - Agile testing process, Agile testing quadrant, Unit Test, Component test, Software engineer curriculum, teaching

unit.

1. Introduction
In software-industrial, including small scale and large

scale. Control of the software development process is an

important part before the team releases a final product to

customers. In the basics of developing the software product,

the software requirement is another significant key between

the development team in software companies and users.

Nowadays, the agile software development process has

become a more necessary method. Agile bring the

development team, and user can go along together by

releasing progress frequently. From the statement mentioned

above, software testing is a necessary part of the software

development process that can blend in an agile software

development process as a parallel called” Agile Testing”.

This research focused on finding teaching factors in software

testing subjects with the software engineering curriculum at

the University of Phayao (SEUP) [12], Thailand.

The knowledge gap will be mentioned in a new model of

teaching framework, which aligns with the improvement of

software testing skills set in the literature review and

discussion parts. The software testing has been divided into

two models, the traditional (PC1.0) model and the redesigned

model (PC1.1-1.2) based on the teaching framework [7],

which will be described in the related work section. The

software testing subject has broken down assignments into

four tasks: test case design, unit test, automated test, and test

report. These four tasks are included in the mini-project

assignment. In addition, the limitation of time is an evaluation

method for students. In the research and methodology

section, there are three categories to separate student

capability: “on-time complete”, “On time not complete”, and

“not on time. Moreover, the research results are beneficial to

improve and update teaching methods in the future.

2. Literature Review
2.1. Model for Agile Teaching and Software Testing

Concept

Recently, the agile method is another important basic

software development process in various scales of tech

companies. At the University level, teaching in the software

development process also includes agile concepts. Moreover,

in terms of teaching software testing processes in an agile

context, this paper needs to consider active teaching. An

active teaching method focuses on the learning center [7][8].

The most important activities are discussion, emphasizing,

and group work. In SEUP, similar activities for students to

play different roles in tech teams, such as product owner can

be another tester at the same. Another highlight of the

teaching concept is reinforcement in curriculum practice.

A real project from a real stakeholder is a necessary

experience for undergraduate students. The real project will

provide a powerful requirement to build the right Software

Requirement Specs (SRS) that can be used for project closure

with a User Acceptance Test (UAT). Another benefit for

students to work with a real project is when they face an

initial problem, the understanding of software testing

principles will be applied throughout the project rapidly.

Communication and expression skills are also included in this

part [4]. Furthermore, the evaluation result by collecting

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

91

student feedback is also important. To find out the success

and failure factors to improve the teaching plan. The voice of

the customer needs to be noted in an evaluation process, such

as a short questionnaire [3]. Last, the significant model

guidelines to build a course syllabus to achieve the learning

objective of Bloom’s Taxonomy [1]. The SEUP concentrated

on the level of understanding to apply for bachelor’s degree

achievement.

2.2. Building Syllabus of Software Testing using agile

Method Software Testing
Concepts contain a variety of fundamental and

professional experience skill sets. In teaching software

testing as an appropriate concept for undergraduate students,

necessary guidelines and methods to design a course syllabus

must be considered for the software engineering curriculum.

There are two major methods for designing the SEUP

curriculum, which are ACM/IEEE and SWEBOK. The ACM

/IEEE guide was used for the basic syllabus in computing in

the mid-2014 version.

ACM/IEEE was a collaboration between ACM and

IEEE to build a standard of the first computer science

2001,2008 and 2013, accordingly [6].

SWEBOK is a popular guideline method for the software

engineering curriculum since SEUP has a multidisciplinary

and academic skill set. SWEBOK has evolved to ISO/IEC

19759 standards that describe many specific and important

SE curricula [2].

In the next step, after completing a standard teaching

plan, a practical task will be created along with a plan. The

teaching strategy for each stage needs to locate a result

outcome to evaluate a student’s learning. There is previous

research that produced a generic construction of a teaching

unit [8], as shown in Table 1.

The SEUP has modified more details to evaluate

teaching factors in Table 2.

Table 1. Standard teaching framework

Teaching Unit

Prerequisites

Previous foundation subject’s unit. These units are related to the course syllabus and are provided for students to attend.

Guiding Questions

This is a discussion question to ask students at the beginning of each class.

Programmatic Content (PC)

The top view of competencies plan for a whole teaching period. A learning topic will be added to this session.

Expected Result Learning Level

The outcome that students will be able to

achieve after finishing a unit.

According to expected results can be described into certain levels, such as

cognitive ability and Bloom’s Taxonomy.

Table 2. Software testing teaching framework for software engineering students, University of Phayao, Thailand

Teaching Unit

Prerequisites

Students have basic knowledge of structure programming, functional programming, and OOP programming. Students have

a good understanding of the software requirement process. Students get used to the user's behavior related to business

growth.

Programmatic Content (PC1.1)

1. Conceptual testing process and agile testing

2. Type of software testing

3. Test scenario

4. White box and black box testing

Expected Result Learning Level

The students understand the basics of software testing concepts and can apply them

to test case scenario design by using white box and Blackbox testing techniques.
Understand/apply/build/analyze.

Programmatic Content (PC1.2)

1. Unit test

2. Automated test

3. Standard of software testing document and report

4. CI/CD

Expected Result Learning Level

The student can apply knowledge on a real project and report to users who give a software

requirement appropriately.
Understand/apply/analyze

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

92

Fig. 1 An overview of four-dimension significant software engineering skills

Fig. 2 An overview of the agile testing concept

According to Table 2, the software testing structure is

divided into two parts. Part one is in the midterm, which

contains basic knowledge after receiving software

requirement specs. After that, the student will analyze the

requirement into an initial test case version. The first test case

is used to implement a basic prototype to recheck once again

with the user. Part two contains technical terms using testing

automation tools and low-level tests with unit tests. Lastly,

students will collect all important results to summarize into a

final report. Both parts follow basic concepts of the agile

testing process with a real-world project.

2.3. Software Syllabus of Software Testing using Agile

Method Software Testing

Software Engineering (SE) curriculum combines a

multidisciplinary capability to design course structures for

education in university. Software engineering body of

knowledge (SWEBOK) represents the necessary skills for

software engineering. SWEBOK provided 15 important

significant skills, as shown in Figure 1.

Software testing is located in software development, an

important part of SE undergraduate students. SE curriculum

in the University of Phayao was designed based on a

backbone of SWEBOK and ACM Curricula guidelines. In

addition, this research objective also focuses on the concept

of teaching agile testing that is based on student knowledge

improvement [11].

However, some results from previous research

mentioned the advantages of knowledge improvement for

undergraduate student success in SE major by facing the right

software market [2] , which is interesting to point to future

study.

2.4. Agile Testing in Success Factor

Agile testing is a similar concept of agile development in

the software development life cycle (SDLC), which focuses

on the delivery quality of software in a short period of time,

as shown in Figure 2.

Fundamental of Software

Software Implementation

Mathematical

Engineering

Computing

Software Architecture and Design

Software Construction

Software Testing

Software Requirement Analysis

Software Management

Software Engineering process

Configuration Management

Software Maintenance

Professional Skills

Software Quality

Engineering Economics

Software Engineering methods

Professional Competencies

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

93

Table 3. Comparison information between traditional and agile teaching frameworks

Traditional Testing Agile Testing

Team works independently Recurring thought implementation process

Testers are not included in a part of the requirement analysis Testers are a significant position for the requirement phase.

Time consumption will be more in the development phase Time consumption in development is less than in the testing part.

 Automated & Manual Manual

 Automated Tools
Fig. 3 Agile testing quadrants aspects

Agile testing has been selected to explain to students in

testing class. In terms of understanding, the difference

between traditional testing and Agile testing [10] is shown in

Table 3. According to the comparison table, the main

understanding concept is indicated at number one. Testing

processes can be combined through the development process

and are done side by side.

The SEUP used the concept of Brian Marick, who

introduced the four Agile testing quadrants, combining two

aspects of testing types as shown in Figure 3.

In Quadrant 1 (Q1) at unit level and technology facing

that support developer, Q1 is related to unit and automated

tests. The SEUP used various Unit testing tools for testing

multi-programming languages such as pytest, jasmine, and

Junit. In Quadrant 2 (Q2), at the system level and business-

facing that support validates product behavior, the functional

test indicated in Q2. Test method in Q2 can be both manual

and automated. Next, in Quadrant 3 (Q3), the system and user

acceptance related to technology facing. In the last quadrant

4 (Q4), operational acceptance is relevant to technology

facing. The perspective in Q4 focuses on the performance

test, load, stress, and maintainability testing.

The SEUP in testing class has been used by JMeter to

evaluate student load tests. From an overall of the four

quadrant aspects, all four quadrants have been mentioned and

taught in testing class. However, the majority concept of

teaching pointed at Q1, Q2, Q3, and Q4, accordingly.

3. Research and Methodology
This research is pointed at two sample groups between

teaching students with traditional software testing models

and redesign models. The traditional and redesign model

frameworks are shown in Table 4 and Table 5 below. The

experimental research result from the traditional model will

be used to improve the redesigned model. There are two

necessary parts that have been modified: Programmatic

content and evaluation.

Table 4. Traditional software testing framework model

Teaching Unit: Traditional Model

Prerequisites

S Students have basic knowledge of structure programming,

functional programming, and OOP programming.

Students have a good understanding of the software

requirement process. Students get used to the user's

behavior related to business growth.
Programmatic Content (PC1.0)

1. Conceptual of the testing process

2. White box and black box testing

3. Test case scenario

4 4. Unit test and automate test concept
Expected Result Learning Level

T The students understand

the basics of the software

testing concept, and they

can apply it to test case

scenario design by using

techniques of white box

and blackbox testing.

 Remembering/understanding

• Functional Test

• Mockup

• Test review

• Usability Testing

• Heuristing Testing

• Alpha and Betha Testing

• User Acceptance Testing

• Unit Test

• Integration Test

• Load Testing

• Performance Testing

• Security Testing

q1 q3

q2 q4

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

94

Table 5. Redesign software testing framework model

Teaching Unit: Redesign Model

Prerequisites

S Students have basic knowledge of structure programming,

functional programming and OOP programming. Students

have a good understanding of software requirement

processes. Students get used to the user's behavior related

to business growth. Understand the majority point of the

agile testing method process. Good communication skills.

Programmatic Content (PC1.0)

1. understand the concept of testing process and agile

testing

2. understand the test scenario by using the concept of

white-box and black-box testing

3. Mini project 1

 3.1 Analyze requirements from a project of Phayao

probation matching system.

 3.2 Apply the concept of black box testing to create test

data and test case scenarios.

4. Attend an advanced User interface testing course

during a testing class present an initial testing progress

to stakeholders

Evaluation

1. Midterm exam (25%) 2. Quiz 1(10%) 3. Mini

Project part 1 (15%)
Expected Result Learning Level

T The student understands

the basics of the software

testing concept and agile

testing process. They can

apply test case scenario

design by using the white-

box and black-box testing

techniques with a real

project that is given in a

class. Students are able to

report test case design to

stakeholders

appropriately.

U Understanding/apply/analyze

Programmatic Content (PC1.2)

1. Understand the concept of using unit tests and

automated testing

2. Attend an advanced automated testing course during a

testing class

3. Standard of software testing document and report

4.CI/CD Present a final testing progress to stakeholders

Evaluation

1. Final exam (25%) 2.Quiz 2(10%)

3. Mini project part 2 (15%)
Expected Result Learning Level

S Students understand the

concept of manual and

automated testing.

U Understand/apply/analyze

There are some outstanding differences between

traditional and redesign frameworks. Firstly, the redesigned

model divided criteria into two parts to evaluate student

progress at mid and final. Secondly, an advanced course in a

current trend related to course design method has occurred in

two parts. Next, the mini project during a class has been

added up because the student will play a role in the real-world

project with a real stakeholder, as shown in Figure 4, during

March 2021.

To conclude, the newer design has been improved from

previous students’ feedback with a main issue in practical

terms. In terms of the evaluation process can be seen in

Figure 5.

There are two main aspects to evaluate between

traditional and redesigned models with the SEUP students in

the 2021 software testing class. The testing class has been

divided into two parts: PC1.0, PC1.1, and PC1.2. PC1.0

represents a traditional model without adding agile context.

PC1.1 and PC1.2 have been redesigned with an agile testing

process.

Both contents contain the same mini-project assignment,

which is the key evaluation point. However, one difference

between traditional mini projects and redesign mini projects

was a software requirement. The traditional model's

requirement is based on a basic example of an Enterprise

Resource Planning (ERP) system. The redesigned model

provided a real software requirement in a Phayao probation

matching system case study.

Furthermore, the mini-project of testing will be broken

down into four tasks, including test case design, unit test,

automated test, and testing report, respectively. These four

tasks are related to the agile testing quadrant in Q1, Q2, and

Q3. The evaluation score will be counted in the percentage of

submissions on time and not on time with the completion of

the testing process. The Chi-square equation will summarize

the two groups above between PC1.0 in the traditional model

and PC1.1 to 1.2 in the redesigned model. This evaluation

process's result will support this research's aims to find out

significant factors of teaching software testing.

4. Result and Discussion
This section represented the significant success of

teaching software testing factors in software testing class

with a case study of 14 groups from the SEUP 29 students in

two different teaching methods: traditional model without

agile testing context at PC 1.0 framework and redesign model

based on agile testing concept PC 1.1 to 1.2 framework.

Another difference is the real software requirement specs are

in the redesigned model. Moreover, there are four testing

outcomes for evaluation: test case design, unit test, automated

test, and test report. The result will be marked within the limit

of the due date and out of time.

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

95

However, there can be more factors that will be

considered in the sections below, according to a result from

the 14 groups (29 SEUP Students) submission assignment in

testing class. There are three categories’ dimensions to

evaluate the quality of submission: “On time complete”, “On

time not complete” and “Not On Time”, as shown in Table 6.

Table 6. The total result in terms of “Ontime complete”, “Ontime not complete”, and “Not Ontime” in software teaching class, University of

Phayao

14 Groups in the SEUP 29 students

Groups Ontime Complete Ontime Not Complete Not Ontime

Traditional

Test case Design 4 7 3

Unit Test 3 5 6

Automated Test 4 6 4

Test Report 5 4 5

Total 16 22 18

Redesign

Test case Design 12 1 1

Unit Test 10 3 1

Automated Test 9 4 1

Test Report 14 0 0

Total 45 8 3

Fig. 4 Software testing teaching road map, University of Phayao, Thailand

Fig. 5 The evaluation process for the traditional teaching model and redesign model

The assignment tasks have been broken down into four

parts. The traditional model with PC1.0 specs showed a

significant number of Test reports, which were submitted on

time in 5 groups. In the drawback aspect, the minority

number submitted not on time is located on Unit test tasks

with 6 groups. This explanation can be seen in Figure 6.

The evaluation process

Traditional model (PC1.0) Analyze

Redesign model (PC1.1-12) Analyze

Summary &

Future work

Phasel

Phase2

Phase3

Step1 Step3 Step5

Basic software testing knowledge Progress report to stakeholder Student Evaluation

2
nd

 year se student

Sep 2020

Step2

Feb 2021
Advance training automated test

Step4

March 2021

Result and Outcome

March 2021 April 2021

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

96

On-time complete

Not on time

Fig. 6 The chart of Ontime complete and Not Ontime complete in the

traditional teaching model

On-time complete

 Not on time

Fig. 7 The chart of Ontime complete and Not Ontime complete in

redesigning the teaching model

Fig. 8 An overall result between traditional and redesign teaching model

In the redesigned model with PC1.1-1.2 program specs,

the highest number of on-time completions showed the same

result as PC1.0 specs. From an overall result of the

redesigned model, the group number of online completion in

four tasks grew significantly. Furthermore, the number of

group submissions in the Unit test was greater than the

Automated test task in Figure 7. This result can be described

along with the agile testing process because the SEUP student

will be delivered a task every week. Moreover, in every sprint

release, the report from automated tests will be used in every

meeting.

5

4

3

4

0 2 4 6

Test Report

Automated Test

Unit Test

Test case Design

T
ra

d
it

io
n
al

 M
o

d
el

5

4

6

3

0 2 4 6 8

Test Report

Automated Test

Unit Test

Test case Design

T
ra

d
it

io
n
al

 M
o

d
el

14

9

10

12

0 5 10 15

Test Report

Automated Test

Unit Test

Test case Design

R
ed

es
ig

n
 M

o
d

el

0

1

1

1

0 0.5 1 1.5

Test Report

Automated Test

Unit Test

Test case Design

R
ed

es
ig

n
 M

o
d

el

0

5

10

15

20

25

30

35

40

45

50

Traditional model (PC1.0) Redesign (PC1.1-1.2)

Ontime Complete Ontime Not Complete Not Ontime

Davit Sanpote & Worrakit Sanpote / IJETT, 71(12), 90-97, 2023

97

From an overall 4 indicators in Figure 8, the redesigned

model (PC1.1-1.2) shows a greater number of on-time

completions at 8.96% from the traditional model to 25.2

percentages in the redesigned model. In terms of not on time,

the number has been reduced from 10.08 percentages

(traditional model) to 1.68% (redesign model). Moreover,

software testing reports, test designs, and automated tests are

improved skill sets accordingly.

5. Conclusion and Practical Implications
From an overall result, the on-time completion in the

redesigned model showed a greater number from 8.96 to 25.2

percentages. Since the redesigned model added the new

teaching with agile testing context, the amount of not on time

has been changed to zero groups (5 to 0).

The unit test is another concern task that contains soft

advance skills; the result in the redesigned model was

reduced not on time in the traditional model from 6 groups

late to 1 group late in the redesigned model. To conclude,

improving teaching software testing for SEUP students or

other undergraduate students is about a practical skill [9].

Practical skills are supposed to go along with a real

requirement problem.

Furthermore, the real software requirement specification

from a real user is an initial phase of the agile testing context.

Lastly, this research study is another useful resource for

future study to determine more factors in teaching abilities

when technology and business change.

In addition, the current version of the software testing

teaching framework will be improved by collecting positive

and negative results from the previous version.

Funding Statement
This research was supported by the Thailand Science and

Research and Innovation Fund and the University of Phayao

(Grant No. FF65)

Acknowledgement
This research study was evaluated by software

engineering students at the School of Information and

Communication Technology, University of Phayao. This

research was also supported by the Department of Probation

office in Phayao, Thailand.

References
[1] Francis A. Adesoji, “Bloom Taxonomy of Educational Objectives and the Modification of Cognitive Levels,” Advances in Social Sciences

Research Journal, vol. 5, no. 5, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Abdulrahman Alarifi et al., “SECDEP: Software Engineering Curricula Development and Evaluation Process using SWEBOK,”
Information and Software Technology, vol. 74, pp. 114-126, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[3] D. Carrington, “Teaching Software Design and Testing,” FIE'98. 28th Annual Frontiers in Education Conference Moving from'Teacher-

Centered'to'Learner-Centered'Education, Conference Proceedings, vol. 2, pp. 547-550, 1998. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Honghong Chen, Xu Wang, and Liangguang Pan, “Research on Teaching Methods and Tools of Software Testing,” 15th International

Conference on Computer Science & Education, IEEE, pp. 760-763, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] James de Castro Martins et al., “Agile Testing Quadrants on Problem-Based Learning Involving Agile Development, Big Data, and Cloud

Computing,” Information Technology-New Generations, Springer, Cham, pp. 429-441, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Joel Ayala de la Vega, and Irene Aguilar Juarez, “Comparison of the ACM/IEEE CE2004 and ACM/IEEE CE2016 Curricular Guide /

ACM/IEEE CE2004 and ACM/IEEE CE2016 Curricular Guide Comparative,” RECI Ibero-American Magazine of Computer Sciences

and Informatics, vol. 7, no. 13, pp. 19-42, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[7] Isaac Souza Elgrably, and Sandro Ronaldo Bezerra Oliveira, “Construction of a Syllabus Adhering to the Teaching of Software Testing

Using Agile Practices,” IEEE Frontiers in Education Conference, IEEE, pp. 1-9, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[8] Isaac Souza Elgrably, and Sandro Ronaldo Bezerra Oliveira, “Model for Teaching and Training Software Testing in an Agile Context,”

IEEE Frontiers in Education Conference, IEEE, pp. 1-9, 2020. [CrossRef] [Google Scholar] [Publisher link]

[9] Kun Ma et al., “Project-Driven Learning-by-Doing Method for Teaching Software Engineering using Virtualization Technology,”

International Journal of Emerging Technologies in Learning, vol. 9, no. 9, pp. 26-31, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[10] D. Talby et al., “Agile Software Testing in a Large-Scale Project,” IEEE Software, vol. 23, no. 4, pp. 30-37, 2006. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Qing Hong et al., “Occupational Ability Oriented Graduate Education in Software Engineering,” International Journal of Emerging

Technologies in Learning, vol. 10, no. 8, pp. 25-29, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[12] Juan C. Yelmo, and Juan Fernández-Corugedo, “An Experience of Educational Innovation for the Collaborative Learning in Software

Engineering,” International Journal of Emerging Technologies in Learning, vol. 6, no. 2, pp. 26-32, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

http://www.doi.org/10.14738.
https://doi.org/10.14738/assrj.55.4233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bloom+taxonomy+of+educational+objectives+and+the+modification+of+cognitive+levels&btnG=
https://journals.scholarpublishing.org/index.php/ASSRJ/article/view/4233
https://doi.org/10.1016/j.infsof.2016.01.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SECDEP%3A+Software+Engineering+Curricula+Development+and+Evaluation+Process+using+SWEBOK&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095058491630012X
https://doi.org/10.1109/FIE.1998.738732
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Teaching+software+design+and+testing&btnG=
https://ieeexplore.ieee.org/abstract/document/738732
https://ieeexplore.ieee.org/abstract/document/738732
http://doi.org/10.1109/ICCSE49874.2020.9201788
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+Teaching+Methods+and+Tools+of+Software+Testing&btnG=
https://ieeexplore.ieee.org/abstract/document/9201788
https://doi.org/10.1007/978-3-319-54978-1_56
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agile+Testing+Quadrants+on+Problem-Based+Learning+Involving+Agile+Development%2C+Big+Data%2C+and+Cloud+Computing&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-54978-1_56
https://link.springer.com/chapter/10.1007/978-3-319-54978-1_56
https://www.reci.org.mx/index.php/reci/article/view/76
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparativa+de+la+gu%C3%ADa+curricular+ACM%2FIEEE+CE2004+y+ACM%2FIEEE+CE2016%2FACM%2FIEEE+CE2004+and+ACM%2FIEEE+CE2016+curricular+guide+comparative&btnG=
https://www.reci.org.mx/index.php/reci/article/view/76
http://doi.org/10.1109/FIE44824.2020.9274266
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Construction+of+a+syllabus+adhering+to+the+teaching+of+software+testing+using+agile+practices&btnG=
https://ieeexplore.ieee.org/abstract/document/9274266
http://doi.org/10.1109/FIE44824.2020.9274117
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+for+teaching+and+training+software+testing+in+an+agile+context&btnG=
https://ieeexplore.ieee.org/abstract/document/9274117
https://doi.org/10.3991/ijet.v9i9.4006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Project-Driven+Learning-By-Doing+Method+For+Teaching+Software+Engineering+Using+Virtualization+Technology&btnG=
https://online-journals.org/index.php/i-jet/article/view/4006
http://doi.org/10.1109/MS.2006.93
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agile+software+testing+in+a+large-scale+project&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agile+software+testing+in+a+large-scale+project&btnG=
https://ieeexplore.ieee.org/abstract/document/1657936
https://doi.org/10.3991/ijet.v10i8.5214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Occupational+Ability+Oriented+Graduate+Education+in+Software+Engineering%2C&btnG=
https://online-journals.org/index.php/i-jet/article/view/5214
https://doi.org/10.3991/ijet.v6i2.1662
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+experience+of+educational+innovation+for+the+collaborative+learning+in+++++++++Software+Engineering&btnG=
https://online-journals.org/index.php/i-jet/article/view/1662

