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Abstract - SDN sparked tremendous interest because of its several benefits, such as simple programming, quick scalability, 

centralized administration, etc. However, security is a significant problem, and Distributed denial of service (DDoS) threats a 

major challenge for SDN. One way to safeguard a Software-Defined networking infrastructure from DDoS assaults is to use 

machine learning models. This study presents an XGBoost-based approach for DDoS detection and mitigation. It evaluates it 

against other Machine Learning techniques, including Logistic Regression, Naive Bayes, Decision Trees, XGBoost, and 

Multilayer Perceptron. This method will generate, collect, classify, detect, and then mitigate Distributed denial-of-service 

assaults. The results show that the suggested approach protects SDN from DDoS attacks with high accuracy and a low error 

level while making good use of network resources. Despite the short training and testing period, the proposed method detects 

DDoS attacks with greater accuracy. 

Keywords - SDN, DDoS, Machine learning, Mininet, Ryu.

1. Introduction  
In this dynamic era, conventional networks face a lot of 

difficulties, such as vendor dependency, lack of support for 

dynamic policy updates, etc. SDN overcomes these 

difficulties by transferring all the decision-making capabilities 

to the control plane and reducing the data plane to the role of 

a simple packet forwarding unit. This capability of the SDN 

made it widely spread. However, at the same time, it also made 

it a primary cause of its failure. One of the popular attacks that 

can happen on the SDN controller is DDOS, where the 

controller is overwhelmed with a huge volume of packets from 

multiple distributed hosts. The switch's flow table also 

becomes full due to incoming data packets from multiple 

distributed sources, leading to reduced packet forwarding and 

dropping of incoming packets. These DDoS attacks can be of 

various types, such as volume-dependent, protocol-dependent, 

and application-dependent. Volume-dependent assaults 

include flooding attacks such as ICMP, UDP, and so on. 

Protocol-dependent assaults, such as SYN floods, the Ping of 

Death, Smurf attacks, and so on, target server resources. 

Active apps in the application plane are the target of 

application-dependent assaults. Slowloris and zero-day 

attacks are among them. Several approaches exist for 

detecting and defending against DDoS assaults; however, 

Machine learning (ML) techniques offer a promising solution 

for early detection due to their faster response times compared 

to manual methods. SDN flow data can be processed using 

ML-based DDoS attack detection systems integrated into 

SDN topologies to create an autonomous, adaptable network. 

However, the current state of research lacks SDN benchmark 

datasets and a model that can effectively and accurately 

predict DDoS attacks using ML techniques. In light of this, 

there exists a significant research gap in the area of effectively 

detecting and preventing DDoS attacks in SDN. This study 

proposes an XGBoost-based DDoS detection and defense 

system. The procedure includes traffic generation, collection, 

classification, detection, and mitigation. 

 

The paper includes the following sections: Section 2 

explains the effects of DDoS on SDN networks, Section 3 

explores the related studies, Section 4 describes the proposed 

system's experimental settings, Section 5 explores the 

modules of the proposed approach, and Section 6 discusses the 

Conclusion and Future Considerations.  

 

2. DDoS attacks in SDN  
SDN (Software-Defined Networking) has features that 

can make it more resilient to DDoS (Distributed denial of 

service) attacks, as well as features that can be used to 

victimize others with DDoS attacks. 

 

The features such as centralized management, 

programmability, traffic engineering, and dynamic flow 

management make it more resilient to DDoS attacks. While it 
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can be vulnerable to distributed denial of service (DDoS) 

attacks as it has features that attackers can exploit, these 

victimizing features include centralized control, security risks, 

performance concerns, and a lack of standardization. The 

DDoS attacks target different layers of SDN. 
 

• Control plane DDoS attacks include flooding, resource 

exhaustion, poison packet attacks, and so on. 

• Data-plane DDoS attacks: can take the form of TCAM 

exhaustion, Flooding, Data-Control plane link saturation, 

etc. 

• Application-plane DDoS attacks: can take the form of 

flood attacks, application-layer attacks, command 

injection attacks, resource exhaustion attacks, and 

configuration tampering attacks. 

3. Related Work 
This section of the article focuses on exploring the studies 

that employ statistical, machine learning, and deep learning 

techniques. 

3.1. Statistical-Based Techniques 

Statistical analysis uses statistical methods to look for 

strange patterns in network traffic that could be signs of a 

DDoS attack. Methods like mean, median, mode, standard 

deviation, entropy, and chi-square analysis can be used to find 

outliers in network data that could be signs of an attack [1,2]. 

Giotis et al. [4] devised an entropy technique to collect 

and analyze data to identify network anomalies, thereby 

reducing the controller's workload. They tested their system 

on the "National Technical University of Athens" network, 

where they gathered regular traffic for the anomaly detection 

module. This module analyses all flow inputs across all time 

intervals to determine undesirable ones. The mitigation 

module then specifies a flow rule to block the originating IP. 

With the assistance of Tcpreplay and Scapy, they were utilized 

to produce malicious traffic. 

Mousavi et al. [5] presented a strategy to identify DDoS 

assaults using Shannon's entropy. All nodes will experience 

the same amount of traffic and entropy while the network is 

running properly.[6] When one or more hosts are exposed to 

a DDoS attack, they experience a fall in entropy due to an 

unusually large amount of traffic. After receiving 50 packet-

in messages, the controller estimates the entropy using the 

target IP address. An attack is recognized when the estimated 

entropy falls below the detection threshold for five 

consecutive rounds. 

The authors, Leu et al. [7], proposed agent-based IDS 

using the goodness of fit test of the Chi-Square to identify DoS 

and DDoS assualts. It examines the number of SrcIP variations 

that send packets to the target and Ipaddr distribution statistics. 

If an attack is detected, the chi-square value exceeds the 

threshold. 

By integrating entropy-based techniques with machine 

learning algorithms, Dehkordi et al. [13] were able to identify 

low and high volumes of DDoS assaults. The method involves 

determining when detection is optimal in order to maximize 

efficiency. The suggested solution outperforms previous 

DDoS protection algorithms in terms of accuracy (99.85%). 
 

Mishra et al. [9] demonstrated an entropy-based DDoS 

defense system with minimum computing costs. The 

suggested technique makes use of three different threshold 

values: entropy, packet flow rate, and a count threshold. Once 

the predetermined threshold is exceeded, the entropy is 

computed by a controller using data from the flow table of the 

associated switches. The count value is increased when the 

calculated entropy drops below the predetermined threshold. 

When the overall number of assaults hits a specified threshold, 

an alert is triggered. As part of the mitigation procedure, a 

controller will collect the offending IP address, DPID, and 

switch port information and begin discarding packets from 

that IP address immediately. 
 

3.2. Machine Learning-Based Techniques 
ML algorithms, like Decision Trees, Naive Bayes 

Random Forest, and Neural Networks, can be trained on 

normal network traffic patterns and used to detect anomalies 

that may indicate a DDoS attack. These algorithms can also be 

used to differentiate between benign and malicious traffic 

based on characteristics such as source IP address, destination 

IP address, packet size, and packet rate. 

Saurav et al. [32] studied the attack patterns in the 

network by utilizing ML techniques. The methodology uses 4 

different ML algorithms: C4.5, Naive Bayes, Bayes Net, and 

Decision Table. The models' prediction accuracy was 

examined, and they concluded that the Bayesian network had 

the greatest prediction rate. 
 

Santos et al. [18] used a Mininet emulator and POX 

controller to produce the DDoS dataset with 23 characteristics. 

The traffic was generated using Scapy. They used different 

ML models to analyze the dataset, including SVM, MLP, DT, 

and RF. The findings indicate that the DT has a shorter 

processing time, and the RF model has the highest accuracy. 

Swami et al. [21] presented an ML-based intrusion 

detection system to identify TCP-SYN flooding assaults. The 

authors created the traffic as well as classified and analyzed 

the performance of many models, including DT, LR, RF, 

MLP, and Adaboost. The experimental research made use of 

Mininet, the Ryu controller, and the Scapy tool to create 

traffic, the Tcpdump tool to collect traffic, and the Wireshark 

tool to analyze packets. 

Obaid et al. [17] employed a range of machine learning 

models, including RF, KNN, J48, and SVM, to detect and 

mitigate DDoS attacks in an SDN network. Weka was used to 

train and test the models. Ubuntu served as the platform for 
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the experiment, while Mininet and Ryu controllers were used 

to facilitate the process. They used Tshark to produce normal 

traffic, while Hping3 was used to produce malicious traffic. 

The findings of the tests provided support for the J48 model 

as the most promising model. 

StateSec is an entropy-based DDoS detection technique 

that operates on the data plane and is developed by Rebecchi 

et al. [22]. This was done for the controller's resource 

conservation. StateSec's monitoring and detection 

mechanisms are constructed using an OpenFlow switch. The 

switch lets the controller know when an attack is happening, 

so the controller can take defensive action. The findings 

indicate a considerable reduction in controller overhead and a 

high level of detection accuracy. 

Nisharani et al. [15] investigated the effectiveness of 

three machine learning algorithms: SVMs, Naive Bayes, and 

Neural Networks. Mininet and Ryu were critical components 

of the experimental setup. Compared to the other models, the 

SVM achieved the greatest accuracy, recall, and precision 

levels. 
 

A hybrid ML approach was suggested by Trung et al. [26] 

to enhance the classification of traffic using SVM and SOM 

approaches. Additionally, an improved "History-Based IP 

Filtering system" (eHIPF) was developed to rapidly and 

correctly discover attacks. They were able to reproduce real-

world situations in a cloud environment that simulates a 

software-defined network using a service function chaining 

technique. The experimental findings revealed that the 

proposed strategy outperformed the other alternatives 

considered. 
 

Tan et al. [11] devised a DDoS detection trigger 

mechanism for SDN switches to lower control-plane 

overhead. When suspect data flows are discovered, data plane 

switches notify the controller. In response to the alert, the 

controller implemented a hybrid ML-based DDoS detection 

approach based on KNN and K-means. This method saves the 

controller's resources while maintaining a high degree of 

accuracy (98.85 percent). 
 

Ahuja et al. [10] created an SDN-based dataset with 

attributes that could be used to detect fraudulent traffic. Open-

Flow switch port and flow data are employed when 

constructing the dataset. An SVC-RF-based hybrid machine-

learning technique is applied to distinguish between benign 

and malicious packets. The suggested approach has a low 

false-positive rate (0.020) and high precision (98.8%). 

3.3. Deep Learning-Based Techniques 

Deep learning methodologies, like CNNs and RNNs, can 

be utilized to analyze network traffic in real-time and detect 

DDoS attacks. These algorithms can learn complex patterns 

and relationships in network traffic, making them well-suited 

for detecting sophisticated DDoS attacks. 

Tsung [45] et al. suggested DL-IDPS, a deep learning-

based system to protect the SDN from brute-force and DDoS 

attacks. To find brute-force and DDoS attacks, the MLP, 

CNN, LSTM, and SAE deep learning models were made and 

compared. The MLP model did better than previous ones. It 

predicted SSH brute-force attacks with a 99.9% accuracy rate 

and a prediction time of 38.4 msec. It also predicted DDoS 

attacks with a 98.3% accuracy rate and a prediction time of 

27.2 msec. The experiment was carried out on Ubuntu Linux 

using VMware and a Ryu controller. SSH brute-force attacks 

were carried out using the Ncrack and Medusa tools, while 

DDoS assaults were carried out using the Hping3 tool. Flow-

based characteristics such as src IP, dst IP, src port, dst port, 

and so on were extracted. 

 

A system based on LSTM and fuzzy logic was suggested 

by Novaes et al. [33] to identify and prevent DDoS and port 

scan assaults. Synthetic datasets and CICDoS 2019 datasets 

were used to assess performance in Mininet and Floodlight 

controller environments. The data gathered proves the 

usefulness of the suggested solution. 
 

To identify DDoS assaults, Nugraha et al. [8] used a 

hybrid CNN-LSTM technique. The model's efficacy was 

assessed using data that had been generated synthetically. The 

experimental evaluation revealed that the proposed model 

outperformed the MLP and the 1-class SVM models. 

 
3.4. Other Techniques 

Other methods, such as Fuzzy logic, Bloom filter,  

Genetic algorithm, etc., can be used to detect DDoS attacks. 
 

Zohaib et al. [34] suggested a DoS and DDoS detection 

system based on SNORT. Snort profiles with DDoS flow rules 

were created to detect and prevent DDoS assaults; however, 

the suggested method consistently produced false alarms. 
 

The authors proposed a technique based on the Bloom filter 

to identify link flooding attacks on SDN. The implementation 

was performed on a Mininet, utilizing the Floodlight 

controller and Java-based JSON and JPCAP APIs. Iperf was 

used to block the links and simulate a link flood attack, and 

five characteristics were collected from the generated traffic: 

src IP, dst IP, src port, dst port, and protocol. The authors ran 

numerous trials with numerous datasets, configurations, 

detection times, and false-positive metrics. 

 

The authors [41] suggest Adaptive Bubble Burst (ABB), 

a unique mitigation approach, to supplement classic packet 

filtering and other DDoS defenses. Adaptive Bubble Burst 

helps to preserve service availability for a targeted resource in 

the face of a distributed denial of service (DDoS) assault. ABB 

provides two separate safety choices. It can secure your 

privacy and avoid Distributed Denial-of-Service assaults. 

ABB conceals the real nature of a protected service by 

promoting various services from a single virtual IP address.  
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Fig. 1 Mininet Emulated Topology 

Second, if a DDoS attack bubble is heading toward a 

resource, ABB will mitigate it by adaptively dispersing it over 

numerous copies of that resource in the network. As a result, 

the primary resource suffers less damage. ABB accomplishes 

nothing in terms of detecting or avoiding threats. To the best 

of my knowledge, ABB offers no protection against DDoS 

attacks. Despite the fact that attack traffic will make resources 

more accessible and continue to circulate around the network, 

ABB will make the resource more accessible. 
 

4. Experimental Setup 
This section defines the testbed as well as the topology 

of the experiment.  
 
4.1. Experimental Environment and Tools 

Experiments were carried out on a system running the 64-

bit version of Ubuntu 20.04 LTS, with Mininet [31], Python-

based opensource OpenFlow SDN controller Ryu [28.29], 

Python and Jupyter [24] notebook installed. Ping and Iperf 

were utilized to produce benign traffic, while the Hping3 

application was utilized to produce attack traffic [1]. A 

Mininet emulator was used to build the network architecture 

for the proposed system, which has six switches (OVS) and 21 

hosts, as shown in Fig.1. A dedicated control channel links the 

switches to the controller to facilitate communication between 

the two. 

 

5. Modules of the Proposed System 
The proposed system consists of four different modules, 

which are as follows:   
1. Traffic Data Generation and Collection 
2. Machine learning classification of traffic 
3. Implementation of Detection framework 
4. Implementation of the Mitigation framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

         

 
 

 
 

 

 

Fig. 2 Modules of the System 

Traffic Data Generation and Collection 

ML Classification of Traffic 

Design and Implement of Detection framework in 

SDN environment 

Test the Detection framework 

Design and Implement of Mitigation of framework  
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5.1. Traffic Data Generation and collection 
The technique includes generating both benign and 

malicious traffic. It produced three types of traffic—normal 

and attack traffic—over TCP, UDP, and ICMP and saved each 

type in a separate CSV file. Ping and Iperf were utilized to 

create normal traffic, while the Hping3 utility was utilized to 

simulate malicious traffic. 

 

To get a decent balance of normal and malicious traffic, 

data on normal traffic was collected for about 40 hours, and 

data on malicious traffic was collected for about 90 minutes 

[1, 16–20]. Following traffic collection, a shell script was used 

to include a target column in both the attack and normal 

datasets. Under Linux, the awk function is used to add the 

specified column to the output. The datasets were combined 

using a script that makes use of the Cat programme. Finally, 

the dataset was randomized using a script that makes use of 

the Linux shuf utility. There are twenty-four attributes in the 

data, including datpath_id, timestamp, flow_id, src_ip, dst_ip, 

tp_src, tp_dst, ip_proto, icmp_code, icmp_type, 

flow_dur_sec, flow_dur_nsec, idle_timeout, hard_timeout, 

flags, in_port, byte_count. The dataset was then preprocessed 

and split into training and testing groups, after which machine 

learning classifiers were trained and tested to evaluate their 

performance. 

 
Table 1. Traffic Distribution of the Dataset 

Traffic ICMP UDP TCP Total 
Normal 206101 121200 177714 505015 

Attack 152353 143795 165547 461695 

Total 358454 264995 343261 966710 
 

5.2. Machine Learning Classification Of Traffic 
Several different Machine Learning models, namely 

Logistic Regression, Naive Bayes, XGBoost, Decision Tree, 

and Multilayer Perceptron, were studied in order to identify 

the traffic that was present in the dataset. 

 
Fig. 3 Dataset Traffic Distribution 

 

5.2.1. Machine Learning DDoS Classification Algorithm 

Input: Network traffic, both legitimate and malicious. 

Output: optimal classifier for DDoS detection 

Begin 

Step 1: Data Collection 

Collect the network traffic; this includes features that 

can distinguish between normal traffic and attack 

traffic. 

Step 2: Preprocess the data 

Clean and preprocess the collected data to make it 

suitable for the classifier. 

Step 3: Split data into training and testing groups. 

Divide the data into two groups: one for training the 

classifier and the other for testing its performance. 

Step 4: Train the classifier. 

Train the classifier on the training data. 

Step 5: Test the classifier. 

Use the trained classifier to make predictions on the 

test data. 
Step 6: Evaluate the performance of the classifier. 

Evaluate the classifier's performance by comparing 

its predictions with the labels in the test data. 

Repeat steps 1–6 for all the classifiers. 

Step 7: Compare and select the best classifier. 

Compare the performances of the classifiers and 

select the best one for DDoS detection. 

Step 8: Implement the classifier for real-time traffic detection. 

End 
 

5.2.2 Evaluation Metrics 

Several distinct metrics, including accuracy, recall, 

precision, f1-score, training time, testing time, and ROC-

AUC, were used to assess the models [1]. TP is used to 

indicate the occurrence of positive events that are properly 

identified as positive outputs, while FP is used to indicate the 

occurrence of negative events that are wrongly classified as 

positive outputs. FN stands for positive occurrences that have 

been incorrectly classified as negative output. TN stands for 

negative occurrences that have been correctly labeled as 

negative. 

Accuracy: It is defined as the degree to which a measured 

value comes close to the actual (true) value. It is possible to 

express it as the percentage of properly classified occurrences 

relative to the total number of occurrences. It can be given as 

(True Positive + True Negative)/Total number of occurrences

                          (1) 

Precision: The term "precision" refers to how close the values 

that were measured are to one another. It can be given as  

True Positive / ( True Positive + False Positive)  (2) 

 

Recall:  or Sensitivity, can be given as    
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         True Positive / (True Positive + False Negative)        (3)

  

F1-score: is the harmonic mean of Precision and Recall. 

         2* (Precision * Recall / (Precision + Recall) )         (4) 

Table 2. Performance Comparison 
 Accuracy Precision Recall F1 

NBs 0.817828 1.000000 0.618626 0.764384 

LR 0.522327 0.000000 0.000000 0.000000 

XGB 0.99999 1.000000 1.000000 1.000000 

DT 0.9999 1.000000 1.000000 1.000000 

MLP 0.540033 0.509442 0.999965 0.674999 

 

 
Fig. 4 Evaluation Metric Comparison 

 
Fig. 5 Training time Comparison 

 
     Fig. 6 Testing Time Comparison 

 
Fig. 7 AUC-ROC Comparison 
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Fig. 4 illustrates the detection accuracy of the models, and 

the table illustrates the measures of Accuracy, Precision, 

Recall, and F1-scores of various classifiers. The evaluated 

results suggest that XGBoost and Decision Tree classifiers 

provide better accuracy than other classifiers. Gaussian Naive 

Bayes, XGBoost, and Decision Tree classifiers provide better 

Precision than Logistic Regression and Multilayer Perceptron 

classifiers. The Recall of the Decision Tree, MLP, and 

XGBoost classifiers were almost the same. Furthermore, the 

F1 score provided by the XGBoost and Decision Tree 

classifiers is higher when compared to the scores provided by 

the other classifiers. 

The graph in Fig. 5 shows a bar graph that depicts the 

training times needed by the classifiers. The graph's X-axis 

indicates training time in seconds, while the Y-axis represents 

classifiers. In this evaluation, it can be seen that the training 

time for the Multilayer Perceptron model is much higher than 

that of the other classifiers. The time needed to train the Naive 

Bayes algorithm is much shorter than that required by other 

models. The DT model's training time is lower than the XGB 

and MLP models. 

The graph in Fig. 6 shows a bar graph that depicts the 

amount of time spent testing the models. The graph's X-axis 

indicates the testing time in seconds, while the Y-axis 

represents classifiers. The findings demonstrate that the 

testing time of XGBoost is less than that of any other model. 

The MLP model requires more testing time than other models. 

The DT model requires more testing time than the XGBoost, 

and LR models. 

The graph in Fig. 7 represents the Receiver Operating 

Characteristic (ROC) curve, which is constructed to evaluate 

test results for the model. The area under the ROC is a two-

dimensional graph that shows the FPR and TPR on the X and 

Y axes, respectively. Compared to other models, XGBoost 

and DT have the greatest AUC (0.999), whereas Gaussian 

Naive Bayes, MLP, and Logistic Regression have 0.785, 

0.559, and 0.500, respectively. 

 

5.3. Implementation of Detection Framework 
Monitoring the network is a necessary part of detecting 

the detection process, and in this step, the best classifier model 

from the earlier phase must be chosen. The XGBoost model 

and the Decision Tree model outperformed the other models 

in the previous phase, so we built an XGBoost-based detection 

model. The dataset was initially used to train the detection 

model, which was then used to identify the traffic that was 

being generated. The data were first collected in CSV format 

for the purpose of identifying traffic. After that, the data were 

preprocessed, and then they were fed into the model, which 

subsequently made a prediction about whether or not the 

traffic was legitimate or malicious. 

5.3.1. XGBoost-Based DDoS Detection Algorithm 
XGBoost is a machine learning algorithm that uses 

gradient boosting for classification and regression tasks. It 

improves the model's accuracy by fitting new trees to the 

residuals (errors) of the current prediction. The new trees are 

optimized by finding the best-split points and feature values to 

minimize the loss (error) of the model. This cycle is 

maintained until some stopping condition is satisfied, such as 

a predetermined maximum number of trees or a certain 

minimum improvement in the loss function. 

Finally, all the trees are combined to form the final 

prediction model. XGBoost includes features like 

regularization to avoid overfitting, parallel processing for 

faster computation, and handling missing data. 

 

Algorithm: DDoS Detection and Mitigation 

Input: Network traffic, both legitimate and malicious. 

Output: Optimal XGBoost classifier 

Begin 

Step 1: Data Collection 

Collect the network traffic; this includes features that 

can distinguish between normal traffic and attack 

traffic. 

Step 2: Preprocess the data 

Clean and preprocess the data to prepare it for use in 

the classifier. 

Step 3: Split data into training and testing groups. 

Divide the data into two groups: one for training the 

classifier and the other for testing its performance. 

Step 3: Train and Validate the Model 

Train and validate the model with the data when the 

controller starts. 

Step 4: Monitor and analyze traffic 

Preprocess and analyze the monitored traffic to 

identify any potential DDoS attacks. 

Step 5: Detect the attack. 

Detect and confirm the presence of a DDoS attack 

based on the analysis results. 

If traffic is determined to be attacked, traffic 

trigger the mitigation module to block the switch 

input port 

Else  

Forward the traffic  

Repeat steps 4 and 5 for all incoming traffic. 

End  
 

5.3.2. Detection of Normal and Attack traffics 
Fig.8 depicts typical normal traffic detection, which 

requires running the Mininet topology on one terminal and the 

XGBoost-based detection program on another, then accessing 

the terminal windows of several hosts, such as hosts h1, h10, 

using the xterm command under Mininet. Normal traffic was 

then switched from h10 to h1. 
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Fig. 8 Normal-Traffic Detection 

 
Fig. 9 Attack-Traffic Detection 

 

Fig.9 depicts the sample attack traffic detection 

procedure; attack traffic was then launched from h10 to h1. 

When attack traffic is discovered, the detection program 

identifies the attacking switch and its input port. It then blocks 

the port for 60 seconds. 
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Fig. 10 Normal-traffic rate 

 
Fig. 11 Attack-traffic rate

The graph shown in Fig. 10 is an example of a real-time 

graph that depicts the typical flow of traffic as recorded by the 

wireshark analyzer.  

 

On the other hand, Fig. 11 demonstrates that the amount 

of traffic increased at a far faster pace after the flooding attack 

was initiated by the attacking host and directed at the host (h1).  

 
To compare our findings with those of similar studies, we 

created a comparison table. The results, as well as the ones 

reported in the literature, are summarized in Table 3.  

The results reported in Table 3 suggest that the proposed 

machine learning model outperforms the findings presented in 

[11, 35, 36, 41, 43].  

 

It is worth noting that similar research in the literature 

employed a wide range of datasets and models. As a 

consequence, substantiating the comparative findings is 

challenging.  

 

The results reveal that by employing machine learning 

approaches, the SDN framework was successful in detecting 

DDoS assaults. 
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Table 3. Comparison of Proposed System with State-of-art 

Ref Dataset Accuracy Precision Recall F1-Score Algorithm 
[42] MAWI Lab 93.79 NA 92.80 NA Entropy 
[34] CCIDS2017 99.45 99.57 99.64 99.61 Ensemble CNN 
[44] Their own dataset 95.38 95.05 NA NA SVM 
[43] Their own dataset 85.49 NA NA NA SVM-SOM 
[23] Their own dataset 99.99 100 99.98 99.99 AbaBoost 
[11] Their own dataset 98.85 99.03 98.74 NA K-Means+KNN 
[35] NSLKDD 99.92 100 100 100 XGBoost 
[35] CICDDOS2019 99.9 100 100 100 XGBoost 
[35] CAIDA 99.7 100 100 100 XGBoost 
[36] Their own dataset 98.3 97.72 97.73 97.70 KNN 
[37] NSLKDD 98.78 98.7 96.1 93.3 J48 

Proposed Their own dataset 99.9 100 100 100 DT and XGB 
 

 
Fig. 12 Flow-Table Update Status 

 
Fig. 13 Mitigation Traffic flow 
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5.4. Implementation of Mitigation Framework 
The detection phase serves as the foundation for the 

mitigation step. Suppose the detection phase identifies 

potential attack traffic. In that case, a REST message is 

delivered to the controller and instructed to temporarily 

disable the DDoS port on the OpenFlow switch for a 

predetermined amount of time. If the anticipated traffic 

volume is within permissible limits, the controller does not get 

a command, and the computer's traffic flow is not disrupted. 

Following the discovery of  DDoS flooding traffic, the status 

of the sample flow table update is shown in Fig. 12.  

 

A dramatic decrease in traffic can be seen occurring in 

Fig. 13 immediately after the flow table is updated and the 

attacking port is blocked. 

 

6. Conclusion and Future work 
SDN has attracted much interest because of its many 

advantages; however, security is a major concern, and DDoS 

assaults are a formidable challenge for SDN. In this work, an 

XGBoost-Based Machine Learning (ML) model was created 

to detect and mitigate DDoS attacks on SDN-enabled systems. 

This was due to the combination of the strengths of XGBoost 

and its robust handling of large datasets, which made it a 

suitable choice for DDoS detection and mitigation.  

Furthermore, the XGBoost algorithm has demonstrated 

effectiveness in binary classification tasks. This was critical in 

this case because the goal was to classify traffic as either 

normal or malicious.  The procedure consists of traffic 

generation, collection, and classification, as well as detection 

and mitigation. According to the findings of the preceding 

investigation, the XGBoost model does better than the other 

machine learning models with regard to Accuracy, Recall, 

Precision, AUC-ROC, training time, and testing time. In the 

future, we hope to expand upon this work by building a deep 

learning-based detection system that can swiftly and 

accurately detect a wide range of DDOS attacks, implement 

mitigation strategies, and analyze performance across a range 

of multi-controllers and different SDN switch configurations.
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