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Abstract - Global food security is vital for promoting human health, upholding social well-being, and ultimately achieving the 

United Nations’ Sustainable Development Goal (SDG) 2: Zero Hunger. Conversely, it is influenced by a multitude of factors, 

with the dynamics of agricultural commodity prices playing a significant role. Recognizing the potential of Machine Learning 

in agricultural applications, this work delves into exploring the price dynamics of key agricultural commodities across various 

global producers. Through rigorous experimentation and performance comparison, this study analyses suitable Machine 

Learning methods and proposes a Hybrid SARIMA-LSTM (HySALS) to forecast global prices of agricultural commodities. 

The effectiveness of the proposed approach is evaluated using historical price data for five important commodities: Wheat, 

Millet, Sorghum, Maize, and Rice, both on a global average scale and with specific emphasis on developing nations that are 

either global leaders in the production of these crops or hold a significant production share within their own borders. The 

training data encompasses the years 2005 to 2017, while testing is conducted for the period from 2018 to 2022, followed by 

forecasting global prices for these commodities from 2023 to 2030. The insights derived from these forecasts are aimed to 

assist the decision-making processes of various stakeholders, from farmers to policymakers, thereby contributing to the efforts 

towards achieving global food security. 

Keywords - Sustainable Development Goals, Global food security, Machine learning, Agricultural research, Price dynamics, 

Price forecasting. 
 

1. Introduction  
Agriculture is an imperative sector of the global 

economy with a significant impact on employment and rural 

development. According to the Food and Agriculture 

Organization (FAO), nearly 33% of the global population 

relies on agriculture for their livelihoods [1]. In fact, 

agriculture accounts for up to 60% of employment and over 

25% of the GDP in many emerging countries [2]. Beyond its 

economic dimensions, agriculture intertwines with health and 

environmental aspects, making it a cornerstone of sustainable 

development. Yet, amidst its paramount importance 

worldwide, ensuring food security remains a formidable 

challenge.  
 

Global food security entails assuring that all people, 

regardless of their geographical location or socio-economic 

status, have consistent access to sufficient, safe, and 

nutritious food. The United Nations’ Sustainable 

Development Goals (SDG) 2: Zero Hunger focuses on the 

widespread commitment to changing our agricultural systems 

to fulfil the world’s rising food demand and achieve global 

food security [3].  

While various factors such as population growth, climate 

change, agricultural methods, distribution networks, etc. 

impact global food security, the fluctuation in the prices of 

agricultural commodities plays a pivotal role. Both 

consumers and producers can have a negative impact due to 

price hikes. Consumers, particularly those in low-income 

households, may even face malnutrition as food costs rise. 

The World Bank estimates that food price hikes between 

2008 and 2011 drove 100 million people into poverty [4]. 

Furthermore, recent figures show a jump in food price 

inflation, with a 40% global increase in 2020 alone [5]. 

Balancing the agricultural supply chain is crucial in this 

situation. To ensure that supply meets demand, prices are 

steady, and all chain participants make a profit, it necessitates 

controlling the production, distribution, and consumption of 

agricultural commodities. According to the World Food 

Programme, up to 40% of the entire cost of producing food 

in underdeveloped nations comes from inefficient supply 

chains [6]. Furthermore, recent research has emphasized the 

considerable impact of supply chain interruptions brought on 

by the COVID-19 pandemic, which led to market instability 

https://www.internationaljournalssrg.org/
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and price volatility, and the effect of this shall last for a longer 

duration [7]. The management of these difficulties depends 

heavily on forecasting. Accurate forecasts of world food 

prices can support strategic planning and assist decision-

makers at all levels, from farmers to policymakers, in making 

informed choices. According to the International Food Policy 

Research Institute, 20% less price volatility can be achieved 

with precise forecasting [8]. The accuracy of forecasting 

models has recently increased due to the developments in 

Artificial Intelligence (AI) and Machine Learning (ML) [9]. 

According to the World Economic Forum, digital 

technology, such as AI and ML, might open a $2.3 trillion 

market for the world’s agriculture sector by 2030 [10]. The 

proposed work employs Machine Learning to create a 

reliable and accurate model for predicting global food prices. 

 

The contributions of this work are: 

1. This research offers a fundamental analysis of the global 

price dynamics of five agricultural commodities, which 

are staple foods for many populations worldwide, thus 

providing a foundation for identifying trends and 

developing accurate price forecasting models. 

2. The work analyses suitable Machine Learning methods 

for forecasting global agricultural prices and proposes the 

Hybrid SARIMA-LSTM (HySALS) approach for 

improved forecasts. 

3. The work harnesses the potential of Machine Learning 

driven forecasting of agricultural commodity prices to 

assist policy-making on global food security for 

sustainable development, specifically focusing on 

developing countries. 

 

The paper is organized as follows: Section 2 provides a 

comprehensive literature review, summarizing prior work in 

the field of agriculture using Machine Learning, as well as a 

brief discussion of the promising forecasting methods. 

Section 3 presents the proposed approach, which focuses on 

the forecasting of prices for different agricultural 

commodities and the analysis of price dynamics. Section 4 

discusses the implementation results, demonstrating the 

effectiveness of the proposed approach as a step towards 

achieving global food security through global price analysis 

and forecasting. Section 5 concludes the work and suggests 

directions for future research. 

 

2. Related Work 
The existing work on applications of Machine Learning 

algorithms for agriculture and the prominent forecasting 

methods are presented in this section, which has been the base 

for this study. 

 

2.1. Machine Learning for Agriculture 

The applications of Machine Learning in agriculture are 

depicted in Fig. 1, and the recent research corresponding to 

these applications is presented in this section for a deeper 

understanding of the subject matter.  

 
Fig. 1 Applications of machine learning in agriculture 

 

Machine Learning techniques like Convolutional Neural 

Networks (CNN) and Support Vector Machines (SVM) have 

been widely applied to detect pests early and precisely. Deepa 

et al. [11] cover using the Alexnet model to identify tomato 

leaf diseases in their work. The authors stress the need to 

quickly and precisely assess the severity of infections to let 

the farmers take further intervention measures and stop the 

damage from worsening. Their work provides a better 

classification model, which reduces the number of training 

sessions while improving computation precision and gradient 

flow to recognize and classify tomato leaf disease. 

 

Intelligent fertilizer spraying employs AI/ML 

technology to provide efficient and targeted application of 

fertilizers and pesticides, lowering chemical use and adverse 

environmental effects. ML systems can pinpoint the specific 

locations that need treatment by analyzing data like crop 

health, pest presence, and environmental variables. This 

method minimizes the use of chemicals, lessens 

environmental impact, and increases resource effectiveness. 

Researchers in their work describe using Deep Learning 

methods to eradicate harmful insect infestations in different 

plants [12]. 

 

Another application, yield prediction, utilizes AI/ML 

models and Data Analytics, which helps farmers plan better 

and make smarter choices to predict crop yields. These 

systems can predict crop yields precisely by looking at 

historical data, weather patterns, soil conditions, and other 

pertinent aspects. Farmers may use this information to make 

well-informed choices about managing their crops, allocating 
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resources, and planning their markets. Klompenburg et al. 

[13] in their work present the synthesis of 50 papers using 

Machine Learning and 30 Deep Learning-based papers on 

crop yield prediction.  

 

Automated Irrigation Systems optimize water usage 

based on several factors such as soil composition, weather 

data, and plant water consumption and ensure that plants get 

the right amount of water at the right time. Researchers have 

also conducted a two-year study investigating the 

performance of the Irrigation Scheduling Supervisory 

Control and Data Acquisition (ISSCADA) system as a tool to 

manage deficit irrigation scheduling for cotton [14]. The 

system uses sensor feedback for decision support. The 

authors highlight how the ISSCADA system, automated by 

sensor feedback, can maintain seed cotton yield while saving 

water. This study provides valuable insights into the practical 

application of AI in optimizing irrigation systems, 

demonstrating the potential for significant improvements in 

water efficiency and sustainability in agriculture. 

 

Weather forecasting with the assistance of AI/ML 

algorithms enables farmers to make decisions based on the 

weather, as it significantly impacts agriculture, especially 

extreme events. Researchers analyse vast volumes of weather 

data and utilize Machine Learning algorithms to produce 

precise and localized forecasts. Farmers can plan their 

planting, irrigation, disease management, and harvesting 

operations according to these projections. The literature 

discusses an ensemble prediction system using a Deep 

Learning weather prediction model that iteratively forecasts 

six important meteorological variables, including 

temperature, precipitation, humidity, wind speed and 

direction, atmospheric pressure, and solar radiation with a 

six-hour temporal precision [15]. Convolutional Neural 

Networks (CNNs) on a cubed sphere grid are used to provide 

global predictions in this computationally effective approach. 

The trained model can provide a 320-member set of six-week 

predictions at 1.4° precision in under three minutes on a 

single GPU. A collection of 32 DLWP models with slightly 

varying learnt weights is created by randomizing the CNN 

training process and the main method used to construct an 

ensemble spread. 

 

Price forecasting suggests the use of combined 

forecasting models using AI/ML to anticipate agricultural 

prices. Guo et al. [16] focus on forecasting Maize prices in 

the Sichuan Province. To determine the spatial-temporal 

influencing variables of price fluctuations, they use the 

Apriori algorithm. They integrate the Long Short-Term 

Memory (LSTM), Autoregressive Integrated Moving 

Average (ARIMA), Back Propagation (BP), and Attention 

Mechanism Algorithm models to create their LSTM-

ARIMA-BP model. Even though their study is limited to 

Maize in a single province, it offers insightful information 

about how ML might be used to estimate agricultural prices. 

To sum up, the corpus of research that has already been 

done emphasizes the revolutionary potential of Machine 

Learning in many facets of agriculture, from precision 

farming and pest detection to ethical issues. The use of 

AI/ML in agricultural price predictions stands out as one 

area, though. As shown by Linanza et al. [17], there is still a 

sizable gap in the knowledge of and use of ML in projecting 

global food prices. The rising volatility of food prices and its 

effects on global food security and economic stability need 

urgent attention. The work presented in this paper attempts to 

address this gap by creating a reliable ML model for 

predicting the price of agricultural commodities worldwide. 

By forecasting the possible price rises, the research aims to 

assist policymakers, farmers, and society in designing and 

implementing sustainable agricultural practices, eventually 

promoting the accomplishment of global food security and 

SDG 2. 

 

2.2. Machine Learning-based Forecasting Methods 

The promising methods for forecasting have been 

studied and presented in this section for analysis. 

 

2.2.1. Autoregressive Integrated Moving Average(ARIMA) 

ARIMA [18, 19] combines autoregressive, differencing, 

and moving average features in the data. The ‘AR’ 

component considers how the variable relates to its own past 

values. The ‘I’ component is responsible for changing the 

data to make it more stable over time. The ‘MA’ component 

investigates the patterns and relationships among the errors 

or discrepancies in the data, both in the present and in the 

past. ARIMA is mathematically modelled, as shown in 

equation (1). 

𝒀𝒕 = 𝑪 +  ∅𝟏𝒀𝒕−𝟏 + ∅𝟐𝒀𝒕−𝟐  +. . . . +  ∅𝒑𝒀𝒕−𝒑

+  𝜽𝟏𝜺𝒕−𝟏

+  𝜽𝟐𝜺𝒕−𝟐 + . . . . + 𝜽𝒒𝜺𝒕−𝒒 +  𝜺𝒕 

(1) 

Where, 

Yt represents the time series 

C is a constant 

∅1, ∅2,..., ∅p are the autoregressive coefficients 

𝜃1, 𝜃2,..., 𝜃𝑝 are the moving average coefficients 

𝜺𝒕, 𝜺𝒕−𝟏,..., 𝜺𝒕−𝒒 are error terms 

In the context of global food price forecasting, ARIMA 

can be used to capture and forecast trends and patterns in food 

prices over time. 

 

2.2.2. Seasonal Autoregressive Integrated Moving Average 

(SARIMA): 

SARIMA [19] is a popular time series forecasting 

method that expands the ARIMA model to recognise 

seasonal trends in data. It mixes seasonal terms with moving 

average, autoregressive, and differencing components. The 

model is immensely helpful when examining time series data 

with obvious seasonal patterns or trends. SARIMA is 

mathematically modelled, as shown in equation (2). 
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𝒀𝒕 = +∅𝟏(𝒀𝒕−𝟏 − 𝒀𝒕−𝒔−𝟏) + ∅𝟐(𝒀𝒕−𝟐 − 𝒀𝒕−𝒔−𝟐) + 

… + ∅𝒑(𝒀𝒕−𝒑 − 𝒀𝒕−𝒔−𝒑)

+ 𝜱𝟏(𝒀𝒕−𝒔 − 𝒀𝒕− 𝒔−𝒔)  + 𝜱𝟐(𝒀𝒕−𝟐𝒔

− 𝒀𝒕−𝒔−𝒔)   + ⋯ . + 𝜱𝒑(𝒀𝒕−𝑷𝒔 + 𝒀𝒕−𝒔−𝑷𝒔)

+ (𝟏 − 𝑩)𝒅𝜺𝒕

−  𝜽𝟏𝜺𝒕−𝟏 −𝜽𝟐𝜺𝒕−𝟐 − . . . . −  𝜽𝒒𝜺𝒕−𝒒

−  𝜣𝟏𝜺𝒕−𝒔 −  𝜣𝟐𝜺𝒕−𝟐𝒎− . . . . −  𝜣𝑸𝜺𝒕−𝑸𝒔 

(2) 

Where, 

𝑌𝑡 represents the time series at time t 

C is the constant term or intercept 

∅1, ∅2,..., ∅𝑝 are the non-seasonal autoregressive (AR) 

coefficients 

𝛷1, 𝛷2,...,𝛷𝑝 are the seasonal autoregressive (SAR) 

coefficients 

s represents the seasonal period or the number of time 

steps in a complete seasonal cycle 

𝑌𝑡−𝑞 refers to the lagged values of the time series 

d represents the order of non-seasonal differencing. 

B is the backshift operator. 

𝜀𝑡 represents the error term or residual at time t 

𝜃1, 𝜃2,..., 𝜃𝑝 are the moving average (MA) coefficients 

𝛩1, 𝛩2,..., 𝛩𝑝 are the seasonal moving average (SMA) 

coefficients 

p, d, q are the orders of the AR, differencing (I), and MA 

components, respectively 

P and Q are the orders of the seasonal AR and seasonal 

MA components, respectively. 

 

2.2.3. Support Vector Regression (SVR) 

SVR [20] is a type of Support Vector Machine (SVM) 

that supports linear and nonlinear regression. SVM aims to 

identify a function with a maximum tolerance deviation from 

the actual target values for all the training data while 

remaining as flat as possible. In the context of global food 

price forecasting, SVR can be used to model complex, 

nonlinear relationships utilizing historical price data. 

 

 
Fig. 2 General architecture of SVR 

The basic principle of SVR is to map the features of 

sample data from low dimension to high dimension and 

perform regression analysis on them in high dimension by the 

usage of the kernel function as shown in Fig. 2. The kernel 

function K of SVR is mathematically modelled in equation 

(3). 

𝐾 = 𝑚𝑖𝑛(𝑤, 𝑢, 𝑧1 … 𝑧𝑛 , 𝑧) ∶
 ||𝑤||

2

2
+ ∑(𝜉𝑘 + 𝜉∗

𝑘
)

𝑛

𝑘=1

 (3) 

Where, 

w is the weight vector 

u is the bias 

𝑧1. . . 𝑧𝑛 and z are slack variables 

C is the parameter of the penalty 

𝜉𝑘 +  𝜉∗
𝑘
captures the extent of the deviation or error 

2.2.4. Extreme Gradient Boosting (XGBoost) 

XGBoost [21] is a Machine Learning approach that 

builds a powerful predictive model by combining the 

predictions of multiple smaller models using the gradient 

boosting framework, often with decision trees as the base 

learners. In the context of forecasting global food prices, 

where there is access to historical price data as the feature, it 

effectively captures the complex, nonlinear patterns in the 

price dynamics. By iteratively optimizing and combining the 

predictions from multiple decision trees and creating a robust 

and accurate predictive model for global food price 

forecasting, leveraging the strengths of decision trees to 

capture intricate relationships and patterns 

within the price data. Considering fk(x) as the prediction of 

the kth tree, the output �̂� is a combination of all K trees, 

mathematically modelled as in equation (4). 

�̂� = ∑ 𝑓𝑘(𝑥)

𝐾

𝑘=1

 (4) 

 

2.2.5. Long Short-Term Memory (LSTM) 

LSTM [22] is a special kind of Recurrent Neural Network 

(RNN) architecture designed to recall sequence data 

dependencies, something regular RNNs are unable to do due 

to its capability to capture long-term dependencies and model 

complicated nonlinear interactions. The general architecture 

of LSTM is depicted in Fig. 3 and is mathematically modelled 

as shown in equations (5) - (10). 

𝛾𝑡 =  𝜎(𝑊𝑓[𝑧𝑡−1, 𝑥𝑡] + 𝑏𝑀
𝑓) (5) 

 

𝑖𝑡 =  𝜎(𝑊𝑖[𝑧𝑡−1, 𝑥𝑡] + 𝑏𝑀
𝑖) 

(6) 

 

𝑢𝑡 = tanh (𝑊𝑢[𝑧𝑡−1, 𝑥𝑡]  +  𝑏𝑀
𝑢) 

(7) 

 

𝐶𝑡 =  𝛾𝑡𝐶𝑡−1 + 𝑖𝑡𝑢𝑡 
(8) 

𝑂𝑡 =  𝜎(𝑊𝑜[𝑧𝑡−1, 𝑥𝑡]  +  𝑏𝑀
𝑂) 

(9) 
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𝑧𝑡 = 𝑂𝑡tanh (𝐶𝑡)| (10) 

 

Where, 

𝛾𝑡 represents forget gate 

𝑖𝑡 represents input gate 

𝑢𝑡 represents cell update 

ct  represents the final cell state 

ot represents the output gate 

zt  represents the hidden state 

t represents the current state, whereas t - 1 represents the 

previous state 

Zt represents the hidden state 

Xt denotes the current state 

Xt represents the current input 

b  symbolizes the bias vector 

W symbolizes the weight matrix 

The sigmoid (σ) and tanh functions are nonlinear 

activation functions that introduce nonlinearity into the 

LSTM model. They are used to control the flow of 

information and regulate the output values of the gates and 

cell state in the LSTM architecture. The forget gate in an 

LSTM network decides what parts of the information in the 

cell state should be discarded. The input gate determines how 

much new information should be added to the cell state. The 

cell update then generates new potential values for the cell 

state. The final cell state is updated by combining the old cell 

state with these new potential values. The output gate then 

controls how much of this cell state should be revealed as the 

hidden state, which is the output of the LSTM cell. All these 

components work together, enabling the LSTM network to 

hold onto valuable information over long sequences. In the 

context of the proposed work, the temporal relationships in 

the price data may be modelled using LSTM and utilized for 

predicting the global price of commodities. In the context of 

global food price forecasting, LSTM can be used to capture 

temporal patterns such as trends and seasonality and forecast 

them over time. 

 
Fig. 3 General architecture of LSTM model 

2.3. Price Forecasting of Agricultural Commodities 

As the work focuses on forecasting global prices of 

agriculture commodities, the subject-specific literature 

review is presented in this section. Researchers [23] 

investigate the forecasting accuracies of individual food price 

models and consider their cross-dependence. The authors 

focus on three commodities’ prices: Corn, Soybeans, and 

Wheat. They used an equilibrium correction model (EqCM) 

for each food price and used performance parameters 

indicated by the Mean Absolute Percentage Error (MAPE). 

On average, the forecasting results had 10% MAPE, therefore 

indicating the need for further optimization. 

 

Wu et al. [24], in their work, forecast prices for fisheries 

products based on Variational Modal Decomposition (VMD) 

and Improved Bald Eagle Search (IBES) algorithm optimized 

Long Short-Term Memory Network (VMD-IBES-LSTM). 

They conduct empirical research utilizing data on fish prices 

from the Chinese Ministry of Agriculture and Rural Affairs’ 

Department of Marketing and Informatics. The work 

analyses only one type of commodity, but it provides the 

motivation for a similar study for more crops. 

 

Authors [25] of related work present simple approaches 

based on open data that make use of various parametric and 

non-parametric models to create a strong and approachable 

model that can help decision-makers optimize their 

harvesting operations. They employ regression models to 

deliver precise and trustworthy insights for thoughtful 

decision-making. The research does not go into detail about 

how the model works with various agricultural products or in 

other regions or climates and does not capture seasonal 

trends.  

 

However, this research highlights the value of 

forecasting in agriculture decision-making processes, which 

is pertinent to the proposed work. Further, research [26] has 

also been employed a time series forecasting method for the 

future prices of agricultural products, and it is suggested to 

use a combination of the methods for improvement in 

forecasting. It is also observed that regional division and 

external factors significantly influence the pricing dynamics 

and overall profitability of agricultural commodities, which 

needs attention.  

 

To sum up, the existing literature offers insightful 

information on agricultural product price forecasting research 

and identifies a few areas that call for additional study. As 

one of the implemented aspects, rigorous evaluation of how 

well the proposed forecasting models function across 

different geographic locations or for various agricultural 

products is lacking. By utilizing the Machine Learning 

models for global food price forecasting for multiple 

countries and products, our proposed work seeks to close 

these gaps, thereby contributing to global food security. 
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Fig. 4 Proposed approach for analysis of price dynamics and price forecasting 

 

3. Proposed Approach 
The proposed approach for Price Forecasting and 

Analysis of Price Dynamics is presented in Fig. 4, followed 

by its phase-wise description.  

3.1. Data Acquisition  

To address the global food security issue targeted in this 

work, we consider two kinds of data: One is the Crop data, 

which contains in-depth information on a variety of aspects 

affecting the cost of the crop globally, including commodity 

name, country, price (in country-specific currency), quantity 

(corresponding to different months and years). Another is the 

pricing data, which contains country, month, year, and 

standard currency value, which are used in converting 

currency units per U.S dollar.  
 

3.2. Data Mapping 

The two data are mapped based on common attributes 

such as country, year and price.  This ensures comprehensive, 

integrated data creation, facilitating more accurate and 

insightful analysis. 
 

3.3. Data Pre-Processing 

The data is pre-processed using the methods discussed in the 

following subsection.  
 

3.3.1. Missing Values Handling 

 The average price for each unique combination of 

country and year is calculated and used to fill in any missing 

values in the dataset. 

3.3.2. Data Grouping 

 To group pertinent data points from the dataset, selecting 

suitable countries and commodities within a range are filtered 

and grouped. 

 

3.3.3. Weight Standardization 

 The process of weight standardization is used to convert 

weights into a common unit and quantity, specifically to 1 

KG. This ensures that measurements are uniform and 

consistent throughout the system. 

 

3.3.4. Data Validation 

 Data consistency tests were performed by crosschecking 

the precision of crop information from the available data, thus 

ensuring that the values across various attributes are logically 

consistent and confirming the accuracy of the recorded 

information. 

 

3.3.5. Currency Normalization 

 As the work focuses on predicting global food prices, 

normalizing all rates into a uniform currency is a prerequisite. 

The prices are normalized to USD based on exchange rates 

respective to the other countries in the data at respective 

timestamps. 

 

3.4. Data Visualization 

Data visualization is performed to examine the yearly 

price dynamics of different commodities. The pricing data is 

grouped by the year for equal weight (quantity), providing 

data on the peaks and troughs of crop prices. 
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Table 1. Algorithmic parameters 

Model Parameter Value 

ARIMA Non-Seasonal Order (1, 1, 1) 

SARIMA 
Non-Seasonal Order (1, 1, 1) 

Seasonal Order (1, 1, 1, 12) 
 

SVR 

 

 

Regularization 2.0 

Regression Epsilon 0.15 

Kernel Type 
Radial Basis 

Function 

XG Boost 

Learning Rate (Eta) 0.1 

Maximum Depth of Tree 4 

Random Number Seed 42 

LSTM 

Number of LSTM Units 128 

Shape of Input Data (1, 1) 

Number of Units in Dense Layer 1 

Number of Epochs  200 

Batch Size 8 

3.5. Time-Series Forecasting 

For time-series forecasting, choosing the right algorithm 

is essential since various algorithms may function better in 

certain situations or capture particular patterns more 

effectively. Hence, the proposed work considers several well-

known Machine Learning algorithms, including ARIMA, 

SARIMA, SVR, XGBoost, and LSTM, and recommends a 

hybrid approach using the weighted average predictions 

made by the best two methods emerging from extensive 

experimentation. 

 

4. Implementation Details 
In order to address the targeted issue of global food 

security using Machine Learning, we use historical price data 

for various commodities on a global scale spanning from 

2005 to 2022. Particularly, we consider the five commodities, 

including the cereals: Wheat, Millet, Sorghum Maize, and 

Rice. Furthermore, we consider the average prices of these 

commodities on a global scale and specifically focus on five 

developing countries for each commodity. The selection of 

these countries is based on their status as global leaders in the 

corresponding crop production or their being the highest 

producers of that crop within their national boundaries. 

 
4.1. Datasets 

The current state of research in food price prediction 

often faces limitations regarding dataset scope and size due 

to challenges in obtaining comprehensive and precise global 

food cost information. The details of the dataset utilized in 

our study are as follows: 

 

4.1.1. Global Food Prices 

 The dataset is procured from the Global Food Prices 

Dataset (WFP) [27] and comprises over 815,000 instances 

with diverse parameters, including country and location, 

commodity, price with currency, traded quantities, and 

transaction timestamps. 

4.1.2. World Bank Official Exchange Rates 

 To ensure the robustness of our work, we incorporate 

data from the World Bank’s Official Exchange Rates dataset 

[28]. This dataset provides historical and current exchange 

rates for 266 countries from 1960 to 2022. Attributes like 

country name, indicator name, and separate columns for each 

year from 1960 through 2022 make up the data’s structure. 

 

4.2. Algorithmic Parameters 

Implementing Machine algorithms in this work involved 

careful selection and tuning of algorithmic hyperparameters. 

The algorithmic parameters used are depicted in Table 1. 

4.3. Evaluation Criteria 

To analyze the performance of the Machine Learning 

models, we use Mean Absolute Percentage Error (MAPE) 

[29], a metric used to evaluate the error made by the 

forecasting models. It measures the average absolute 

percentage difference between the predicted and actual 

values, as depicted in equation (11). 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑

|𝑦𝑖 − 𝑦�̂�|

𝑦𝑖

𝑁

𝑖=1

 

(11) 

Where, 

𝑦𝑖is the actual value of the dependent variable 

𝑦�̂� is the predicted value by the model 

N is the size of the instances 

 

4.4. Results and Discussion 

The findings derived from the conducted research are 

presented in this section. 

 

4.4.1. Identification of Artificial Intelligence Algorithms 

As mentioned in section 3.5, the performance 

comparison of the Machine Learning algorithms ARIMA, 

SARIMA, SVR, XGBoost, and LSTM is used to identify the 

two most suitable classifiers for employing as the final 

forecasting methods as this can be seen from the results of 

Fig. 5, when compared on the mentioned agricultural 

commodities, SARIMA and LSTM have MAPE between 

4.31% - 7.83% and demonstrate promising results as 

compared to ARIMA, SVR, and XGBoost.  

 

The SARIMA and LSTM models can capture seasonal 

trends, the effect of external parameters, and previous data 

patterns, leading to accurate price predictions. The MAPE is 

an average of results derived for 05 different countries on 

data from 05 years. 

 

Consequently, we propose the Hybrid SARIMA-LSTM 

(HySALS) as the optimal approach for forecasting global 

agricultural prices, aiming for better accuracy, low error 

rates, and consistent performance across different crop kinds. 

The HySALS approach implies using the weighted average 

of the forecast by SARIMA and LSTM to predict the prices 

of agricultural products, as shown in equation (12). 
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�̂� = 𝑤1 𝑓1(𝑥) + 𝑤2𝑓2(𝑥) (12) 

Where,  

�̂� is the predicted value or weighted average of prices 

f1 represents the predicted price using the SARIMA model 

f2 represents the predicted price using the LSTM model 

w1 represents the weight assigned to the SARIMA 

model’s prediction, which is equal to 0.55 

 

w2 represents the weight assigned to the LSTM model’s 

prediction, which is equal to 0.45 

 

The weights are proportional to their commodity-wise 

performance, summing to the unit through a process of trial 

and error, allowing us to strike the most accurate balance 

between the two models when predicting the prices of 

agricultural products.

 

 
Fig. 5 Performance comparison of machine learning algorithms on different crops 

4.4.2. Price Dynamics 

The results in Fig. 6 - 10 present a comprehensive analysis 

of the price dynamics of key agricultural commodities, 

including Wheat, Millet, Sorghum Maize, and Rice, across 

various global producers. As stated at the beginning of this 

section, we focus on developing countries, which either are 

the foremost global producers or cultivate their respective 

crops to the greatest extent within their own nations. 

Alongside this, the average price of the crops across the globe 

is also presented to enhance comprehension of price 

dynamics. The analysis reflects the price trends affected by 

various events during the specified periods. A highlight of 

these events and the corresponding dynamics serve as a 

suggestion to the policy makers for mitigation of food 

insecurity in case of similar events in the future. 

 

Fig. 6 illustrates the price trend of Wheat in India, 

Ethiopia, Nepal, Afghanistan, and Tajikistan, as well as the 

global average from 2005 to 2022. The analysis reveals a 

consistent increase in Wheat prices over the specified time, 

except for Afghanistan, where a severe drought in 2008 led 

to a significant price hike [30]. 

 

Fig. 7 depicts Millet prices of global producers on average 

and specifically including the developing countries Niger, 

Mali, Senegal, Burkina Faso, and Nigeria. It is observed that 

there are major fluctuations in price taking place throughout 

the period of analysis. Particularly, there was a major price 

dip between 2005 and 2007 in all the nations, ranging from 

0.20 USD to 0.35 USD. After analysis, it was found that one 

of the significant factors contributing to the price dip was 

favourable weather conditions and improved agricultural 

productivity. After 2018, there was a gradual increase in 

prices until the year 2011, while there was a huge increase in 

prices between 2012 and 2013. Particularly in Nigeria, the 

prices hiked up to 0.55 USD due to factors such as the 

insurgency attack in the northeast region, which resulted in 

farmers' displacement, farmlands' destruction, and disruption 

of agricultural activities [31]. 

 

Fig. 8 presents the Sorghum prices on average for various 

global producers, namely Mali, Niger, Senegal, Burkina 

Faso, and Gambia. The graph shows intriguing patterns in the 

historical price movements. Particularly, crop prices in 

Gambia show consistent growth, showing a constant increase 

in Millet’s price. However, a considerable increase of 0.45 

USD was seen in Mali in 2012. A military coup that resulted 

in political upheaval and a rise in Sorghum prices is a possible 

reason for this increase [32]. Another food and nutrition crisis 

also occurred that year in Burkina Faso, costing 0.35 USD 

affecting a sizable population across the Sahel Region of 

Western Africa. Drought, rising grain prices, a drop in 
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remittance, environmental degradation, population 

relocation, persistent poverty, and vulnerability all 

contributed to this disaster. As a result, more than 16 million 

people experienced food insecurity, and more than 1 million 

children under the age of five were at risk for severe acute 

malnutrition [33]. 

 

According to Fig. 9, which illustrates the Maize prices for 

developing countries including Malawi, Niger, Mali, Burkina 

Faso and Tajikistan, there is an overall gradual upward trend 

in Maize prices across these regions. However, it is 

noteworthy that Mali experienced a sudden spike from 0.28 

USD to 0.4 USD in Maize prices in 2012. This surge can be 

attributed to a severe security and political crisis resulting 

from attacks by armed groups in the northern part of the 

country. In response to this crisis and to prevent a decline in 

GDP, measures were implemented to increase agricultural 

production and adjust prices to support Mali during this 

challenging period [34]. Correspondingly, the average price 

of Maize has also seen a rise globally. 

Fig. 10 presents the Rice prices for global producers such 

as India, Nepal, El Salvador, Indonesia, and the United 

Republic of Tanzania. The graph clearly indicates that the 

average prices in India and Nepal have consistently remained 

lower, ranging from 0.15 USD to 0.4 USD, compared to other 

countries from 2005 to 2022. Unlike the other nations, where 

prices exhibit fluctuations and occasional spikes, India and 

Nepal have shown minimal gradual increases in Rice prices. 

  

This is because India and Nepal hold prominent global 

rice-producing positions. Their high domestic production 

contributes to the lower prices observed due to abundant 

supply. The Food and Agriculture Organization of the United 

Nations reports that India ranked as the world’s second-

largest Rice producer in 2019 [35]. While Nepal may not be 

among the largest global producers, it achieves substantial 

self-sufficiency in rice production in most years. In both 

countries, government policies and subsidies play a vital role 

in maintaining lower Rice prices [36]. 

 
Fig. 6 Global price dynamics for agricultural commodity – Wheat 

 

 

 
Fig. 7 Global price dynamics for agricultural commodity – Millet 

 

 
Fig. 8 Global price dynamics for agricultural commodity – Sorghum 

 

 

 

Fig. 9 Global price dynamics for agricultural commodity – Maize 
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Fig. 10 Global price dynamics for agricultural commodity – Rice 

 

To sum up the collective analysis, the analysis of global 

price dynamics for Wheat, Millet, Sorghum Maize, and Rice 

shows variations, sudden increases, and steady rises over 

different periods and countries. These trends are shaped by 

factors such as natural disasters, political unrest, armed 

conflicts, climate change, economic hurdles, increasing 

population, etc., affecting global food security. Grasping 

these price trends and their root causes empowers 

policymakers, farmers, researchers, and all stakeholders to 

make knowledgeable decisions and devise strategies to tackle 

the issues in the agricultural sector.  

By acknowledging the effects of influencing factors, 

steps can be taken to lessen the adverse impacts, such as 

enhancing disaster readiness, advocating for sustainable 

farming methods, and enforcing effective policies to ensure 

global food security and stability in the global food market. 

Furthermore, this analysis aids in pinpointing commodities 

and producer countries that are especially susceptible to price 

swings, allowing for focused interventions and support to 

ensure the supply and affordability of vital food items for 

communities around the globe.

  

    
(a) Price forecasting on training data                                                                 (b) Price forecasting on testing data 

Fig. 11 Country-wise performance comparison of actual price versus predicted price using HySALS for wheat 

 

     

                                      (a) Price forecasting on training data                                                        (b) Price forecasting on testing data 

Fig. 12 Country-wise performance comparison of actual price versus predicted price using HySALS for millet 

 



Anket Patil et al. / IJETT, 71(12), 277-291, 2023 

 

287 

        
                                      (a) Price forecasting on training data                                                               (b) Price forecasting on testing data 

Fig. 13 Country-wise performance comparison of actual price versus predicted price using HySALS for sorghum 

 

     
                                 (a) Price forecasting on training data                                                                (b) Price forecasting on testing data 

Fig. 14 Country-wise performance comparison of actual price versus predicted price using HySALS for maize 

 

     
                                   (a) Price forecasting on training data                                                              (b) Price forecasting on testing data 

Fig. 15 Country-wise performance comparison of actual price versus predicted price using HySALS for rice 

 

4.4.3. Performance Evaluation on Training and Test Data 

 This section presents the results of performance 

evaluation and prices forecasted using the proposed HySALS 

approach. The training is conducted using the data for the 

years 2005 to 2017, the results of HySALS are validated on 

the data for the years 2018 to 2022, and further, it is used for 

forecasting global prices of the chosen agriculture 

commodities from the year 2023 up to 2030.  
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Fig. 16 Performance analysis (based on MAPE) of HySALS on training and testing data of average global prices 

 

 The performance comparison results of the prices 

forecasted using the HySALS approach in contrast to the 

actual prices for different countries during the training and 

testing phases are presented in Fig. 11 – 15 for Wheat, Millet, 

Sorghum, Maize, and Rice, respectively. The countries are 

chosen for crop-focused study based on their global 

leadership in production or being top producers within their 

own borders.  

 

The Mean Absolute Percentage Error (MAPE) in 

predicting the average global prices on Training Data and 

Testing Data are presented in Fig. 16. As can be observed, 

our approach, HySALS, which incorporates seasonal trends 

in addition to examining previous data patterns, long as well 

as short term trend capturing shows a high degree of accuracy 

in its predictions.  

 

The training MAPE in learning the average global prices 

has been less than 3% for all the crops, whereas the testing 

MAPE has been in the range of 4.43% – 7.80%, which is 

promising enough. As the actual and predicted values are 

close, the findings demonstrate the effectiveness of HySALS 

in making accurate forecasts for the agricultural crops under 

consideration and as a step towards SDG 02. 

 

4.4.4. Price Forecasting Using Proposed HySALS Approach 

The HySALS approach is further employed to predict the 

prices of the chosen agricultural commodities for the years 

2023 to 2030. Fig. 17 – 21 demonstrate the forecasted 

average global prices and the forecasted prices for the 

developing countries that either are leading global producers 

of these crops or possess a substantial production share in 

their countries.  

 

The findings, as observed in Fig. 17 – 21, demonstrate a 

general upward trend in prices for all the crops considered, 

on an average globally, as well as for the stated developing 

nations. However, the forecasts also indicate sporadic price 

spikes, highlighting the potential challenges to food security, 

such as the projected increases in Millet, Sorghum, and Maize 

prices for Mali in 2029. On the other hand, Rice prices in 

India and Nepal are expected to experience gradual growth 

over time without significant fluctuations.  

 

     
       Fig. 17 Global average and country-wise price forecasting for wheat        Fig. 18 Global average and country-wise price forecasting for millet 
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   Fig. 19 Global average and country-wise price forecasting for sorghum       Fig. 20 Global average and country-wise price forecasting for maize 

 

 
Fig. 21 Global average and country-wise price forecasting for rice 

 

5. Conclusion 
The research leverages the potential of Machine 

Learning (ML) to address the critical issue of global food 

security, which is directly impacted by the prices of 

agricultural commodities. The work concludes with two 

major outcomes: Firstly, the price dynamics of key 

agricultural commodities are analyzed, particularly for 

Wheat, Millet, Sorghum, Maize, and Rice. The analysis 

provides highlights the trends and fluctuations in the prices 

on a global scale. It is specially focused on the developing 

nations that are the leading producers of these crops, or they 

achieve the highest production of this crop among the others 

in their country. Secondly, a Hybrid SARIMA-LSTM 

(HySALS) is proposed to capture seasonal trends and 

dynamic patterns in these crop prices' historical data to 

forecast future prices accurately. The work derives 

motivation from SDG 02: Zero Hunger, and as a contribution 

towards achieving the same, the HySALS approach is trained 

(with <3% MAPE), tested (with <8% MAPE), and further 

employed to forecast prices up to the year 2030. The price 

dynamics analysis and the forecasted prices provide valuable 

insights to policymakers, farmers, researchers, and all the 

stakeholders to mitigate the effects of the influencing factors, 

foster sustainable agriculture, and make informed decisions 

to ensure global food security. 

 

Future research can focus on enhancing price forecasting 

by considering the population dynamics, supply-demand 

ratio for each country, warehouse availability, and the effect 

of climate change as inputs to the Machine Learning models, 

as these factors have a crucial impact on the price dynamics 

and, ultimately, the food security. 
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