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Abstract - Tuberculosis (TB) is a prolonged lung illness that affects by pneumonia cases and results in a high mortality rate. 

TB detection is a tedious process that is primarily due to different kinds of manifestations, namely focal lesions, large 

opacities, aggregation, cavities, CXR image nodules, and small opacities. Early and accurate detection of TB is of 

considerable importance, or else it could be life-threatening. Machine learning (ML) is a subdivision of computing that 

analyses algorithms with the capability to “learn.” The study of health interest images with deep learning (DL) could not be 

constrained to the usage of medical diagnosis. In this study, we propose a bird mating optimizer with deep learning-based TB 

detection and classification (BMODL-TBDC) system on chest radiographs. The presented BMODL-TBDC technique applies 

median filtering (MF) for noise removal. For feature extraction, the Xception architecture is used with the BMO algorithm as 

a hyperparameter optimizer. Finally, boosted convolutional autoencoder (BCAE) is applied for TB detection purposes. The 

simulation outcome of the BMODL-TBDC approach on the benchmark medical database reports promising performance over 

other recent systems with respect to various measures. 
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1. Introduction  
Tuberculosis (TB), otherwise termed consumption, is a 

chronic infectious disease arising from the germ named 

Mycobacterium tuberculosis [1]. The bacteria usually affect 

the lung region and other parts of the body. The air can 

spread TB and is curable and preventable when diagnosed at 

an initial stage; otherwise, it may result in death. Tests, 

namely chest X-ray (CXR) or process of a sputum sample, 

are done to identify TB disease patients [2].  A very exciting 

appraisal of the progression of processing techniques and 

medical image analysis can be found since the 1980s. Image 

classification is simply defined as the task of deriving classes 

of data from an image [3]. There were 2 forms of 

classification they are unsupervised and supervised. The 

supervised classification begins in a collection of recognized 

classes; such classes should be categorized as per the 

variables set by measuring them in individuals that 

membership of one class could not provide doubts [4], 

whereas the unsupervised categorization does not accomplish 

any class, though it becomes essential to decide the count of 

classes that has to be accomplished and let a statistical 

process describe them [5]. 

 

In medical practice, chest radiographs will be inspected 

by experts for diagnosing TB [6]. But this is a subjective and 

time-consuming process [7]. Subjective inconsistency in 

disease diagnosis from radiographs can be unavoidable. 

Significantly, CXR images of TB were often miscategorized 

to other illnesses of the same radiologic pattern that causes 

inaccurate treatment to the patients and thus worsens their 

health [8]. There exists a lack of skilled radiotherapists in the 

lower resource countries (LRCs), particularly in the non-

urban zones. In this context, a CAD system serves a 

significant part of the mass screening of pulmonary TB by 

examining CXR images [21]. The availability of deep 

convolutional neural networks (CNN) and large-scale 

labelled data made great achievements in image recognition. 

CNN's highly representative allow data-driven, hierarchical 

image features that are studied from trained data; however, 

acquiring data in the medicinal image field as broadly 

annotated, as ImageNet will remain a challenge [9,10]. 

 

This study proposes a bird mating optimizer with deep 

learning-based TB detection and classification (BMODL-

TBDC) technique on chest radiographs. The presented 

BMODL-TBDC technique applies median filtering (MF) for 

noise removal. For feature extraction, the Xception 

architecture is used with the BMO algorithm as a 

hyperparameter optimizer. Finally, boosted convolutional 

autoencoder (BCAE) is applied for TB detection purposes. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:manik81au@gmail.com
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The experimental validation of the BMODL-TBDC 

technique occurs on a benchmark medical database.  

2. Literature Review 
Nguyen et al. [11] explored the efficacy of transfer 

learning (TL) on medicinal imaging for the detection of TB. 

The author shows an enhanced methodology for TL over the 

classical approach of utilizing ImageNet weight. Also, the 

author discovers that the lower-level feature from ImageNet 

weight is not beneficial for imaging tasks for modalities such 

as X-rays and presents a novel approach for obtaining lower-

level features by training the model in multi-class multi-label 

scenarios. The authors in [12] developed an innovative TB 

recognition method that fuses handcrafted features with deep 

features (CNN) through Ensemble Learning. The handcrafted 

feature was extracted through Gabor Filter, and the deep 

feature was extracted through the pretrained DL model.  

Chowdary [13] introduces an automated technique for the 

analysis of TB in posteroanterior CXR. This is a 2-phase 

methodology. Initially, the lung region is segmented in 

CXRs with the help of a graph cut model; next, the TL of 

VGG-16 fused with BiLSTM was utilized for extracting 

higher-level discriminatory features in the segmentation lung 

region, and later classifier can be done through FC layer. The 

authors in [14] applied CNN and DL to categorize the image 

of the TB culture test. As the database is smaller and 

imbalanced, a TL technique was implemented.  

In addition, as the recall of non-negative classes is a vital 

metric for this application, the authors present a 2-stage 

classifier approach for boosting the outcomes.  

Ravi et al. [22] examine a detailed search and 

investigation of 26 pre-trained CNN techniques utilizing a 

newly published and huge open dataset of TB Xray.[18] 

Several visualization approaches were implemented to depict 

optimal features learned with pretrained CNN 

approaches. The authors [16] introduce a CAD method 

exploiting a pre-training CNN as extracting feature and 

logistic regression (LR) technique for automatically 

analyzing the chest radiographs to offer an appropriate and 

correct analysis of several images. The chest radiographs can 

be pre-processed beforehand to extract distinct features and, 

afterwards, provide a classifier to identify that image can be 

infected. 

3. The Proposed Model 
In this study, we have introduced a novel BMODL-

TBDC methodology for TB detection and classification on 

chest radiographs. The presented BMODL-TBDC technique 

utilized the MF approach for noise removal. For feature 

extraction, the Xception architecture is used with the BMO 

algorithm as a hyperparameter optimizer. Finally, the BCAE 

is applied for TB detection purposes. Fig. 1 illustrates the 

flow process of the BMODL-TBDC algorithm. 

 
Fig. 1 Block diagram of BMODL-TBDC system 
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3.1. Feature Extraction Module 

In this article, the Xception model was exploited for 

producing feature vectors. In the Xception framework, unlike 

the Inception framework, a convolutional process with 

depthwise separable convolution has been employed [17]. 

This kind of convolution layer has pointwise and depthwise 

convolution layers. At first, every filter individually 

processes a single channel of the input images; then, a filter 

size of 1x1 dimension iterates each input point. The Xception 

model uses depthwise separable convolution in different 

ways; in other words, 1x1 convolution is first utilized, and 

later channel-wise spatial convolution is used.  

Xception framework comprises three architectures: 

Entry, middle, and exit flows. These three structure consists 

of fourteen models (2, 4, and 8 models, correspondingly) 

having overall 36 convolutional layers. There exist residual 

connections in the module except for the initial model of 

entry flow and the final model of exit flow. The Xception 

framework initiates with an entry flow that contains 4 

modules, and every module has two convolutional layers. 

Initially, convolution is done by 64 and 32 filters with 3x3 

dimensions. Next, the separable convolutional layer is 

realized with 128, 256, and 728 filters in 3x3 dimensions. 

Then accept the image size of 299x299x3 dimension as 

input in the entry flow and create a size of 

19x19x728 feature maps at the output. Three separable 

convolutional modules with 728 filters in 3x3 dimensions are 

reiterated eight times in the middle flow. Middle flow 

constructs 19x19x728 feature maps at the output. The 

feature maps, the output of the middle flow, are provided as 

input to the exit flow. Exit flow contains two modules. 

Initially, the separable convolutional layer is done with 1024 

and 728 filters in 3x3 dimensions; then, it can be done with 

2048 and 1536 filters. Later, the framework is terminated 

with the addition of the FC layer. 

 

The hyperparameter tuning of the Xception system 

occurs using the BMO algorithm. BMO is an approach 

inspired by the population algorithm. It is recommended to 

society for certain problems, and every society member is 

regarded as a possible solution and is termed a bird [23]. 

Generally, the gene of higher quality is possessed by females 

that are classified into different sets, such as polygyny, 

promiscuous, and monogamy. The female who poses genes 

of higher quality has further opportunities to be selected.  

 

𝑥𝑏 = 𝑥 + 𝑤∗𝑟∗(𝑥𝑗 − 𝑥).                                              (1) 

 

And if 𝑟1 > 𝑚𝑐𝑓 

𝑥𝑏(𝑐) = 𝑙(𝑐) − 𝑟2
∗(𝑙(𝑐) − 𝑢(𝑐)).                                  (2) 

 

Where 𝐶 denotes the random integer among 1 and 𝑛, the 

brood result represented as 𝑥𝑏, the weighted of time‐varying 

for defining the consequence of female can be denoted as 𝒲, 

𝑟 is equivalent to the vector of 1 × 𝑑 where every component 

constructed randomly within zero and one influence the 

element of (𝜒𝑗 − 𝑥), 𝑛 characterizes the problem dimension. 

The factor of control mutation differs from zero to one and is 

specified as  b𝑦𝑚𝑐𝑓 , random number is specified as 𝑟𝑖 that is 

within zero and one. Lastly, the upper bound of the 

component is denoted as 𝑢, whereas the lower one is denoted 

as 𝑙. 
 

Polygyny type indicates mating amongst one male with 

more than one female. The key characteristic of extra‐pair 

interaction is to attain better genes to brood as follows.  

𝜒𝑏 = 𝑥 + 𝑤∗ ∑ 𝑟𝑗
∗

𝑛𝑖

𝑗=1

(𝑥𝑗 − 𝑥).                                   (3) 

Where 𝑛𝑖 denotes the count of interested birds, 𝜒𝑖  

characterizes the 𝑗-𝑡ℎ interesting bird. Note that the similar 

computation formula of monogamous is executed for the 

promiscuous type. 

Every female raises the brood without the aid of males in the 

parthenogenesis type. Here, the female tries to pass‐through 

through the preferred gene for her brood, and it can be 

expressed as follow: 

 

𝜒𝑏(𝑖) = 𝜒(𝑖) + 𝜇∗(𝑟2 − 𝑟3)∗𝑥(𝑖).                              (4) 

 

Otherwise 

𝜒𝑏(𝑖) = 𝑥(𝑖).                                                          (5) 

 

Where 𝜇 denotes the size step and 𝑚𝑐𝑓𝑝 specifies the 

controlling aspect for parthenogenetic mutation. In this 

study, the same computation formula of polygyny is 

executed for the polyandry type. 

 
Fig. 2 Structure of CAE 
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3.2. TB Classification Module 

The BCAE model is used in this study for the TB 

classification process. BCAE is an unsupervised feature 

learning model [19]. CAE is a multi-level feature extraction 

method focused on determining the inner data of the image. 

In comparison to dense 𝐴𝐸, CAE exploits the spatial‐locality 

of the original image and minimizes the probability of over-

fitting caused by parameter redundancy. The presented CAE 

involves encoding and decoding blocks. The conversion 

from the original images to hidden layers is termed the 

encoding procedure. The decoding aims to mine the inner 

data compressed from the input dataset, extract it as a useful 

feature, and recreate the input dataset from the extracted 

feature. Fig. 2 illustrates the framework of CAE. 

In this work, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝑅𝐻×𝑊×𝐷 applied as 

input tensor, whereas 𝑊, and 𝐻 stand for depth, width, and 

height of inputs correspondingly, and 𝑛 denotes the pixel 

number. 𝑋 comprises image patches (𝑥𝑖
∗) with a dimensional 

of 7 × 7 × 𝐷(𝑥𝑖
∗ ∈ 𝑅7×7×𝐷) that are extracted from the input 

images. Then, all the patches are fed into the encoding 

blocks. For input 𝑥𝑖
∗, the hidden layer mapping (hidden 

depiction) of 𝑘𝑡ℎ feature maps are represented as follows: 

 

ℎ𝑘 = 𝜎(𝑥𝑖
∗ ∗ 𝑊𝑘 + 𝑏𝑘)                                       (6) 

 

In Eq. (6), 𝑏 denotes the bias, 𝜎 represents the activation 

function (ReLU), and ∗ corresponds to the 2𝐷 convolutional 

layer: 

𝑦 = 𝜎 (∑ ℎ𝑘

𝑘𝜖𝐻

∗ �̃�𝑘 + �̃�𝑘)                                          (7) 

 

Whereas �̃� characterizes the bias to all the input 

channels, and ℎ represents the encoding feature map. 𝑊 

refers to the transposal of 𝑊, and 𝑦 shows the prediction 

value. To evaluate the variable vector 𝜃𝐶𝐴𝐸 =

{𝑊𝑘 , �̃�𝑘 , 𝑏𝑘, �̃�𝑘}, the subsequent loss function must 

minimalize: 

𝐸(𝜃) =
1

𝑛
∑ ‖

𝑛

𝑖=1

𝑥𝑖
∗ − 𝑦𝑖‖2

2                                                  (8) 

 

To minimalize the loss function, its gradient regarding 

the convolution window parameter (𝑊, �̃� 𝑏, �̃�) must be 

evaluated using the following expression: 

 
𝜕𝐸(𝜃)

𝜕𝑊𝑘
= 𝑥∗ ∗ 𝛿ℎ𝑘 + ℎ𝑘 ∗ 𝛿𝑦                                       (9) 

𝜕𝐸(𝜃)

𝜕𝑏𝑘
= 𝛿ℎ𝑘 + 𝛿𝑦 

Now, 𝛿ℎ and 𝛿𝑦 represent the deltas of hidden state and 

reconstruction, correspondingly. Then, the weight is 

upgraded based on the adaptive learning rate method 

(ADAM). Lastly, the final parameter of CAE is assessed. 

The resultant feature map of the encoding blocks is 

considered a deep feature. 

4. Results and Discussion 
The simulation result of the BMODL-TBDC method can 

be tested by exploiting the TB Chest X-ray database [20], 

which holds 4200 samples and two classes, as defined in 

Table 1. Fig. 3 represents the sample images. 

The classification results of the BMODL-TBDC 

technique are investigated with respect to the confusion 

matrix in Fig. 4. The figure represented that the BMODL-

TBDC system has accurately recognized the presence of 

normal and TB images under all aspects. 
 

Table 2 offers comprehensive TB classifier outcomes of 

the BMODL-TBDC algorithm on 80% and 20% of 

TRS/TSS. 
 

Fig. 5 represents the TB classification outcome of the 

BMODL-TBDC system on 80% of TRS. In a normal class, 

the BMODL-TBDC model has gained 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.39%, 

𝑠𝑒𝑛𝑠𝑦  of 99.39%, 𝑠𝑝𝑒𝑐𝑦 of 96.74%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.38%, and 

MCC of 96.20%. Meanwhile, in the tuberculosis class, the 

BMODL-TBDC method has acquired 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 96.74%, 

𝑠𝑒𝑛𝑠𝑦  of 96.74%, 𝑠𝑝𝑒𝑐𝑦 of 99.39%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.83%, and 

MCC of 96.20%. 

Table 1. Details on database  

Class Name No. of Samples 

Normal 3500 

TB 700 

Sample count 4200 
 

 
Fig. 3 a) Normal b) Tuberculosis 
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Fig. 4 Confusion matrices of BMODL-TBDC methodology (a-b) 

TRS/TSS of 80:20 and (c-d) TRS/TSS of 70:30 

Table 2. TB classifier result of BMODL-TBDC algorithm under 80:20 

of TRS/TSS 

Class Accuracybal Sensitivity Specificity F-Score MCC 

Training Phase (80%) 

Normal 99.39 99.39 96.74 99.38 96.20 

Tuberculosis 96.74 96.74 99.39 96.83 96.20 

Average 98.07 98.07 98.07 98.10 96.20 

Testing Phase (20%) 

Normal 99.71 99.71 97.30 99.57 97.53 

Tuberculosis 97.30 97.30 99.71 97.96 97.53 

Average 98.50 98.50 98.50 98.76 97.53 

 
Fig. 5 TB classification result of BMODL-TBDC algorithm in 80% of 

TRS 

 
Fig. 6 TB classification result of BMODL-TBDC algorithm in 20% of 

TSS 

Table 3. TB classifier outcome of BMODL-TBDC methodology on 70:30 

of TRS/TSS 

Class Accuracybal Sensitivity Specificity F-Score MCC 

Training Phase (70%) 

Normal 99.51 99.51 99.37 99.69 98.15 

Tuberculosis 99.37 99.37 99.51 98.45 98.15 

Average 99.44 99.44 99.44 99.07 98.15 

Testing Phase (30%) 

Normal 99.52 99.52 100.00 99.76 98.65 

Tuberculosis 100.00 100.00 99.52 98.89 98.65 

Average 99.76 99.76 99.76 99.32 98.65 

 
Fig. 7 TB classification result of BMODL-TBDC algorithm in 70% of 

TRS 

Fig. 6 shows the TB classification outcome of the 

BMODL-TBDC methodology on 20% of TSS. In a normal 

class, the BMODL-TBDC approach has attained 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 

99.71%, 𝑠𝑒𝑛𝑠𝑦  of 99.71%, 𝑠𝑝𝑒𝑐𝑦 of 97.30%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

99.57%, and MCC of 97.53%. In the meantime, in 

tuberculosis class, the BMODL-TBDC approach has 
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acquired 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 97.30%, 𝑠𝑒𝑛𝑠𝑦  of 97.30%, 𝑠𝑝𝑒𝑐𝑦 of 

99.71%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.96%, and MCC of 97.53%. 

 

Table 3 presents comprehensive TB classification 

outcomes of the BMODL-TBDC approach on 70% and 30% 

of TS datasets. 

 

Fig. 7 implies the TB classification results of the 

BMODL-TBDC algorithm on 70% of TRS. In a normal 

class, the BMODL-TBDC technique has obtained 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 

99.51%, 𝑠𝑒𝑛𝑠𝑦  of 99.51%, 𝑠𝑝𝑒𝑐𝑦 of 99.37%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

99.69%, and MCC of 98.15%. In the meantime, in 

tuberculosis class, the BMODL-TBDC approach has 

acquired 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 99.37%, 𝑠𝑒𝑛𝑠𝑦  of 99.37%, 𝑠𝑝𝑒𝑐𝑦 of 

99.51%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.45%, and MCC of 98.15%. 

 

Fig. 8 displays the TB classifier result of the BMODL-

TBDC methodology on 30% of TSS. In a normal class, the 

BMODL-TBDC technique has obtained 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.52%, 

𝑠𝑒𝑛𝑠𝑦  of 99.52%, 𝑠𝑝𝑒𝑐𝑦 of 100%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.76%, and 

MCC of 98.65%. In parallel, on tuberculosis class, the 

BMODL-TBDC method has acquired 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 100%, 

𝑠𝑒𝑛𝑠𝑦  of 100%, 𝑠𝑝𝑒𝑐𝑦 of 99.52%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.89%, and 

MCC of 98.65%. 

 

The 𝑇𝑅𝑎𝑐𝑐 and 𝑉𝐿𝑎𝑐𝑐  accomplished by the BMODL-

TBDC algorithm in the test database is defined in Fig. 9. The 

figure values displayed by the BMODL-TBDC methodology 

have attained higher values of 𝑇𝑅𝑎𝑐𝑐 and 𝑉𝐿𝑎𝑐𝑐 . 

Predominantly the 𝑉𝐿𝑎𝑐𝑐  is greater than 𝑇𝑅𝑎𝑐𝑐 . 

 

The 𝑇𝑅𝑙𝑜𝑠𝑠 and 𝑉𝐿𝑙𝑜𝑠𝑠 attained by the BMODL-TBDC 

methodology in the test database are depicted in Fig. 10. The 

experimental values denoted by the BMODL-TBDC 

methodology are established minimal values of 𝑇𝑅𝑙𝑜𝑠𝑠 and 

𝑉𝐿𝑙𝑜𝑠𝑠. Seemingly, the 𝑉𝐿𝑙𝑜𝑠𝑠 is lesser than 𝑇𝑅𝑙𝑜𝑠𝑠. 

 
Fig. 8 TB classification result of BMODL-TBDC algorithm in 30% of 

TSS 

 
Fig. 9 𝑻𝑹𝒂𝒄𝒄 and 𝑽𝑳𝒂𝒄𝒄 analysis of the BMODL-TBDC algorithm  

 
Fig. 10 𝑻𝑹𝒍𝒐𝒔𝒔 and 𝑽𝑳𝒍𝒐𝒔𝒔 analysis of the BMODL-TBDC algorithm  

 
Fig. 11 PR outcome of BMODL-TBDC algorithm  

An evident precision-recall (PR) inspection of the 

BMODL-TBDC system in the test database is given in Fig. 

11. The figure exhibits that the BMODL-TBDC system has 

led to greater values of PR values in two class labels. 

Table 4 and Fig. 12 demonstrate a comparative 𝑎𝑐𝑐𝑢𝑦 

examination of the BMODL-TBDC system. 
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Table 4. Accuracy analysis of BMODL-TBDC algorithm with recent 

systems   

Methods 𝑨𝒄𝒄𝒖𝒚 

ResNet-l8 96.53 

ResNet-50 97.63 

ResNet-101 97.98 

Inception-V3 98.91 

Vgg-19 98.60 

DenseNet-201 98.32 

BMODL-TBDC 99.76 

 

The result shows that the ResNet18 approach has 

reached lower 𝑎𝑐𝑐𝑢𝑦 of 96.53%. Next, the ResNet50 and 

ResNet101 models have resulted in moderately closer 𝑎𝑐𝑐𝑢𝑦 

of 97.63% and 97.98% correspondingly. Although the 

Inceptionv3, VGG19, and DenseNet201 models have 

obtained reasonable 𝑎𝑐𝑐𝑢𝑦 of 98.91%, 98.60%, 98.32%, and 

99.76% correspondingly. 

 
Fig. 12 Accuracy analysis of BMODL-TBDC algorithm with recent 

systems 

Finally, a comparative computation time (CT) inspection 

of the BMODL-TBDC with recent techniques takes place in 

Table 5 and Fig. 13. The simulation outcomes signified that 

the BMODL-TBDC algorithm had reached a lower CT of 

9.22s. In contrast, the other ResNet18, ResNet50, 

ResNet101, Inceptionv3, VGG19, and DenseNet-201 

algorithms are depicted higher CT of 23.20s, 25.10s, 15.90s, 

25s, 23.40s, and 20.30s correspondingly. Thus, the BMODL-

TBDC algorithm has depicted maximal TB classifier results.  

Table 5. CT analysis of BMODL - TBDC algorithm with recent 

systems   

Methods Computational Time (sec) 

ResNetl8 Model 23.20 

ResNet50 Model 25.10 

ResNet101 Model 15.90 

InceptionV3 Model 25.00 

Vgg19 Model 23.40 

DenseNet201 Model 20.30 

BMODL-TBDC 09.22 

 

 
Fig. 13 CT analysis of BMODL-TBDC algorithm with recent systems 

   

5. Conclusion  
In this study, we have introduced a novel BMODL-

TBDC technique for TB detection and classification on chest 

radiographs. The presented BMODL-TBDC technique 

utilized the MF approach for noise removal. For feature 

extraction, the Xception architecture is used with the BMO 

algorithm as a hyperparameter optimizer.  

Finally, the BCAE is applied for TB detection purposes. 

The experimental validation of the BMODL-TBDC 

technique on a benchmark medical dataset reports promising 

performance over other state-of-the-art models in terms of 

different measures.  

Thus, the presented BMODL-TBDC technique can be 

utilized for real-time TB diagnosis. In the future, advanced 

DL algorithms can be used to optimize the detection rate of 

the BMODL-TBDC technique. 
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