
International Journal of Engineering Trends and Technology Volume 71 Issue 2, 349-361, February 2023

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V71I2P237 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

XGBoost Machine Learning Model-Based DDoS Attack

Detection and Mitigation in an SDN Environment

Arvind T1, K. Radhika2

1Department of CSE, UCE, OU, Hyderabad, Telangana, India.

2Department of IT, CBIT, Telangana, India.

1Corresponding Author : mr.arvind@rediffmail.com

Received: 19 November 2022 Revised: 04 February 2023 Accepted: 18 February 2023 Published: 25 February 2023

Abstract - SDN sparked tremendous interest because of its several benefits, such as simple programming, quick scalability,

centralized administration, etc. However, security is a significant problem, and Distributed denial of service (DDoS) threats a

major challenge for SDN. One way to safeguard a Software-Defined networking infrastructure from DDoS assaults is to use

machine learning models. This study presents an XGBoost-based approach for DDoS detection and mitigation. It evaluates it

against other Machine Learning techniques, including Logistic Regression, Naive Bayes, Decision Trees, XGBoost, and

Multilayer Perceptron. This method will generate, collect, classify, detect, and then mitigate Distributed denial-of-service

assaults. The results show that the suggested approach protects SDN from DDoS attacks with high accuracy and a low error

level while making good use of network resources. Despite the short training and testing period, the proposed method detects

DDoS attacks with greater accuracy.

Keywords - SDN, DDoS, Machine learning, Mininet, Ryu.

1. Introduction
In this dynamic era, conventional networks face a lot of

difficulties, such as vendor dependency, lack of support for

dynamic policy updates, etc. SDN overcomes these

difficulties by transferring all the decision-making capabilities

to the control plane and reducing the data plane to the role of

a simple packet forwarding unit. This capability of the SDN

made it widely spread. However, at the same time, it also made

it a primary cause of its failure. One of the popular attacks that

can happen on the SDN controller is DDOS, where the

controller is overwhelmed with a huge volume of packets from

multiple distributed hosts. The switch's flow table also

becomes full due to incoming data packets from multiple

distributed sources, leading to reduced packet forwarding and

dropping of incoming packets. These DDoS attacks can be of

various types, such as volume-dependent, protocol-dependent,

and application-dependent. Volume-dependent assaults

include flooding attacks such as ICMP, UDP, and so on.

Protocol-dependent assaults, such as SYN floods, the Ping of

Death, Smurf attacks, and so on, target server resources.

Active apps in the application plane are the target of

application-dependent assaults. Slowloris and zero-day

attacks are among them. Several approaches exist for

detecting and defending against DDoS assaults; however,

Machine learning (ML) techniques offer a promising solution

for early detection due to their faster response times compared

to manual methods. SDN flow data can be processed using

ML-based DDoS attack detection systems integrated into

SDN topologies to create an autonomous, adaptable network.

However, the current state of research lacks SDN benchmark

datasets and a model that can effectively and accurately

predict DDoS attacks using ML techniques. In light of this,

there exists a significant research gap in the area of effectively

detecting and preventing DDoS attacks in SDN. This study

proposes an XGBoost-based DDoS detection and defense

system. The procedure includes traffic generation, collection,

classification, detection, and mitigation.

The paper includes the following sections: Section 2

explains the effects of DDoS on SDN networks, Section 3

explores the related studies, Section 4 describes the proposed

system's experimental settings, Section 5 explores the

modules of the proposed approach, and Section 6 discusses the

Conclusion and Future Considerations.

2. DDoS attacks in SDN
SDN (Software-Defined Networking) has features that

can make it more resilient to DDoS (Distributed denial of

service) attacks, as well as features that can be used to

victimize others with DDoS attacks.

The features such as centralized management,

programmability, traffic engineering, and dynamic flow

management make it more resilient to DDoS attacks. While it

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1Corresponding%20Author%20:%20mr.arvind@rediffmail.com

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

350

can be vulnerable to distributed denial of service (DDoS)

attacks as it has features that attackers can exploit, these

victimizing features include centralized control, security risks,

performance concerns, and a lack of standardization. The

DDoS attacks target different layers of SDN.

• Control plane DDoS attacks include flooding, resource

exhaustion, poison packet attacks, and so on.

• Data-plane DDoS attacks: can take the form of TCAM

exhaustion, Flooding, Data-Control plane link saturation,

etc.

• Application-plane DDoS attacks: can take the form of

flood attacks, application-layer attacks, command

injection attacks, resource exhaustion attacks, and

configuration tampering attacks.

3. Related Work
This section of the article focuses on exploring the studies

that employ statistical, machine learning, and deep learning

techniques.

3.1. Statistical-Based Techniques

Statistical analysis uses statistical methods to look for

strange patterns in network traffic that could be signs of a

DDoS attack. Methods like mean, median, mode, standard

deviation, entropy, and chi-square analysis can be used to find

outliers in network data that could be signs of an attack [1,2].

Giotis et al. [4] devised an entropy technique to collect

and analyze data to identify network anomalies, thereby

reducing the controller's workload. They tested their system

on the "National Technical University of Athens" network,

where they gathered regular traffic for the anomaly detection

module. This module analyses all flow inputs across all time

intervals to determine undesirable ones. The mitigation

module then specifies a flow rule to block the originating IP.

With the assistance of Tcpreplay and Scapy, they were utilized

to produce malicious traffic.

Mousavi et al. [5] presented a strategy to identify DDoS

assaults using Shannon's entropy. All nodes will experience

the same amount of traffic and entropy while the network is

running properly.[6] When one or more hosts are exposed to

a DDoS attack, they experience a fall in entropy due to an

unusually large amount of traffic. After receiving 50 packet-

in messages, the controller estimates the entropy using the

target IP address. An attack is recognized when the estimated

entropy falls below the detection threshold for five

consecutive rounds.

The authors, Leu et al. [7], proposed agent-based IDS

using the goodness of fit test of the Chi-Square to identify DoS

and DDoS assualts. It examines the number of SrcIP variations

that send packets to the target and Ipaddr distribution statistics.

If an attack is detected, the chi-square value exceeds the

threshold.

By integrating entropy-based techniques with machine

learning algorithms, Dehkordi et al. [13] were able to identify

low and high volumes of DDoS assaults. The method involves

determining when detection is optimal in order to maximize

efficiency. The suggested solution outperforms previous

DDoS protection algorithms in terms of accuracy (99.85%).

Mishra et al. [9] demonstrated an entropy-based DDoS

defense system with minimum computing costs. The

suggested technique makes use of three different threshold

values: entropy, packet flow rate, and a count threshold. Once

the predetermined threshold is exceeded, the entropy is

computed by a controller using data from the flow table of the

associated switches. The count value is increased when the

calculated entropy drops below the predetermined threshold.

When the overall number of assaults hits a specified threshold,

an alert is triggered. As part of the mitigation procedure, a

controller will collect the offending IP address, DPID, and

switch port information and begin discarding packets from

that IP address immediately.

3.2. Machine Learning-Based Techniques
ML algorithms, like Decision Trees, Naive Bayes

Random Forest, and Neural Networks, can be trained on

normal network traffic patterns and used to detect anomalies

that may indicate a DDoS attack. These algorithms can also be

used to differentiate between benign and malicious traffic

based on characteristics such as source IP address, destination

IP address, packet size, and packet rate.

Saurav et al. [32] studied the attack patterns in the

network by utilizing ML techniques. The methodology uses 4

different ML algorithms: C4.5, Naive Bayes, Bayes Net, and

Decision Table. The models' prediction accuracy was

examined, and they concluded that the Bayesian network had

the greatest prediction rate.

Santos et al. [18] used a Mininet emulator and POX

controller to produce the DDoS dataset with 23 characteristics.

The traffic was generated using Scapy. They used different

ML models to analyze the dataset, including SVM, MLP, DT,

and RF. The findings indicate that the DT has a shorter

processing time, and the RF model has the highest accuracy.

Swami et al. [21] presented an ML-based intrusion

detection system to identify TCP-SYN flooding assaults. The

authors created the traffic as well as classified and analyzed

the performance of many models, including DT, LR, RF,

MLP, and Adaboost. The experimental research made use of

Mininet, the Ryu controller, and the Scapy tool to create

traffic, the Tcpdump tool to collect traffic, and the Wireshark

tool to analyze packets.

Obaid et al. [17] employed a range of machine learning

models, including RF, KNN, J48, and SVM, to detect and

mitigate DDoS attacks in an SDN network. Weka was used to

train and test the models. Ubuntu served as the platform for

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

351

the experiment, while Mininet and Ryu controllers were used

to facilitate the process. They used Tshark to produce normal

traffic, while Hping3 was used to produce malicious traffic.

The findings of the tests provided support for the J48 model

as the most promising model.

StateSec is an entropy-based DDoS detection technique

that operates on the data plane and is developed by Rebecchi

et al. [22]. This was done for the controller's resource

conservation. StateSec's monitoring and detection

mechanisms are constructed using an OpenFlow switch. The

switch lets the controller know when an attack is happening,

so the controller can take defensive action. The findings

indicate a considerable reduction in controller overhead and a

high level of detection accuracy.

Nisharani et al. [15] investigated the effectiveness of

three machine learning algorithms: SVMs, Naive Bayes, and

Neural Networks. Mininet and Ryu were critical components

of the experimental setup. Compared to the other models, the

SVM achieved the greatest accuracy, recall, and precision

levels.

A hybrid ML approach was suggested by Trung et al. [26]

to enhance the classification of traffic using SVM and SOM

approaches. Additionally, an improved "History-Based IP

Filtering system" (eHIPF) was developed to rapidly and

correctly discover attacks. They were able to reproduce real-

world situations in a cloud environment that simulates a

software-defined network using a service function chaining

technique. The experimental findings revealed that the

proposed strategy outperformed the other alternatives

considered.

Tan et al. [11] devised a DDoS detection trigger

mechanism for SDN switches to lower control-plane

overhead. When suspect data flows are discovered, data plane

switches notify the controller. In response to the alert, the

controller implemented a hybrid ML-based DDoS detection

approach based on KNN and K-means. This method saves the

controller's resources while maintaining a high degree of

accuracy (98.85 percent).

Ahuja et al. [10] created an SDN-based dataset with

attributes that could be used to detect fraudulent traffic. Open-

Flow switch port and flow data are employed when

constructing the dataset. An SVC-RF-based hybrid machine-

learning technique is applied to distinguish between benign

and malicious packets. The suggested approach has a low

false-positive rate (0.020) and high precision (98.8%).

3.3. Deep Learning-Based Techniques

Deep learning methodologies, like CNNs and RNNs, can

be utilized to analyze network traffic in real-time and detect

DDoS attacks. These algorithms can learn complex patterns

and relationships in network traffic, making them well-suited

for detecting sophisticated DDoS attacks.

Tsung [45] et al. suggested DL-IDPS, a deep learning-

based system to protect the SDN from brute-force and DDoS

attacks. To find brute-force and DDoS attacks, the MLP,

CNN, LSTM, and SAE deep learning models were made and

compared. The MLP model did better than previous ones. It

predicted SSH brute-force attacks with a 99.9% accuracy rate

and a prediction time of 38.4 msec. It also predicted DDoS

attacks with a 98.3% accuracy rate and a prediction time of

27.2 msec. The experiment was carried out on Ubuntu Linux

using VMware and a Ryu controller. SSH brute-force attacks

were carried out using the Ncrack and Medusa tools, while

DDoS assaults were carried out using the Hping3 tool. Flow-

based characteristics such as src IP, dst IP, src port, dst port,

and so on were extracted.

A system based on LSTM and fuzzy logic was suggested

by Novaes et al. [33] to identify and prevent DDoS and port

scan assaults. Synthetic datasets and CICDoS 2019 datasets

were used to assess performance in Mininet and Floodlight

controller environments. The data gathered proves the

usefulness of the suggested solution.

To identify DDoS assaults, Nugraha et al. [8] used a

hybrid CNN-LSTM technique. The model's efficacy was

assessed using data that had been generated synthetically. The

experimental evaluation revealed that the proposed model

outperformed the MLP and the 1-class SVM models.

3.4. Other Techniques

Other methods, such as Fuzzy logic, Bloom filter,

Genetic algorithm, etc., can be used to detect DDoS attacks.

Zohaib et al. [34] suggested a DoS and DDoS detection

system based on SNORT. Snort profiles with DDoS flow rules

were created to detect and prevent DDoS assaults; however,

the suggested method consistently produced false alarms.

The authors proposed a technique based on the Bloom filter

to identify link flooding attacks on SDN. The implementation

was performed on a Mininet, utilizing the Floodlight

controller and Java-based JSON and JPCAP APIs. Iperf was

used to block the links and simulate a link flood attack, and

five characteristics were collected from the generated traffic:

src IP, dst IP, src port, dst port, and protocol. The authors ran

numerous trials with numerous datasets, configurations,

detection times, and false-positive metrics.

The authors [41] suggest Adaptive Bubble Burst (ABB),

a unique mitigation approach, to supplement classic packet

filtering and other DDoS defenses. Adaptive Bubble Burst

helps to preserve service availability for a targeted resource in

the face of a distributed denial of service (DDoS) assault. ABB

provides two separate safety choices. It can secure your

privacy and avoid Distributed Denial-of-Service assaults.

ABB conceals the real nature of a protected service by

promoting various services from a single virtual IP address.

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

352

Fig. 1 Mininet Emulated Topology

Second, if a DDoS attack bubble is heading toward a

resource, ABB will mitigate it by adaptively dispersing it over

numerous copies of that resource in the network. As a result,

the primary resource suffers less damage. ABB accomplishes

nothing in terms of detecting or avoiding threats. To the best

of my knowledge, ABB offers no protection against DDoS

attacks. Despite the fact that attack traffic will make resources

more accessible and continue to circulate around the network,

ABB will make the resource more accessible.

4. Experimental Setup
This section defines the testbed as well as the topology

of the experiment.

4.1. Experimental Environment and Tools

Experiments were carried out on a system running the 64-

bit version of Ubuntu 20.04 LTS, with Mininet [31], Python-

based opensource OpenFlow SDN controller Ryu [28.29],

Python and Jupyter [24] notebook installed. Ping and Iperf

were utilized to produce benign traffic, while the Hping3

application was utilized to produce attack traffic [1]. A

Mininet emulator was used to build the network architecture

for the proposed system, which has six switches (OVS) and 21

hosts, as shown in Fig.1. A dedicated control channel links the

switches to the controller to facilitate communication between

the two.

5. Modules of the Proposed System
The proposed system consists of four different modules,

which are as follows:
1. Traffic Data Generation and Collection
2. Machine learning classification of traffic
3. Implementation of Detection framework
4. Implementation of the Mitigation framework

Fig. 2 Modules of the System

Traffic Data Generation and Collection

ML Classification of Traffic

Design and Implement of Detection framework in

SDN environment

Test the Detection framework

Design and Implement of Mitigation of framework

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

353

5.1. Traffic Data Generation and collection
The technique includes generating both benign and

malicious traffic. It produced three types of traffic—normal

and attack traffic—over TCP, UDP, and ICMP and saved each

type in a separate CSV file. Ping and Iperf were utilized to

create normal traffic, while the Hping3 utility was utilized to

simulate malicious traffic.

To get a decent balance of normal and malicious traffic,

data on normal traffic was collected for about 40 hours, and

data on malicious traffic was collected for about 90 minutes

[1, 16–20]. Following traffic collection, a shell script was used

to include a target column in both the attack and normal

datasets. Under Linux, the awk function is used to add the

specified column to the output. The datasets were combined

using a script that makes use of the Cat programme. Finally,

the dataset was randomized using a script that makes use of

the Linux shuf utility. There are twenty-four attributes in the

data, including datpath_id, timestamp, flow_id, src_ip, dst_ip,

tp_src, tp_dst, ip_proto, icmp_code, icmp_type,

flow_dur_sec, flow_dur_nsec, idle_timeout, hard_timeout,

flags, in_port, byte_count. The dataset was then preprocessed

and split into training and testing groups, after which machine

learning classifiers were trained and tested to evaluate their

performance.

Table 1. Traffic Distribution of the Dataset

Traffic ICMP UDP TCP Total
Normal 206101 121200 177714 505015

Attack 152353 143795 165547 461695

Total 358454 264995 343261 966710

5.2. Machine Learning Classification Of Traffic
Several different Machine Learning models, namely

Logistic Regression, Naive Bayes, XGBoost, Decision Tree,

and Multilayer Perceptron, were studied in order to identify

the traffic that was present in the dataset.

Fig. 3 Dataset Traffic Distribution

5.2.1. Machine Learning DDoS Classification Algorithm

Input: Network traffic, both legitimate and malicious.

Output: optimal classifier for DDoS detection

Begin

Step 1: Data Collection

Collect the network traffic; this includes features that

can distinguish between normal traffic and attack

traffic.

Step 2: Preprocess the data

Clean and preprocess the collected data to make it

suitable for the classifier.

Step 3: Split data into training and testing groups.

Divide the data into two groups: one for training the

classifier and the other for testing its performance.

Step 4: Train the classifier.

Train the classifier on the training data.

Step 5: Test the classifier.

Use the trained classifier to make predictions on the

test data.
Step 6: Evaluate the performance of the classifier.

Evaluate the classifier's performance by comparing

its predictions with the labels in the test data.

Repeat steps 1–6 for all the classifiers.

Step 7: Compare and select the best classifier.

Compare the performances of the classifiers and

select the best one for DDoS detection.

Step 8: Implement the classifier for real-time traffic detection.

End

5.2.2 Evaluation Metrics

Several distinct metrics, including accuracy, recall,

precision, f1-score, training time, testing time, and ROC-

AUC, were used to assess the models [1]. TP is used to

indicate the occurrence of positive events that are properly

identified as positive outputs, while FP is used to indicate the

occurrence of negative events that are wrongly classified as

positive outputs. FN stands for positive occurrences that have

been incorrectly classified as negative output. TN stands for

negative occurrences that have been correctly labeled as

negative.

Accuracy: It is defined as the degree to which a measured

value comes close to the actual (true) value. It is possible to

express it as the percentage of properly classified occurrences

relative to the total number of occurrences. It can be given as

(True Positive + True Negative)/Total number of occurrences

 (1)

Precision: The term "precision" refers to how close the values

that were measured are to one another. It can be given as

True Positive / (True Positive + False Positive) (2)

Recall: or Sensitivity, can be given as

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

354

 True Positive / (True Positive + False Negative) (3)

F1-score: is the harmonic mean of Precision and Recall.

 2* (Precision * Recall / (Precision + Recall)) (4)

Table 2. Performance Comparison
 Accuracy Precision Recall F1

NBs 0.817828 1.000000 0.618626 0.764384

LR 0.522327 0.000000 0.000000 0.000000

XGB 0.99999 1.000000 1.000000 1.000000

DT 0.9999 1.000000 1.000000 1.000000

MLP 0.540033 0.509442 0.999965 0.674999

Fig. 4 Evaluation Metric Comparison

Fig. 5 Training time Comparison

 Fig. 6 Testing Time Comparison

Fig. 7 AUC-ROC Comparison

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

355

Fig. 4 illustrates the detection accuracy of the models, and

the table illustrates the measures of Accuracy, Precision,

Recall, and F1-scores of various classifiers. The evaluated

results suggest that XGBoost and Decision Tree classifiers

provide better accuracy than other classifiers. Gaussian Naive

Bayes, XGBoost, and Decision Tree classifiers provide better

Precision than Logistic Regression and Multilayer Perceptron

classifiers. The Recall of the Decision Tree, MLP, and

XGBoost classifiers were almost the same. Furthermore, the

F1 score provided by the XGBoost and Decision Tree

classifiers is higher when compared to the scores provided by

the other classifiers.

The graph in Fig. 5 shows a bar graph that depicts the

training times needed by the classifiers. The graph's X-axis

indicates training time in seconds, while the Y-axis represents

classifiers. In this evaluation, it can be seen that the training

time for the Multilayer Perceptron model is much higher than

that of the other classifiers. The time needed to train the Naive

Bayes algorithm is much shorter than that required by other

models. The DT model's training time is lower than the XGB

and MLP models.

The graph in Fig. 6 shows a bar graph that depicts the

amount of time spent testing the models. The graph's X-axis

indicates the testing time in seconds, while the Y-axis

represents classifiers. The findings demonstrate that the

testing time of XGBoost is less than that of any other model.

The MLP model requires more testing time than other models.

The DT model requires more testing time than the XGBoost,

and LR models.

The graph in Fig. 7 represents the Receiver Operating

Characteristic (ROC) curve, which is constructed to evaluate

test results for the model. The area under the ROC is a two-

dimensional graph that shows the FPR and TPR on the X and

Y axes, respectively. Compared to other models, XGBoost

and DT have the greatest AUC (0.999), whereas Gaussian

Naive Bayes, MLP, and Logistic Regression have 0.785,

0.559, and 0.500, respectively.

5.3. Implementation of Detection Framework
Monitoring the network is a necessary part of detecting

the detection process, and in this step, the best classifier model

from the earlier phase must be chosen. The XGBoost model

and the Decision Tree model outperformed the other models

in the previous phase, so we built an XGBoost-based detection

model. The dataset was initially used to train the detection

model, which was then used to identify the traffic that was

being generated. The data were first collected in CSV format

for the purpose of identifying traffic. After that, the data were

preprocessed, and then they were fed into the model, which

subsequently made a prediction about whether or not the

traffic was legitimate or malicious.

5.3.1. XGBoost-Based DDoS Detection Algorithm
XGBoost is a machine learning algorithm that uses

gradient boosting for classification and regression tasks. It

improves the model's accuracy by fitting new trees to the

residuals (errors) of the current prediction. The new trees are

optimized by finding the best-split points and feature values to

minimize the loss (error) of the model. This cycle is

maintained until some stopping condition is satisfied, such as

a predetermined maximum number of trees or a certain

minimum improvement in the loss function.

Finally, all the trees are combined to form the final

prediction model. XGBoost includes features like

regularization to avoid overfitting, parallel processing for

faster computation, and handling missing data.

Algorithm: DDoS Detection and Mitigation

Input: Network traffic, both legitimate and malicious.

Output: Optimal XGBoost classifier

Begin

Step 1: Data Collection

Collect the network traffic; this includes features that

can distinguish between normal traffic and attack

traffic.

Step 2: Preprocess the data

Clean and preprocess the data to prepare it for use in

the classifier.

Step 3: Split data into training and testing groups.

Divide the data into two groups: one for training the

classifier and the other for testing its performance.

Step 3: Train and Validate the Model

Train and validate the model with the data when the

controller starts.

Step 4: Monitor and analyze traffic

Preprocess and analyze the monitored traffic to

identify any potential DDoS attacks.

Step 5: Detect the attack.

Detect and confirm the presence of a DDoS attack

based on the analysis results.

If traffic is determined to be attacked, traffic

trigger the mitigation module to block the switch

input port

Else

Forward the traffic

Repeat steps 4 and 5 for all incoming traffic.

End

5.3.2. Detection of Normal and Attack traffics
Fig.8 depicts typical normal traffic detection, which

requires running the Mininet topology on one terminal and the

XGBoost-based detection program on another, then accessing

the terminal windows of several hosts, such as hosts h1, h10,

using the xterm command under Mininet. Normal traffic was

then switched from h10 to h1.

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

356

Fig. 8 Normal-Traffic Detection

Fig. 9 Attack-Traffic Detection

Fig.9 depicts the sample attack traffic detection

procedure; attack traffic was then launched from h10 to h1.

When attack traffic is discovered, the detection program

identifies the attacking switch and its input port. It then blocks

the port for 60 seconds.

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

357

Fig. 10 Normal-traffic rate

Fig. 11 Attack-traffic rate

The graph shown in Fig. 10 is an example of a real-time

graph that depicts the typical flow of traffic as recorded by the

wireshark analyzer.

On the other hand, Fig. 11 demonstrates that the amount

of traffic increased at a far faster pace after the flooding attack

was initiated by the attacking host and directed at the host (h1).

To compare our findings with those of similar studies, we

created a comparison table. The results, as well as the ones

reported in the literature, are summarized in Table 3.

The results reported in Table 3 suggest that the proposed

machine learning model outperforms the findings presented in

[11, 35, 36, 41, 43].

It is worth noting that similar research in the literature

employed a wide range of datasets and models. As a

consequence, substantiating the comparative findings is

challenging.

The results reveal that by employing machine learning

approaches, the SDN framework was successful in detecting

DDoS assaults.

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

358

Table 3. Comparison of Proposed System with State-of-art

Ref Dataset Accuracy Precision Recall F1-Score Algorithm
[42] MAWI Lab 93.79 NA 92.80 NA Entropy
[34] CCIDS2017 99.45 99.57 99.64 99.61 Ensemble CNN
[44] Their own dataset 95.38 95.05 NA NA SVM
[43] Their own dataset 85.49 NA NA NA SVM-SOM
[23] Their own dataset 99.99 100 99.98 99.99 AbaBoost
[11] Their own dataset 98.85 99.03 98.74 NA K-Means+KNN
[35] NSLKDD 99.92 100 100 100 XGBoost
[35] CICDDOS2019 99.9 100 100 100 XGBoost
[35] CAIDA 99.7 100 100 100 XGBoost
[36] Their own dataset 98.3 97.72 97.73 97.70 KNN
[37] NSLKDD 98.78 98.7 96.1 93.3 J48

Proposed Their own dataset 99.9 100 100 100 DT and XGB

Fig. 12 Flow-Table Update Status

Fig. 13 Mitigation Traffic flow

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

359

5.4. Implementation of Mitigation Framework
The detection phase serves as the foundation for the

mitigation step. Suppose the detection phase identifies

potential attack traffic. In that case, a REST message is

delivered to the controller and instructed to temporarily

disable the DDoS port on the OpenFlow switch for a

predetermined amount of time. If the anticipated traffic

volume is within permissible limits, the controller does not get

a command, and the computer's traffic flow is not disrupted.

Following the discovery of DDoS flooding traffic, the status

of the sample flow table update is shown in Fig. 12.

A dramatic decrease in traffic can be seen occurring in

Fig. 13 immediately after the flow table is updated and the

attacking port is blocked.

6. Conclusion and Future work
SDN has attracted much interest because of its many

advantages; however, security is a major concern, and DDoS

assaults are a formidable challenge for SDN. In this work, an

XGBoost-Based Machine Learning (ML) model was created

to detect and mitigate DDoS attacks on SDN-enabled systems.

This was due to the combination of the strengths of XGBoost

and its robust handling of large datasets, which made it a

suitable choice for DDoS detection and mitigation.

Furthermore, the XGBoost algorithm has demonstrated

effectiveness in binary classification tasks. This was critical in

this case because the goal was to classify traffic as either

normal or malicious. The procedure consists of traffic

generation, collection, and classification, as well as detection

and mitigation. According to the findings of the preceding

investigation, the XGBoost model does better than the other

machine learning models with regard to Accuracy, Recall,

Precision, AUC-ROC, training time, and testing time. In the

future, we hope to expand upon this work by building a deep

learning-based detection system that can swiftly and

accurately detect a wide range of DDOS attacks, implement

mitigation strategies, and analyze performance across a range

of multi-controllers and different SDN switch configurations.

References

[1] T Arvind, and Dr.K.Radhika, "Machine Learning Methods for Distributed DoS Attacks: Traffic Generation, Collection and Classification

in an SDN Environment," International Journal of Application or Innovation in Engineering & Management, vol. 11, no. 8, pp. 1-8, 2022.
Crossref, https://doi.org/10.2648/IJAIEM.1762.3462

[2] Kumar D, and Mrs. C. Veni, "IoE Security through Multi-Agent SDN," International Journal of Computer Trends and Technology, vol.

69, no. 12, pp. 5-9, 2021. Crossref, https://doi.org/10.14445/22312803/IJCTT-V69I12P102

[3] Dr.S.Kannan, and Mr.T.Pushparaj, "Creation of Testbed Security using Cyber-Attacks," SSRG International Journal of Computer Science

and Engineering, vol. 4, no. 11, pp. 4-14, 2017. Crossref, https://doi.org/10.14445/23488387/IJCSE-V4I11P102

[4] K. Giotis et al., “Combining OpenFlow and sFlow for an Effective and Scalable Anomaly Detection and Mitigation Mechanism on SDN

Environments,” Computer Networks, vol. 62, pp. 122–136, 2014. Crossref, https://doi.org/10.1016/j.bjp.2013.10.014

[5] Seyed Mohammad Mousavi, and Marc St-Hilaire, “Early Detection of Ddos Attacks Against SDN Controllers,” Proceedings of the

International Conference on Computing, Networking and Communications, pp. 77–81, 2015.

Crossref, https://doi.org/10.1109/ICCNC.2015.7069319

[6] Sangeetha M.V, and Bhavithra J, "Applying Packet Score Technique in SDN for DDoS Attack Detection," SSRG International Journal

of Computer Science and Engineering, vol. 5, no. 6, pp. 20-24, 2018. Crossref, https://doi.org/10.14445/23488387/IJCSE-V5I6P104

[7] Fang-Yie Leu, and I-Long Lin, “A DoS/DDoS Attack Detection System Using Chi-Square Statistic Approach,” Systemics, Cybernetics

and Informatics, vol. 8, no. 2, 2010.

[8] Beny Nugraha, and Rathan Narasimha Murthy, “Deep Learning-based Slow DDoS Attack Detection in SDN-based Networks,” IEEE

Conference on Network Function Virtualization and Software Defined Networks, NFV-SDN, pp. 51–56, 2020.

Crossref, https://doi.org/10.1109/NFV-SDN50289.2020.9289894

[9] Anupama Mishra, Neena Gupta, and B. B. Gupta, “Defense Mechanisms against DDos Attack Based on Entropy in SDN-Cloud Using

Pox Controller,” Telecommunication Systems, vol. 77, no. 1, pp. 47–62, 2021. Crossref, https://doi.org/10.1007/s11235-020-00747-w

[10] Nisha Ahuja et al., “Automated DDoS Attack Detection in Software Defined Networking,” Journal of Network and Computer

Applications, vol. 187, p. 103108, 2021. Crossref, https://doi.org/10.1016/j.jnca.2021.103108

[11] Liang Tan et al., “A New Framework for DDos Attack Detection and Defense in SDN Environment,” IEEE Access, vol. 8, pp. 161908–

161919, 2020. Crossref, https://doi.org/10.1109/ACCESS.2020.3021435

[12] Trung V. Phan, and Minho Park, “Efficient Distributed Denial-of-Service Attack Defense in SDN-Based Cloud,” IEEE Access, vol. 7, pp.

18701–18714, 2019. Crossref, https://doi.org/10.1109/ACCESS.2019.2896783

[13] Afsaneh Banitalebi Dehkordi, Mohammad Reza Soltanaghaei, and Farsad Zamani Boroujeni, “The DDos Attacks Detection through

Machine Learning and Statistical Methods in SDN,” Journal of Supercomputing, vol. 77, no. 3, pp. 2383–2415, 2021.

Crossref, https://doi.org/10.1007/s11227-020-03323-w

[14] Nisharani Meti, D G Narayan, and V. P. Baligar, “Detection of Distributed Denial of Service Attacks using Machine Learning Algorithms

in Software Defined Networks,” 2017 International Conference on Advances in Computing, Communications and Informatics, pp.1366-

1371, 2017. Crossref, https://doi.org/10.1109/ICACCI.2017.8126031

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

360

[15] Mahmoud Said Elsayed, Nhien-An Le-Khac, and Anca D. Jurcut, “InSDN: A novel SDN Intrusion Dataset,” IEEE Access, vol. 8, pp.

165263-165284, 2020. Crossref, https://doi.org/10.1109/ACCESS.2020.3022633

[16] T Arvind, and Dr.K.Radhika, “An SDN Based DDoS Traffic Generation, Collection and Classification Using Machine Learning

Techniques,” International Conference on Advanced Engineering Optimization Through Intelligent Techniques, Sardar Vallabhbhai

National Institute of Technology, 2022.

[17] Obaid Rahman, Mohammad Ali Gauhar Quraishi, and Chung-Horng Lung, “DDoS Attacks Detection and Mitigation in SDN using

Machine Learning,” IEEE World Congress on Services, pp. 184-189, 2019. Crossref, https://doi.org/10.1109/SERVICES.2019.00051

[18] Reneilson Santos et al., “Machine Learning Algorithms to Detect DDos Attacks in SDN,” Concurrency and Computation: Practice and

Experience, vol. 32, no. 16, 2020. Crossref, https://doi.org/10.1002/cpe.5402

[19] Boyang Zhang, Tao Zhang, and Zhijian Yu, “DDoS Detection and Prevention Based on Artificial Intelligence Techniques,” 3rd IEEE

International Conference on Computer and Communications, pp. 1276–1280, 2017.
Crossref, https://doi.org/10.1109/CompComm.2017.8322748

[20] Shi Dong, and Mudar Sarem, “DDoS Attack Detection Method Based on Improved KNN with the Degree of DDoS Attack in Software

Defined Networks,” IEEE Access, vol. 8, pp.5039-48, 2020. Crossref, https://doi.org/10.1109/ACCESS.2019.2963077

[21] Rochak Swami, Mayank Dave, and Virender Ranga, “Detection and Analysis of TCP-SYN DDos Attack in Software-Defined

Networking,” Wireless Personal Communications, vol. 118, no. 4, pp. 2295–317, 2021.

Crossref, https://doi.org/10.1007/s11277-021-08127-6

[22] Filippo Rebecchi et al., “DDoS protection with Stateful Software-Defined Networking,” International Journal of Network Management,

vol. 29, no. 1, p. e2042, 2019. Crossref, https://doi.org/10.1002/nem.2042 .

[23] Rochak Swami, Mayank Dave, and Virender Ranga, “Software-Defined Networking based DDoS Defense Mechanisms,” ACM

Computing Surveys, vol. 52, no. 2, pp. 1-36, 2019. Crossref, https://doi.org/10.1145/3301614

[24] Jupyter Notebook. [Online]. Available: https://jupyter.org/install

[25] Arvind T, and Dr.K.Radhika, “Comparative Assessment of SDN Openflow Controllers under Mininet Emulation Environment,”

International Journal of Emerging Trends & Technology in Computer Science, vol. 11, no. 4, pp. 80-84, 2022.

[26] Trung V. Phan, and Minho Park, “Efficient Distributed Denial-of-Service Attack Defense in SDN-Based Cloud,” IEEE Access, vol. 7, pp.

18701-18714, 2019. Crossref, https://doi.org/10.1109/ACCESS.2019.2896783

[27] Sukhveer Kaur et al., "A Comprehensive Survey of DDoS Defense Solutions in SDN: Taxonomy, Research Challenges, and Future

Directions," Computers & Security, vol. 110, p. 102423, 2021. Crossref, https://doi.org/10.1016/j.cose.2021.102423

[28] RYU SDN Framework Ryubook 1.0 Documentation. [Online]. Available: https://osrg.github.io/ryu-book/en/html

[29] Ryu Documentation. [Online]. Available: https://ryu.readthedocs.io/en/latest/getting_started.html

[30] Shi Dong, Khushnood Abbas, and Raj Jain, “A Survey on Distributed Denial of Service (Ddos) Attacks in SDN and Cloud Computing

Environments,” IEEE Access, vol. 7, pp. 80813–80828, 2019. Crossref, https://doi.org/10.1109/ACCESS.2019.2922196

[31] Introduction to Mininet, GitHub. [Online]. Available: https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

[32] Saurav Nanda et al., “Predicting Network Attack Patterns in SDN using Machine Learning Approach,” IEEE Conference on Network

Function Virtualization and Software Defined Networks, pp. 167-172, 2016. Crossref, https://doi.org/10.1109/NFV-SDN.2016.7919493

[33] Matheus P. Novaes et al., “Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined

Network Environment,” IEEE Access, vol. 8, pp. 83765–83781, 2020. Crossref, https://doi.org/10.1109/ACCESS.2020.2992044

[34] Zohaib Hassan et al., “Detection of Distributed Denial of Service Attacks Using Snort Rules in Cloud Computing & Remote Control

Systems,” IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control, IEEE, pp. 283-288, 2018.

Crossref, https://doi.org/10.1109/MSNMC.2018.8576287

[35] Hassan A. Alamri, and Vijey Thayananthan, “Bandwidth Control Mechanism and Extreme Gradient Boosting Algorithm for Protecting

Software-Defined Networks against DDos Attacks,” IEEE Access, vol. 8, pp. 194269–194288, 2020.

Crossref, https://doi.org/10.1109/ACCESS.2020.3033942

[36] Huseyin Polat, Onur Polat, and Aydin Cetin, “Detecting DDoS Attacks in Software-Defined Networks through Feature Selection Methods

and Machine Learning Models,” Sustainability, vol. 12, no. 3, 2020. Crossref, https://doi.org/10.3390/su12031035

[37] Adel Alshamrani et al., “A Defense System for Defeating Ddos Attacks in SDN Based Networks,” MobiWac 2017 - Proceedings of the

15th ACM International Symposium on Mobility Management and Wireless Access, pp. 83–92, 2017.

Crossref, https://doi.org/10.1145/3132062.3132074

[38] Peng Xiao, “An Efficient DDos Detection with Bloom Filter in SDN,” 2016 IEEE Trustcom/BigDataSE/ISPA, IEEE, pp. 1-6, 2016.

Crossref, https://doi.org/10.1109/TrustCom.2016.0038

[39] Ahmed AlEroud, and Izzat Alsmadi, “Identifying Cyber-Attacks on Software Defined Networks: An Inference-Based Intrusion Detection

Approach,” Journal of Network and Computer Applications, vol. 80, pp. 152-164, 2017.

Crossref, https://doi.org/10.1016/j.jnca.2016.12.024

Arvind T & K. Radhika / IJETT, 71(2), 349-361, 2023

361

[40] Shahzeb Haider et al., “A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks,” IEEE

Access, vol. 8, pp. 53972–53983, 2020. Crossref, https://doi.org/10.1109/ACCESS.2020.2976908

[41] Danish Sattar, Ashraf Matrawy, and OlufemiAdeojo, "Adaptive Bubble Burst (ABB): Mitigating DDoS attacks in Software-Defined

Networks," 2016 17th International Telecommunications Network Strategy and Planning Symposium, pp. 50-55, 2016.
Crossref, https://doi.org/10.1109/NETWKS.2016.7751152

[42] Kübra Kalkan et al., “JESS: Joint Entropy-based DDoS Defense Scheme in SDN,” IEEE Journal on Selected Areas in Communications,

vol. 36, no. 10, pp. 2358–2372, 2018. Crossref, https://doi.org/10.1109/JSAC.2018.2869997

[43] V Deepa , K. Muthamil Sudar, and P Deepalakshmi, “Detection of DDoS Attack on SDN Control Plane using Hybrid Machine Learning

Techniques,” Proceedings of the International Conference on Smart Systems and Inventive Technology, pp. 299-303, 2018.
Crossref, https://doi.org/10.1109/ICSSIT.2018.8748836

[44] Aye Thandar Kyaw, May Zin Oo, and Chit Su Khin, “Machine-Learning Based DDOS Attack Classifier in Software Defined Network,”

The 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,

pp. 431-434, 2020. Crossref, https://doi.org/10.1109/ECTI-CON49241.2020.9158230

[45] Tsung-Han Lee, Lin-Huang Chang, and Chao-Wei Syu, “Deep Learning Enabled Intrusion Detection and Prevention System over SDN

Networks,” 2020 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1-6, 2020.

Crossref, https://doi.org/10.1109/iccworkshops49005.2020.9145085

[46] Dragos Comaneci, and Ciprian Dobre, “Securing Networks Using SDN and Machine Learning,” IEEE International Conference on

Computational Science and Engineering, IEEE, pp. 194–200, 2018. Crossref, https://doi.org/10.1109/CSE.2018.00034

[47] Song Wang et al., “Detecting Flooding DDos Attacks in Software Defined Networks Using Supervised Learning Techniques,”

Engineering Science and Technology, An International Journal, vol. 35, p. 101176, 2022.

Crossref, https://doi.org/10.1016/j.jestch.2022.101176

[48] Rui Wang, Zhiping Jia, and Lei Ju, “An Entropy-Based Distributed DDos Detection Mechanism in Software-Defined Networking,” IEEE

Trustcom/BigDataSE/ISPA, Helsinki, pp. 310–317, 2015. Crossref, https://doi.org/10.1109/Trustcom.2015.389

