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Abstract - The thyroid gland serves a vital role in regulating various body functions, namely energy expenditure, metabolism, 

and organ function, such as the heart and brain. Thyroid cancer refers to a cancer of the thyroid gland and is a commonest 

endocrine cancer. A pathologist can detect thyroid carcinoma on the basis of the visual inspection of tissue samples prepared 

on microscopic slides. Machine learning (ML) is increasingly employed in the medical imaging fields and for pathological 

diagnosis of various diseases. A deep convolutional neural network (DCNN) is a kind of ML, such as a specific artificial neural 

network resembling the multi-layered human cognitive system. Various studies have examined the application of DCNN to 

assess pathological images. This paper introduces a novel Gorilla Troops Optimizer with Deep Learning Based Thyroid 

Cancer Classification on Histopathological Images (GTODL-TCHI) model. The presented GTODL-TCHI model majorly 

analyses the HIs for the identification and classification of thyroid disease. Initially, the GTODL-TCHI model applies the image 

denoising procedure using the non-local mean filtering (NLMF) technique. In addition, the pre-processed images are then 

segmented using a fully convolutional network (FCN). Besides, the GTO algorithm with a densely connected network 

(DenseNet121) method can be implied to produce feature vectors. Finally, the classification of features takes place using a 

stacked sparse autoencoder (SSAE) model. The performance validation of the GTODL-TCHI method can be tested using the 

HI dataset. The results stated the significant performance over the recent state of art DL models.  

Keywords - Thyroid disease, Histopathological images, Computer aided diagnosis, Deep learning, Image processing. 

1. Introduction 
Recently, thyroid cancer has been increasing rapidly 

among all solid malignant cancers. The comparatively high 

incidence, which continues to grow, becomes thyroid cancer, 

the most common endocrine malignancy globally, recently 

listed as the fifteenth most prevalent tumor among men and 

seventh most prevalent tumor among females [1]. Thyroid 

cancer research turns out to be a matter of widespread 

concern in society and the medical community [2]. The 

prognosis of thyroid cancer becomes a difficult task. Many 

thyroid cancers were revealed as thyroid nodules that were 

often identified accidentally at the time of the neck diagnostic 

imaging [3]. Several thyroid nodules were heterogeneous, 

with several internal elements that may confuse 

radiotherapists and doctors with its numerous echo 

paradigms in thyroid nodules ultrasonography [4,22]. To 

improvise the prognosis rate and minimize the loss that 

occurred by the improper diagnosis, computer-aided 

diagnosis (CAD) was projected, which is helpful for the 

medical practitioner in discriminating nodules from 

malignancy or benign. 

The pathological prognosis of respected specimens 

becomes a golden standard for cancer diagnosis [24]. In 

recent times, the massive major pathological tissue sections 

were obtained by diagnosticians, and specimen collections 

were compiled over a longer duration, which can be utilized 

for medical prognosis [6,9]. Yet, physical differential 

diagnosis of thyroid cancer Histopathological images will 

remain a challenging factor for 3 key reasons; one is the 

capability to properly prognoses samples importantly based 

on the professional background and pathologist experience, 

and these experiences may not be obtained quickly, and the 

second reason was the work is time taking, tedious, costly, 

and the last reason is it becomes a challenge for a human eye 

for distinguishing subtle variations in tissues [7]; therefore, 

pathologists could experience exhaustion, that results in 

misdiagnosis. Therefore, the accurate histopathology 

prognosis of thyroid nodules will remain difficult. 

 

Over the past few decades, machine learning (ML)-

related solutions have been devised and grabbed much more 

attention from medical imaging researchers [5,8]. Medical 
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images comprise key information which imitates the 

underlying physiology of cancers that might be unnoticeable 

to the human eyes. Currently, convolutional neural network 

(CNN) systems have succeeded in examining medical 

imaging classification errands, including diabetic retinopathy 

classification and skin lesion evaluations and in the 

observation of severe neurologic events [22]. DL methods' 

potential numbers and types have exploded in the past few 

years. Conventional feature extraction techniques need clear 

knowledge and a complete design for defining hand-crafted 

features. On the other hand, CNN methods optimize and 

derive features automatically from data sets based on defined 

objectives [10]. 

 

This paper introduces an innovative Gorilla Troops 

Optimizer with Deep Learning Based Thyroid Cancer 

Classification on Histopathological Images (GTODL-TCHI) 

model. The presented GTODL-TCHI model majorly 

analyses the HIs for the identification and classification of 

thyroid disease. Initially, the GTODL-TCHI model applies 

the image denoising procedure using the non-local mean 

filtering (NLMF) technique. In addition, the pre-processed 

images are then segmented using a fully convolutional 

network (FCN). Besides, the GTO algorithm with a densely 

connected network (DenseNet121) model is applied to 

produce feature vectors. Finally, the classification of features 

takes place using a stacked sparse autoencoder (SSAE) 

model. The performance validation of the GTODL-TCHI 

technique can be tested with the help of a HI dataset.  

2. Literature Review  
Han et al. [11] suggest an active classifying technique for 

papillary thyroid carcinoma (PTC) categorization of 

pathological images for dividing thyroid pathological 

imageries as normal thyroid pathological imageries and PTC. 

The researchers use the attention system for compiling 

pathological images and distinct magnification aspects that 

reflect the prognosis process of thyroid tumor under the 

microscope. Meanwhile, the authors use the representative 

and uncertain information offered by CNN for determining 

the most useful samples for annotation, which could 

minimize labelling costs. In [12], the authors project a 

workflow to display that BRAFV600E mutation grade is 

straight forecasted from Histopathological images with DL. 

This technique majorly contains 2 steps, mutation 

classification and tumor detection; both have a CNN. The 

information extracted from the two steps was compiled for 

predicting mutation. 

 

Wang et al. [13] present the theory of CNN regarding the 

difficulty in detecting the ultrasound image of PTC and 

recommends a technique that could automatically identify the 

ultrasound image of PTC. In the context of the requirement 

of ultrasonic image identification of PTC, a Fast Region-

related CNN technique (Faster RCNN) can be improvised 

and normalized by linking the fifth- and fourth layers of the 

shared convolutional layers in a Fast RCNN network. After 

which, a multistage ultrasound image can be utilized during 

input. Liu et al. [14] suggest a feature-extracting technique 

for ultrasound images related to CNNs and try to present 

more useful semantic features to the categorization.  

 

Chi et al. [15] introduce a CAD system to classify 

thyroid nodules in ultrasound images. The researchers use the 

DL technique for extracting features from thyroid ultrasound 

images. Ultrasound imageries have been pre-processed to 

calibrate their scale and eliminate the artifacts. A pretrained 

Google Net method can be finely tuned after the pre-

processed image samples, resulting in better feature 

extraction. Song et al. [26] focus on identifying PMC and 

PTC with the help of Raman spectroscopy. The authors may 

collect serum Raman spectra from 31 patients having PMC 

and 16 patients having PTC. At first, the gathered imbalanced 

data are pre-processed using the synthetic minority over-

sampling technique (SMOTE). After which, data that is 

equalized are dimensionality minimized by principal 

component analysis (PCA). At last, the data which is 

processed has been entered in the random forest (RF) and one 

decision tree (DT) classification, constructed on the idea of 

the Adaptive Boosting (Adaboost) and Boosting ensemble 

technique devised on the ideology of bagging ensemble for 

classification.  

3. The Proposed Model 
This study devised a novel GTODL-TCHI model to 

recognize the presence of the thyroid on HIs. The presented 

GTODL-TCHI model primarily utilized the NLMF technique 

to eradicate the existence of noise, and then the FCN model 

was utilized to segment the images. Then, the DenseNet-121 

model is utilized to derive feature vectors, and its 

hyperparameters are tuned using the GTO algorithm. At last, 

the SSAE method can be implied to categorize the class 

labels of the input HIs. Fig. 1 depicts the overall process of 

the GTODL-TCHI algorithm. 

3.1. Denoising Process 

The presented GTODL-TCHI model primarily utilized 

the NLMF technique to eradicate the noise. It upgrades the 

weight value of normal pixels. The weight of all the pixels is 

based merely on the distance between intensity grey level 

vectors and target pixels. In all the pixels, denoised images 

are calculated as follows: 
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Fig. 1 Overall process of the GTODL-TCHI approach 

 
Fig. 2 Framework of SSAE 
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𝑀(𝑖, 𝑗) = ∑ 𝐷(𝑖, 𝑗)𝑤(𝑖, 𝑗)

𝑗∈𝐷

                                             (1) 

Let j be the noise images, and M denotes the denoised 

images. With the following circumstance, 0 ≤ 𝑤(𝑖, 𝑗) ≤
1 weight is achieved. Weighted averages of whole pixels 

depend on the judgment among the locality of i and j pixels. 

3.2. Image Segmentation using FCN Model 

  Once the images are pre-processed, the next stage is to 

perform image segmentation using the FCN model. The 

network comprises deconvolutional (expansion) and 

convolution (contraction) blocks [17]. Every convolutional 

or deconvolutional block comprises residual, primary, and 

secondary convolution layers. The convolutional process 

takes place in every convolution layer. There exists a 𝑚𝑎𝑥 

pooling layer after every convolutional block that halves the 

output size. 

 In contrast, there is a bi-linear up-sampling layer after 

every deconvolutional block that doubles the output's size after 

every block. In the convolutional operation, we set each stride 

equivalent to one. The convolutional mode has been set to 

‘same’, which results in padding the input so that the output 

has a similar size as the actual input. 393 filters implement 

each convolutional and deconvolutional process, i.e., 

upgraded by backpropagation at the end of every mini-batch 

in the trained phase. The rectified linear unit (ReLU) is 

employed as the activation function for each convolutional 

layer. This activation function offers advantages compared to 

other linear or nonlinear activation functions. In contrast to a 

linear one, ReLU offers high expressiveness in the deep 

network, and contrasted with a nonlinear one, ReLU does not 

undergo the gradient vanishing problems and sustains stable 

convergence speed. The sigmoid function implements pixel-

wise semantic segmentation in the final stage. 

3.3. Feature Extraction 

 Then, the DenseNet-121 model is utilized to derive 

feature vectors, and the GTO algorithm tunes its 

hyperparameters. The DenseNet-121 infrastructure was 

employed during this case as the foundation [18]. In addition, 

the transfer learning (TL) approach was utilized in the Dense 

Net framework to improve the system efficiency. Dense Net 

needs some parameters compared with standard CNN 

approaches as it could not be needed for a redundant feature 

map. The fundamental model of Dense Net structure refers to 

a feature reprocessed to extremely compact versions. 

Accordingly, it needs variables related to another CNN 

method since no feature map was repeated. If CNN drives 

more, it can face challenges. Dense Net generates this 

connectivity much more simpler by basically interconnected 

every layer straightforwardly with all the layers. In Dense, 

Nets employ the network ability with reemploying features. 

Each layer from Dense Net attains more input on all the prior 

layers and transfers their feature maps to the following layers.  

  

 To optimally modify the hyperparameter values of the 

DenseNet-121 model, the GTO algorithm is utilized. The 

GTO algorithm simulates 5 strategic alternatives to explain 

the exploration and exploitation processes, which are briefly 

discussed [27]. 

3.3.1. Exploration Phase 

  In GTO, each gorilla individual is represented as a 

solution candidate. However, each operational stage selects 

the global optimum solution as a silverback. For the 

developmental phase, three different techniques are utilized. 

The initial one is the movement to an unidentified destination 

to increase GTO exploration, whereas the second technique 

is the movement of other gorillas to improve the reliability of 

exploitation and exploration. Furthermore, the third 

technique is the gorilla’s movement in the path of a known 

destination to increase GTO abilities for discovering various 

computational spaces. Here, the factor (𝑃𝑟) needs to be 

provided in the range of [0:1] preceding the optimizing 

technique. If a factor (𝑃𝑟) is superior to a random value, the 

movement to an uncertain position strategy is chosen. In 

addition, when a random integer is higher than or equivalent 

to fifty percent, a movement in the path of a recognizable 

position is selected, whereas a random integer is lesser than 

fifty percent, and a movement in a path of an identified site 

is decided. The three exploratory strategies are modelled 

mathematically in the following: 

𝐺𝑋(𝑔 + 1) = {

𝐿𝐿 + 𝑟𝑑1 × (𝑈𝐿 − 𝐿𝐿),     𝑃𝑟 > 𝑟𝑎𝑛𝑑,

𝐻 × 𝐿 + 𝑋𝑟(𝑔) × (𝑟𝑑2 − 𝐶), 0.5 ≤ 𝑟𝑎𝑛𝑑,

𝑋(𝑔) + (𝑋(𝑔) − 𝐺𝑋𝑟(𝑡)) × 𝑟𝑑3 − (𝑋(𝑔) − 𝐺𝑋𝑟(𝑔) × 𝐿2), 0.5 > 𝑟𝑎𝑛𝑑

   (2) 

𝐶 = 𝐹 × (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
),         (3) 

𝐹 = cos(2 × 𝑟𝑑4) + 1,             (4) 

𝐿 = 𝐶 × 𝑙                                     (5) 

𝐻 = 𝑍 × 𝑋(𝑔)                            (6) 

𝑍 = [−𝐶, 𝐶].                               (7) 
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3.3.2. Exploitation Phase 

Two strategies are employed in the exploitation phase of 

GTO: competing for female adults and following the 

silverback. According to the 𝐶 factor and conflicting them to 

the parameter (W) (that is altered), one of the two approaches 

is designated. The leader of the gorillas’ group is the 

silverback that makes choices and directs others to food 

sources. When the 𝐶 is higher than or equivalent to the 𝑊, 

this strategy is selected, and it is explained in the following. 

𝐺𝑋(𝑔 + 1) = 𝐿 × 𝑀(𝑔) × (𝑋(𝑔) − 𝑋𝑠𝑖𝑣𝑒𝑟𝑏𝑎𝑐𝑘)
+ 𝑋(𝑔)                                                           (8) 

𝑀(𝑔) = (|(
1

𝑁
) ∑ 𝐺

𝑁

𝑖=1

𝑋𝑖(𝑔)|

2𝐿

)

(
1

2𝐿)

                                      (9) 

  

 The second strategy is competing for female adults if 𝐶 is 

lower than 𝑊, i.e., specialized for the assessment phase. As 

soon as adolescent gorillas reach adolescence, they engage in 

a violent rivalry with others for selecting females, and such 

behaviors are expressed in the following: 

 

𝐺𝑋(𝑔) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘

− (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑄 − 𝑋(𝑔) × 𝑄)
× 𝐴 (10)𝑄
= 2 × 𝑟𝑑5 − 1                                         (11) 

 

𝐴 = 𝛽 × 𝐸                                                    (12) 
 

𝐸 = {
𝑁1 𝑟𝑎𝑛𝑑 ≥ 0.5
𝑁2 𝑟𝑎𝑛𝑑 < 0.5

                                (13) 
  

 Eventually, at the exploitation phase, the cost of 𝐺𝑋(𝑔) 

is compared to counterpart X (g). When the cost of 𝐺𝑋(𝑔) 

is lower than X (g), then 𝐺𝑋(𝑔) solution replaces them and 

becomes the optimum option (silverback).   

 The GTO system develops a fitness function (FF) for 

achieving maximal classifier performances. It defined a 

positive numeral for indicating the best efficiency of 

candidate results. In this case, the minimized classifier error 

rate was supposed to be provided by FF in Eq. (14). An 

optimum result is a lesser error rate, and the worst result gains 

a maximal error rate. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖)

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                                                          (14) 

 

 

3.4. Image Classification using SSAE Model  

At last, the SSAE method can be implemented to 

categorize the class labels of the input HIs. The basic 

component for SSAE, AE, work for training feed-forward 

nonlinear neural network [20]. It comprises three important 

layers: output, hidden, and input. Multiple nodes frame all the 

AE layers; the node establishes a full connection among the 

nodes of the neighboring layer. The input layer representation 

is encoded in the encoder phase for connecting the input and 

AE hidden layers. On the other hand, the AE indicates the 

input layer reconstructed from encoding feature learning in 

the hidden layer in the decoder phase. The AE aims to 

determine the input dataset presentation utilized for creating 

the best reconstruction. A concatenated vector feature of the 

image patch was given to AE in this technique. Input image 

patches 𝒙𝒊 was provided to AE in training, and reduced the 

error factor for each network connection weight was 

implemented by: 
 

𝐴𝑟𝑔Min𝑊,𝑏,𝑊̂,𝑏̂ ∑ |

𝑁

𝑖=1

𝑥𝑖 − (𝑊̂(𝜎(𝑊𝑥𝑖 + 𝑏)) + 𝑏̂)         (15) 

     

 Where band σ indicates the weight, bias, and activation 

function of the AE parameter. Assume an input layer xi; the 

AE initially encodes the input to their presentation 

hi=σ(Wi+b), whereby hiindicatesthe xi response of hidden‐

layer neuron and h indicates the dimension that corresponds 

to the neuron count in the hidden state. The AE decodes the 

new input from the encoded learning all over the decoder 

phase, 𝑊̂ℎ𝑖 + 𝑏̂. Instead of the constraint of hidden state 

dimension, an alternative method named sparse AE (SAE) 

imposed sparsity regularity on the AE hidden layer. SAE 

implements the regularity of the hidden layer response to 

prevent trivial solutions, which the fundamental AE tends 

toward. The fundamental AE requires the hidden layer 

dimension to be lesser when compared to the input layer 

dimension. Accurately, for making infinitesimal, the sparsity 

regularity is imposed on the AE. To construct a balance 

among the hidden state sparsity and reconstructed power for 

all the input nodes, the most appropriate hidden node 

response that drives the SAE for representing the trained set-

in sparse feature is defined by: 
 

𝐴𝑟𝑔𝑀𝑖𝑛𝑊,𝑏,𝑊̂,𝑏̂ ∑|𝑥𝑖 − (𝑊̂(𝜎(𝑊𝑥𝑖 − 𝑏)) + 𝑏̂)|
2

2
𝑁

𝑖=1

  

+ 𝛿 ∑ 𝐾

𝑀

𝑗=1

𝐿(𝜌|𝜌𝑗)                                     (16) 

𝐾𝐿(𝜌|𝜌𝑗) = 𝜌𝑙𝑜𝑔
𝜌

𝜌𝑗
+ (1 − 𝜌)𝑙𝑜𝑔

1−𝜌

1−𝜌𝑗 ,                              (17) 

From the equation, 𝛿 illustrates the balancing variable 

among sparsity and reconstruction, and the dimension of the 

hidden layers is determined as𝑀. The(𝜌|𝜌𝑗), called as 

Kullback-Leibler equation in (Eq. (17)), illustrates the 

divergence in two Bernoulli distributions that have the 

probabilities 𝜌 and𝜌𝑗 .  Fig. 2 illustrates the infrastructure of 

SSAE.
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Fig. 3 Confusion matrices of GTODL-TCHI approach (a) Run-1, (b) Run-2, (c) Run-3, (d) Run-4, (e) Run-5, (f) Run-6, (g) Run-7, (h) Run-8, (i) 

Run-9, and (j) Run-10 
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Fig. 4 Sample Histopathological Images 

4. Result and Discussion 
In this study, the performance validation of the GTODL-

TCHI model is tested using a set of HIs. The dataset 

comprises 500 images under two class labels, as depicted in 

Table 1. Fig. 4 demonstrates the sample Histopathological 

images.  

 

Fig. 3 reports a set of confusion matrices produced by the 

GTODL-TCHI model on ten runs of execution. On run-1, the 

GTODL-TCHI model has recognized 241 samples in class 1 

and 247 samples in class 2. Also, on run-3, the GTODL-

TCHI technique has recognized 235 samples into class 1 and 

236 samples into class 2. In addition, on run-5, the GTODL-

TCHI method has recognized 235 samples into class 1 and 

240 samples into class 2. Moreover, on run-6, the GTODL-

TCHI approach recognized 242 samples in class 1 and 249 

samples in class 2. Furthermore, on run-9, the GTODL-TCHI 

methodology recognized 237 samples in class 1 and 248 

samples in class 2. At last, on run-10, the GTODL-TCHI 

algorithm recognized 247 samples in class 1 and 246 samples 

in class 2. 

 

Table 2 offers extensive thyroid classification outcomes 

of the GTODL-TCHI model under ten distinct runs. Fig. 5 

illustrates the overall classifier results of the GTODL-TCHI 

model underruns 1-5. The figure pointed out that the 

GTODL-TCHI model has resulted in enhanced results under 

all classes. For instance, on run-1, the GTODL-TCHI model 

has provided average 𝑎𝑐𝑐𝑢𝑦 of 97.60%, 𝑠𝑒𝑛𝑠𝑦  of 97.60%, 

𝑠𝑝𝑒𝑐𝑦 of 97.60%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.60%, and MCC of 95.23%. 

Meanwhile, on run-1, the GTODL-TCHI method has offered 

average 𝑎𝑐𝑐𝑢𝑦 of 98.60%, 𝑠𝑒𝑛𝑠𝑦  of 98.60%, 𝑠𝑝𝑒𝑐𝑦 of 

98.60%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.60%, and MCC of 97.20%.  Eventually, 

on run-4, the GTODL-TCHI approach provided average 

𝑎𝑐𝑐𝑢𝑦 of 94.20%, 𝑠𝑒𝑛𝑠𝑦  of 94.20%, 𝑠𝑝𝑒𝑐𝑦 of 94.20%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 94.20%, and MCC of 88.40%. At last, on run-5, the 

GTODL-TCHI technique has rendered average 𝑎𝑐𝑐𝑢𝑦 of 

98.80%, 𝑠𝑒𝑛𝑠𝑦  of 98.80%, 𝑠𝑝𝑒𝑐𝑦 of 98.80%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

98.80%, and MCC of 97.61%. 

Table 1. Dataset details 

Class  

Label 
Class Name 

No. of  

Images 

Class 1 Normal Thyroid (NT) 250 

Class 2 Papillary Thyroid Carcinoma (PTC) 250 

Total No. of Images 500 

 

 
Fig. 5 Average analysis of GTODL-TCHI approach underruns 1-5 

 

Fig. 6 demonstrates the overall classifier results of the 

GTODL-TCHI method underruns 6-10. The figure denoted 

that the GTODL-TCHI technique has resulted in enhanced 

results under all classes. For example, on run-6, the GTODL-

TCHI approach has rendered average 𝑎𝑐𝑐𝑢𝑦 of 95%, 𝑠𝑒𝑛𝑠𝑦  

of 95%, 𝑠𝑝𝑒𝑐𝑦 of 95%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 95%, and MCC of 90.02%. 

At the same time, on run-8, the GTODL-TCHI methodology 

has provided average 𝑎𝑐𝑐𝑢𝑦 of 97.60%, 𝑠𝑒𝑛𝑠𝑦  of 97.60%, 

𝑠𝑝𝑒𝑐𝑦 of 97.60%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.60%, and MCC of 95.25%.  

Finally, on run-9, the GTODL-TCHI algorithm has granted 

average 𝑎𝑐𝑐𝑢𝑦 of 98.20%, 𝑠𝑒𝑛𝑠𝑦  of 98.20%, 𝑠𝑝𝑒𝑐𝑦 of 

98.20%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.20%, and MCC of 96.44%. At last, on 

run-10, the GTODL-TCHI method has presented average 

𝑎𝑐𝑐𝑢𝑦 of 97%, 𝑠𝑒𝑛𝑠𝑦  of 97%, 𝑠𝑝𝑒𝑐𝑦 of 97%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97%, 

and MCC of 94.09%. 
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Table 2. Result analysis of GTODL-TCHI approach with various measures and runs 

Class Labels Accuracy Sensitivity Specificity F-Score MCC 

Run - 1 

Class 1 97.60 96.40 98.80 97.57 95.23 

Class 2 97.60 98.80 96.40 97.63 95.23 

Average 97.60 97.60 97.60 97.60 95.23 

Run - 2 

Class 1 98.60 98.80 98.40 98.60 97.20 

Class 2 98.60 98.40 98.80 98.60 97.20 

Average 98.60 98.60 98.60 98.60 97.20 

Run - 3 

Class 1 97.80 96.80 98.80 97.78 95.62 

Class 2 97.80 98.80 96.80 97.82 95.62 

Average 97.80 97.80 97.80 97.80 95.62 

Run - 4 

Class 1 94.20 94.00 94.40 94.19 88.40 

Class 2 94.20 94.40 94.00 94.21 88.40 

Average 94.20 94.20 94.20 94.20 88.40 

Run - 5 

Class 1 98.80 98.00 99.60 98.79 97.61 

Class 2 98.80 99.60 98.00 98.81 97.61 

Average 98.80 98.80 98.80 98.80 97.61 

Run - 6 

Class 1 95.00 94.00 96.00 94.95 90.02 

Class 2 95.00 96.00 94.00 95.05 90.02 

Average 95.00 95.00 95.00 95.00 90.02 

Run - 7 

Class 1 98.20 96.80 99.60 98.17 96.44 

Class 2 98.20 99.60 96.80 98.22 96.44 

Average 98.20 98.20 98.20 98.20 96.44 

Run - 8 

Class 1 97.60 96.00 99.20 97.56 95.25 

Class 2 97.60 99.20 96.00 97.64 95.25 

Average 97.60 97.60 97.60 97.60 95.25 

Run - 9 

Class 1 98.20 96.80 99.60 98.17 96.44 

Class 2 98.20 99.60 96.80 98.22 96.44 

Average 98.20 98.20 98.20 98.20 96.44 

Run - 10 

Class 1 97.00 94.80 99.20 96.93 94.09 

Class 2 97.00 99.20 94.80 97.06 94.09 

Average 97.00 97.00 97.00 97.00 94.09 
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Fig. 6 Average analysis of GTODL-TCHI approach underruns 6-10 

The training accuracy (TA) and validation accuracy 

(VA) acquired by the GTODL-TCHI methodology on the test 

dataset is illustrated in Fig. 7. The experimental outcome 

denoted by the GTODL-TCHI methodology has gained 

maximal values of TA and VA. To be specific, the VA 

seemed to be higher than TA. 

 
Fig. 7 TA and VA analysis of the GTODL-TCHI approach 

 
Fig. 8 TL and VL analysis of GTODL-TCHI approach 

 
Fig. 9 Precision-recall curve analysis of the GTODL-TCHI approach 

 
Fig. 10 ROC curve analysis of GTODL-TCHI approach 

 

The training loss (TL) and validation loss (VL) attained 

by the GTODL-TCHI technique on the test dataset are 

established in Fig. 8. The experimental outcome inferred that 

the GTODL-TCHI approach had accomplished the least 

values of TL and VL. Particularly, the VL is lower than TL. 

A clear precision-recall examination of the GTODL-

TCHI technique on the test dataset is depicted in Fig. 9. The 

figure specified that the GTODL-TCHI approach has resulted 

in enhanced values of precision-recall values under all 

classes. 

A brief ROC analysis of the GTODL-TCHI algorithm on 

the test dataset is portrayed in Fig. 10. The results represented 

that the GTODL-TCHI approach has shown its ability to 

categorize distinct classes on the test dataset.  
 

Table 3. Comparative analysis of GTODL-TCHI approach with recent 

algorithms   

Methods Sensitivity Specificity Accuracy 

GTODL-TCHI 98.80 98.80 98.80 

NB-CMR 94.08 96.62 94.86 

SVMQ-NB 91.62 98.20 94.28 

SVML-CMR 98.19 97.59 97.89 

SVML-SVMQ 97.49 98.54 97.99 

SVMRBF-NBCMR 97.69 97.47 93.60 
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Fig. 11 𝑺𝒆𝒏𝒔𝒚 And 𝒔𝒑𝒆𝒄𝒚 analysis of the GTODL-TCHI approach with 

recent algorithms 

Table 3 portrays an overall comparative thyroid 

classification performance of the GTODL-TCHI model with 

existing models [21]. Fig. 11 shows the comparison study of 

the GTODL-TCHI method with recent models in terms of 

𝑠𝑒𝑛𝑠𝑦and 𝑠𝑝𝑒𝑐𝑦. The results represented the SVMRBF-

NBCMR approach has shown poor performance with 

minimum 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦 value. Meanwhile, the NB-CMR 

and SVMQ-NB methodologies have gained slightly 

enhanced values of 𝑠𝑒𝑛𝑠𝑦and𝑠𝑝𝑒𝑐𝑦. Next, the SVML-CMR 

and SVML-SVMQ algorithms have resulted in reasonable 

𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦 values. But, the GTODL-TCHI model has 

shown an effectual outcome with maximum 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦 

of 98.80% and 98.80% correspondingly. 

Fig. 12 depicts the comparison study of the GTODL-

TCHI model with recent models in terms of𝑎𝑐𝑐𝑢𝑦. The 

results inferred that the SVMRBF-NBCMR model had 

shown poor performance with minimum 𝑎𝑐𝑐𝑢𝑦 value. At the 

same time, the NB-CMR and SVMQ-NB models have 

obtained slightly enhanced values of𝑎𝑐𝑐𝑢𝑦. Followed by the 

SVML-CMR and SVML-SVMQ models have resulted in 

reasonable 𝑎𝑐𝑐𝑢𝑦 values. However, the GTODL-TCHI 

model has shown an effectual outcome with maximum 𝑎𝑐𝑐𝑢𝑦 

of 98.80%. 

Fig. 12 𝑨𝒄𝒄𝒖𝒚 Analysis of GTODL-TCHI approach with recent 

algorithms 

Therefore, the experimental results and discussion 

portrayed that the GTODL-TCHI model has revealed 

effectual thyroid classification performance over other 

models.  

5. Conclusion  
In this study, a new GTODL-TCHI model was advanced 

to recognize the presence of the thyroid on HIs. The presented 

GTODL-TCHI model primarily utilized the NLMF technique 

to eradicate the existence of noise, and then the FCN model 

was utilized to segment the images.  

Then, the DenseNet-121 technique is utilized for 

deriving feature vectors, and the use of the GTO algorithm 

tunes its hyperparameters. At last, the SSAE model is applied 

to categorize the class labels of the input HIs. The 

performance validation of the GTODL-TCHI method is 

tested using a HI dataset, and the results reported a significant 

performance over the recent state of art DL models.  

Therefore, the GTODL-TCHI model can be treated as an 

effectual CAD model for thyroid classification. Hybrid DL 

classifiers will be applied in the upcoming years to boost 

classification performance. 
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