
International Journal of Engineering Trends and Technology Volume 71 Issue 2, 466-492, February 2023

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V71I2P248 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

 Improving Software Requirements - Analysis of Petri

Net Models for Inconsistency and Incompleteness

A Keshav Bharadwaj1, Vinod K Agrawal2, Jayashree R3

1,3Department of Computer Science, PES University, Karnataka, India.

2R & D, Dayananda Sagar University,Karnataka, India.

1Corresponding Author : keshavbharadwaj@pes.edu

Received: 05 October 2022 Revised: 15 January 2023 Accepted: 31 January 2023 Published: 25 February 2023

Abstract - Stakeholders of most software projects express requirements in natural language. (English is taken as the natural

language here). To minimize errors in the requirements, an analysis of requirements is necessary. Direct analysis of

requirements expressed in natural language is complex. Hence it is preferable that they be expressed using some formal method

before they are analyzed and used for specifications development. In this paper, we have made the assumption that specification

documents and Petri net models of the software requirements are available to us. We propose methods to analyze these Petri

net models for inconsistency and incompleteness in the software requirements. Results obtained from the analysis are used to

redefine the given user requirements such that inconsistency and incompleteness are removed. The example of an Automated

Teller Machine has been used to demonstrate our approach.

Keywords - Analysis, Completeness, Consistency, Petri nets, Requirements.

1. Introduction
Successful software project completion largely depends

on good requirements and specifications. The development of

consistent and complete requirement specifications is an

iterative process. It involves analysis and incorporation of

feedback from the analysis done. Natural language (NL), i.e.,

the English language, is generally used to express

requirements as it is the most widely spoken.[1] Yet the

requirements provided by users are often ambiguous and

incomplete and rely on implicit information.[2] Such

informally expressed requirements are not easy to analyse. It

is, therefore, necessary to translate user requirements

expressed in NL using one of the many formal techniques

[3,4] so that they can be analysed for consistency and

completeness, among other properties. Though these formal

methods are difficult and costly to use, among other

disadvantages [3], they help create precise, unambiguous

specifications and thereby enable reasoning and analysis.[4]

The use of formal methods like State charts, Alloy, etc.,

for developing requirement specifications, has been practiced

by several researchers.[5,6,7,8] But these methods are mostly

manual and quite complex.[5,6,7,8] In the case of Petri nets

(PNs), there is not only scope for automation and tool

development, but they are also relatively easier to

analyse.[9,10]In [11], the many advantages of using PNs have

been brought out well. Using PNs, some approaches have been

put forth to check the inconsistency of requirements, but most

are difficult to apply.

Secondly, very little research has been done using PNsto

to analyse incompleteness[10,12,13,14,15] in requirements.

Inconsistency and incompleteness in requirements are a sure

cause for schedule and cost overruns in a project. Thus, there

is a need for a simple, easy methodology that analyses a PN

for both inconsistency and incompleteness. This analysis

would help improve the software requirements and thus rein

the cost and schedule difficulties that would otherwise arise.

Hence, this paper proposes algorithms to analyse the PN

model of NL requirements for the characteristics of

consistency and completeness. Based on the information

derived from such analysis, the given requirements are

rewritten till they are free of inconsistency and

incompleteness.

The proposed approach is demonstrated with a practical

example of an Automated Teller Machine (ATM). Additional

examples are also included to reinforce the methodology.

The paper structure is described below. Section 2

provides a general idea of the approaches used in the related

work. To facilitate further discussion, a short introduction to

PNs and basic definitions are given in section 3. The proposed

methodology is detailed in section 4, while section 5 illustrates

our reference case study of an ATM used to demonstrate the

methodology described in section 4. Section 6 is about

discussion and validation. Section 7 provides conclusions

and future directions for research.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

467

2. Related Work and Research Gap
Several researchers in the literature have tried to

formalize the analysis of software requirements for

ambiguities, inconsistencies, incompleteness, liveness and

reversibility.

Lee, Cha and Kwon [12] define a procedure to convert

use cases stated in NL to a CMPN(Constraints-based Modular

Petri Nets) model; and define guidelines for finding

inconsistency and incompleteness in CMPNs. However, their

approach is manual, and the use cases do not conform to the

UML. Also, they do not consider alternative/exception flow of

use cases.

In [13], Cheung, Cheung and Chow propose a synthesis

methodology wherein use cases are specified as labeled PNs

or C-nets, and by synthesizing these nets, a system design is

derived. They provide an algorithm to verify liveness and

reversibility, but their methodology is complex.

In [16], Sinnig, Chalin, and Khendekuse LTS (Labelled

Transition Systems) formalize the use case models by a map

the use case steps and types. It allows them to detect semantic

checks like livelocks and model refinement validation, for

which they have developed a tool called “Use Case Model

Analyzer”.

Zhao and Duan in [10] transform use cases into scenarios

and then into their corresponding PNs. These PN models are

analyzed, flaws detected and models of the level of Platform

Independent Model (PIM) constructed based on analysis. This

approach suffers from the need to create intermediate “event

frames” for the extraction of objects and messages from each

one of the sentence events.

Somѐ in [14] describes use cases using an abstract syntax

(tuple structure) and a concrete one (restricted NL)before

mapping them into reactive nets. However, interaction in the

case of concurrent use cases is not dealt with.

Sarmiento, Leite and Almentero, in their paper [15],

translate Scenarios into equivalent Place / Transition PNs and

evaluate them for consistency, correctness and completeness.

Based on the analysis of the PNs, they revised the Scenarios.

However, their method suffers from the disadvantage that the

systems engineer must be knowledgeable in using the syntax

and semantic rules described for writing scenarios.

Sarmiento-Calisaya et al. [17] describe a C&L prototype

tool that does an analysis of scenarios (Static) and equivalent

PNs (Dynamic) for indicators of ambiguity, completeness, and

consistency. This transformation part of the tool is, however,

sensitive to the correct syntax of scenarios.

Yu et al. [32] use a scenario model based on first-order

logic for consistency analysis. However, the approach has

been applied only to simple systems and needs further

validation on large-scale systems.

From the above background study, we may conclude that

the formal methods to detect inconsistency and

incompleteness in the literature to date are manual, complex

and not based on conventional PNs. In this paper, we have

developed a methodology to analyse inconsistency and

incompleteness in PNs, thereby in the underlying NL

requirements.

3. Background Information and Definitions
Petri nets, also known as Place / Transition Nets, were

introduced to model concurrency, non-determinism, and

control flow by Carl Adam Petri in 1962. A PN is a group of

arcs connecting transitions and places. Places represent the

system states, and transitions are the events that occur which

may lead to a modification in the states of the system. Places

may possess tokens. The tokens enable the transitions when

the transition gets fired. The tokens get allocated as per the

weight given on arcs. PNs supply a mathematically rigorous

modeling framework and are bipartite graphs.[19,20]

3.1. Definition of PNs

A PN is a 5-tuple, [21]

𝑃𝑁 = (𝑃, 𝑇, 𝐹, 𝑊, 𝑀𝑜)(1)
where:

𝑃 = {𝑝1, 𝑝2, … . . 𝑝𝑚} (2)
is a finite set of places,

𝑇 = {𝑡1, 𝑡2, … . . 𝑡𝑛} (3)
is a finite set of transitions,

𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) (4)
is a set of arcs (flow relation),

𝑊 ∶ 𝐹 → (1,2,3 … . .) (5)
is a weight function,

𝑀𝑜 ∶ 𝑃 → (0,1,2,3 … .) (6)
is the initial marking,

𝑃 ∩ 𝑇 = 𝜙 𝑎𝑛𝑑 𝑃 ∪ 𝑇 ≠ 𝜙 (7)
A PN structure

𝑁 = (𝑃, 𝑇, 𝐹, 𝑊) (8)
without any specific initial marking is denoted by N.

A PN with the given initial marking is denoted by (𝑁, 𝑀𝑜)

3.1.1. Time PNs

Time PN is an extension of the PN model where each

transition tj is associated with two timings τ1,j and τ2,j.[22] A

transition tj can fire only if it has been enabled for at least time

τ1,j, and it must fire before τ2,j if enabled.[22] Unless otherwise

specified, it is assumed

𝜏𝑖,𝑗 = 𝜏2,𝑗 = 0 (9)

As a special case if

𝜏𝑖,𝑗 = 𝜏2,𝑗 = 𝑡 (10)

it means that the transition is fired at t if it is enabled.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

468

3.2. Related Properties of PNs

Let

𝑃𝑁 = (𝑁, 𝑀𝑜)(11)
be a system.[23]

A transition t is said to be dead in a PN if no marking of

M0 enables t. A deadlock, or dead marking, is when a marking

is not enabling any transition. PN is deadlock-free if no

deadlock belongs to M0; otherwise, it is dead-lockable.

A transition t is live in PN for every marking M in M0 if

there is a marking M′ in M enabling t. PN is said to be live if

every transition is live in PN.

A marking M is called a home state of PN if it can be

reached from every marking in M0.

PN is bounded if an integer k exists such that:

∀ 𝑀 ∈ 𝑀𝑜 (12)

for each place p,

𝑀(𝑝) ≤ 𝑘 (13)

A marking M′ is known to be reachable from the marking

M if there is a firing sequence σ feasible in (N, M) such that

 𝑀
𝜎
→ 𝑀′ (14)

Since our primary aim is to develop software

requirements which are characterized by consistency and

completeness, these terms are also being defined here:

3.2.1. Consistency

Boehm [24] defines a consistent Software Requirements

Specification (SRS) as one which does not have conflicting

requirements. If a requirement is overridden by another

requirement or when users give conflicting requirements, then

the requirements are said to be inconsistent.

3.2.2. Completeness

Boehm [24] defines an SRS to be complete when all its

parts are present, and each part is fully developed. He opines

that no TBDs (TBDs are places in the requirements

specification where the decisions are postponed by writing

“To be Determined” or “TBD”), no non-existent references,

no missing specifications items and no missing functions are

the properties that are to be satisfied for completeness to be

validated.

4. Proposed Methodology for Analysis
Requirements specifications are used to describe

requirements – both functional and non-functional of a

system. The functional part covers what the software system

should do depending on the system and its relationship with

the environment. Non-functional requirements delineate the

constraints under which the software system must operate and

any design restrictions forced on the system. Here functional

requirements alone are being considered.[21]

Researchers have designated the below-given properties

to identify and resolve inconsistency and incompleteness.

Inconsistency can be avoided by ensuring the following

properties:

• No non-determinism and conflicting requirements, i.e.,

two transitions should not be enabled simultaneously by

a single token in a place [25],

• liveness of the PN, i.e., if life, it indicates the absence of

total or partial deadlocks [10,12] and

• no dead transitions.[12]

Proof: Let

𝛾 = {𝛾1, 𝛾2, … . . 𝛾𝑘} (15)

where

𝛾 ∈ set of conflicting transitions. (16)

Let time

𝑡 = {𝑡1, 𝑡2, … . . 𝑡𝑘} (17)

where ti is the time when a transition can fire after the

transition is enabled. Also,

{𝑡𝑖 ≠ 𝑡𝑗} (18)

If a place connected to two transitions say γi and γj,
receives a token, transition γi is evaluated after

𝑡 = 𝑡𝑖 (19)

and γj is evaluated after

𝑡 = 𝑡𝑗 (20)

and

𝑡𝑖 ≠ 𝑡𝑗 (21)

(By assumption) then an inconsistency situation is

avoided. Hence our proposition is validated.

In order to solve the inconsistency arising in the case of

non-determinism, the “Transitions with time” proposition is

being proposed. Accordingly, when two transitions are

connected to a place, the transitions do not have any other

input place connected to it or any other information on their

arcs by assigning one of the transitions a higher priority than

the other by introducing a time component.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

469

4.1. Statement of “Transitions with time” proposition

A token at a place, if it enables two transitions

simultaneously, then one of the transitions may be assigned a

higher priority (by introducing a time component) than the

other.

Explanation: An example of two transitions fired

simultaneously by a token in a place is shown in Figure 1.

Fig. 1 PN representation of more than one transition connected to a

place

By application of the proposed proposition, the modified PN

representation is shown in Figure 2, where a time component

of

𝑡 = 0 (22)

is specified on the arc connecting place P1 to transition T1, and

a time component of

𝑡 = Δ (23)

is specified on the arc connecting place P1 to transition T2.

Fig. 2 PN representation of more than one transition connected to a

place after application of the “Transitions with time” proposition

To prove the correctness of the proposition, the following two

conditions need to be validated:

Fig. 3 Algorithm 1 for detecting Inconsistency in a PN

Input: Given a PN.

Output: Identified inconsistencies in the PN.

Result: Inconsistency determined.

Step 1 [Listing all places in the PN.] List all places

(P1, P2...Pn)

that are in the PN representation of the NL requirements;

Step 2 [Verifying non-determinism with Transitions with time proposition.] Simulate the PN;

Traverse the PN;

for each place in the PN do

if a place is connected to more than one outgoing transition and these transitions do not have any other input place

connected to it or any information on their arcs then

return PN is inconsistent;

end

end

Step 3 [Verifying liveness by simulation.] Simulate the PN;

if simulation is not successful then

return PN is inconsistent;

end

Step 4 [Verifying that there are no dead transitions in the PN.] Simulate the PN;

Traverse all loops in the PN to determine transitions that are never enabled;

if there exist transitions that are never enabled then

return PN is inconsistent;

end

return PN is consistent;

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

470

Accumulated tokens due to looping and decision-making

structure can affect the subsequent execution of the PN. These

tokens have to be removed. This removal can be done through

a proposition for handling and removal of residual tokens

called the “Residual tokens removal” proposition.[33] It has

been included in detail in Appendix 1. This proposition helps

in the analysis of PN and the resolution of gaps. Based on the

above, an algorithm, as shown in Figure 4, has been developed

to analyse the given PN representation of NL requirements for

incompleteness.

Fig. 4 Algorithm 2 for detecting incompleteness in a PN

Input: Given a PN.

Output: Identified incompleteness in the PN.

Result: Incompleteness determined.

Step 1 [Listing all transitions in the PN.] List all transitions

 (T1, T2...Tn)

and places

(P1, P2...Pn)

that are in the PN representation of the NL requirements;

Step 2 [Functions in requirement specifications in NL.] Obtain list of all functions

(f1, f2...fn)

from requirements specification in NL;

Step 3 [Verifying no function is absent in the PN.] Simulate the PN;

Traverse the PN and list functions that are not represented by one or more transition in

the PN;

if any function is absent in PN then

return PN is incomplete;

end

Step 4 [Verifying no non-determinism in the PN.] Obtain reachability report using

PIPE2;

if there exist transitions are not reachable then

return PN is incomplete;

end

Step 5 [Verifying distinct names for all places and transitions in the PN.] Simulate the

PN; Traverse the PN;

if all the places and transitions are not specified by distinct names then

return PN is incomplete;

end

Step 6 [Verifying no isolated subnets in the PN.] Simulate the PN;

Traverse the PN;

if there exists any transition that remains not traversed then there is an isolated subnet in

the PN then

return PN is incomplete;

end

Step 7 [Verifying no infinite loops or program abends in the PN.] Simulate the PN;

if there are infinite loops or program abends then

return PN is incomplete;

end

Step 8 [Verifying no token accumulation in the PN.] Simulate the PN;

if repeated execution of PN results in error then this implies that there could be token

accumulation due to looping and decision-making structure in the PN then

return PN is incomplete;

end

return PN is complete;

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

471

Fig. 5 PN representation of ATM system

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

472

The requirements specification and the corresponding PN

representation are the inputs to the proposed methodology.

From the requirements specification, the list of functions is

taken. The PN is simulated using the Renew2.5 tool.[27]

Based on algorithm 1 & algorithm 2, analysis is done, and

issues are identified. The NL requirements are then rewritten

to resolve the identified issues related to inconsistency and

incompleteness. This process may have to be iterated if the

modified requirements introduce any inconsistency or

incompleteness. The requirements are finally approved by the

user and then used in the subsequent stages of the SDLC

(software development life cycle).

𝑀𝑜(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑘𝑖𝑛𝑔) =
< 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18

>< 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 > (30)

5. Example Case Study – Automated Teller

Machine
In order to demonstrate our methodology, a case study of

ATMs in their simple form is taken. An ATM’s operations

were summarized in NL as follows: [28]

“The ATM will read an ATM card, take inputs from a

keyboard and then display output, thus interacting with the

customer. It then performs the requested action – gives cash

or transfers money from one account to another. After this, a

printed receipt is produced. This ends one transaction, and the

user can perform repeated transactions. The machine can be

started or stopped by an operator. The ATM interacts with the

bank's computer for validation using the network. The ATM

card will be inserted, and a personal identification number

(PIN) (this information is sent to the bank for validation) will

be entered. If a wrong PIN is entered, a card will be ejected.

The customer can perform one or more transactions, after

which the card is ejected. The ATM will provide the following

services to the customer:

(1) Obtaining Balance Information

(2) Withdrawal of Cash

(3) Transfer of Funds.”

The PN for the ATM system taken from the requirements

specifications pertaining to the above user requirements is

shown in Figure 5 below.

5.1. First iteration – Analysis of PN drawn in Fig 5 using

Algorithm 1 and Algorithm 2

Consistency analysis:

Work through Algorithm 1.

Step 1: List of places are:

1. atm off

2. on button

3. atm ready

4. off button

5. user

6. card is read

7. pin

8. response

9. invalid pin

10. valid pin

11. choice of transaction

12. cash dispensation

13. fund transfer

14. complete transaction

15. decision

16. continue

17. exit atm

18. exit status

Step 2: A place connected to more than one outgoing

transition and where these transitions do not have any other

input place connected to it or any information on their arcs is

“response” (P8) place and transitions checking if the pin is

invalid (T6) &checking if the pin is valid (T7) as seen in Fig.

5. The PN drawn in Fig. 5 indicates that the NL requirements

are inconsistent.

Step 3: Simulate the PN to verify liveness. Simulation is

successful, and hence PN is consistent with regard to liveness.

Step 4: Simulate the PN to verify that there are no dead

transitions. Traverse all loops in the PN to determine

transitions that are never enabled. There exist no transitions

that are never enabled, and hence PN is consistent with regard

to dead transitions.

5.1.1. Completeness Analysis

Work through Algorithm 2.

Corrected list of Transitions

Step 1: List of transitions are:

1. operator switches the machine on

2. operator switches the machine off

3. inserts the card

4. dial the pin

5. sends to the bank for verification

6. checking if the pin is invalid

7. checking if the pin is valid

8. eject card on invalid pin entry

9. accept the pin

10. withdraw cash

11. transfer cash

12. print the receipt

13. perform another transaction

14. exit from transactions

15. eject card.

The list of places is the same as given previously.

Step 2: Obtain the list of all functions.

1. switching on and off the atm

2. verify the validity of the pin

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

473

3. eject card

4. display balance information

5. withdrawal of cash

6. cash transfer

7. print the receipt

8. performing transactions

9. exit from the transaction

Step 3: Traverse the PN and list functions absent in PN.

One function, namely 4 from step 2 above, is absent; hence,

PN is incomplete with regard to functions. A transition display

of balance information(T12) is added to represent the missing

functionality in the PN in Fig. 6.

Step 4: Obtained reachability report using PIPE2 to

determine whether there is non-determinism in the PN. There

exist no transitions that are not reachable. PN is complete with

regard to non-determinism.

Step 5: Traverse PN. All places and transitions in the PN

have distinct names. PN is complete with regard to distinct

names.

Step 6: Traverse PN. There are no isolated subnets. PN is

complete with regard to isolated subnets.

Step 7: Simulate PN to determine if there are infinite

loops or program abends.

Step 8: Simulate PN. There is no token accumulation. PN

is complete with regard to token accumulation.

Thus, the PN drawn in Fig. 5 is inconsistent and

incomplete; therefore, the NL requirements need to be

modified.

5.1.2. Observations and Solution

Inconsistency

From the application of algorithm 1 on the PN drawn in

Fig. 5, it is seen that the two transitions viz. T6 and T7 are

enabled together. Hence it is a case of inconsistency. To

resolve this inconsistency problem, different priorities are to

be assigned for T6 and T7 as per the ‘Transitions with time’

proposition. In this case, we assign T6 a higher priority than

T7. This resolves the inconsistency in the PN. If the functional

condition of T6 is enabled, then transition T6 is fired.

Otherwise, after a duration Δ1 transition T7 is fired.

Incompleteness

(1) During simulation, the PN execution results in an

endless looping condition. It is seen that the requirements of

the following functionalities - the choice to repeat the

transaction, accept the pin given, validate the pin and eject the

card on the wrong pin are inadequately given, which leads to

the infinite looping situation.

(2) A single user repeatedly entering the pin for validation

would prevent others from using the atm. A threshold on the

number of times a user is allowed to enter the pin for

validation must be incorporated. Alternatively, a time limit for

the action can be incorporated.

(3) A single user repeatedly performing transactions

preventing/delaying other users. Again, either a limit on the

number of transactions a user can be allowed must be

incorporated, or a time limit for the user usage can be

incorporated.

To satisfy completeness, the following needs to be done:

To do (1), a limit on the number of attempts for dialling

the pin, say three times, is added as shown in PN drawn in Fig.

6. A maximum of three attempts for dialling the pin has been

introduced by adding a transition repeat pin entry (T8).

For (2), a time limit within which the user must take

action while making transactions, say thirty seconds, must be

introduced. In Fig. 6 drawn, a time limit for executing a

transaction has been introduced by adding two transitions,

activating the timer (T11) and exceeding the time limit (T15)

and two places, “timer request” (P11) & “end of the timer” (P13)

with a time limit (t3) of 30 seconds.

Though identified, the maximum number of transactions

and a timer for dialling the pin have not been included, as the

repetition in the PN would not add to the analysis.

5.2. Modified requirements for Automated Teller Machine

Based on the analysis, the requirements are rewritten to

resolve the identified inconsistencies and incompleteness as

below:

“The ATM will be able to read an ATM card, take inputs

from a keyboard and then display output, thus interacting with

the customer. It then performs the requested action – gives

balance information, allows cash withdrawal, or transfers

money from one account to another. After this, a printed

receipt is produced. This ends one transaction, and the user

can perform repeated transactions. The machine can be started

or stopped by an operator. The ATM interacts with the bank's

computer for validation using the network. The ATM card will

be inserted, and a personal identification number (PIN) (this

information is sent to the bank for validation) will be entered.

If a wrong PIN is entered, a card will be ejected. The customer

is allowed three attempts to enter the correct PIN; else card is

ejected out. Similarly, the customer is allowed to perform a

maximum of three transactions, after which the card is ejected

out. Time taken by the customer for PIN entry or for making

transactions needs to be limited to 30 seconds in each case. In

case of delay by the customer, the card should be ejected out.”

Note 1: The bold-faced text indicates the changes made

in the requirements.

The PN of the ATM system is then redrawn based on the

rewritten requirements. The PN for the above specifications

drawn using our approach is depicted in Fig. 6.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

474

𝑀𝑜(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑘𝑖𝑛𝑔) = < 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19, 𝑝20, 𝑝21 ><
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 >(31)

Fig. 6 PN representation of ATM system after the first iteration of application of Algorithm 1 and Algorithm 2.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

475

One transition - eject card on invalid pin entry in Fig. 5 is

removed, and five transitions - repeat pin entry, eject card on

exceeding pin entry attempts, activates timer, display of

balance information and exceeding time limit have been added

in Fig. 6.

5.3. Second iteration

Analysis of PN drawn in Fig 6 using Algorithm 1 and

Algorithm 2

Now the methodology is iterated.

Consistency analysis:

Application of Algorithm 1 shows that the PN is

consistent.

Completeness analysis:

Work through Algorithm 2.

Step 1: List of transitions

1. operator switches the machine on

2. operator switches the machine off

3. inserts the card

4. dial the pin

5. sends to the bank for verification

6. checking if the pin is invalid

7. checking if the pin is valid

8. repeat pin entry

9. accept the pin

10. eject card on exceeding pin entry attempts

11. activates timer

12. display of balance information

13. withdraw cash

14. transfer cash

15. exceeding time limit

16. print receipt

17. perform another transaction

18. exit from transactions

19. eject card.

The list of places are:

1. atm off

2. on button

3. atm ready

4. off button

5. user

6. card is read

7. pin

8. response

9. invalid pin

10. valid pin

11. timer request

12. choice of transaction

13. end of timer

14. balance information

15. complete transaction

16. cash dispensation

17. fund transfer

18. exit status

19. decision

20. continue

21. exit ATM

Step 2: Obtain the list of all functions.

1. switching on and off the atm

2. verify the validity of the pin

3. repeat pin entry

4: eject card on exceeding pin entry attempts

5: activates the timer

6: exceeding the time limit

7: the display of balance information

8: withdrawal of cash

9. cash transfer

10. print receipt

11. performing transactions

12. exit from the transaction

13. eject card

Step 3: Traverse the PN and list functions absent in PN.

All the functions are present. PN is complete with regard to

functions.

Step 4: Obtained reachability report using PIPE2 to

determine whether there is non-determinism in the PN. There

exist no transitions that are not reachable. PN is complete with

regard to non-determinism.

Step 5: Traverse PN. All places and transitions in the PN

have distinct names. PN is complete with regard to distinct

names.

Step 6: Traverse PN. There are no isolated subnets. PN is

complete with regard to isolated subnets.

Step 7: Simulate PN to determine if there are infinite

loops or program abends. There is neither any infinite loop nor

any program abend. PN is complete with regard to infinite

loops or program abends.

Step 8: Simulate PN. Two errors are identified.

5.3.1. Observations and Solution

Inconsistency

There is no inconsistency.

Incompleteness

a) In the simulation of the PN, it is noticed that there is an

accumulation of tokens in the “invalid pin” (P9) place which

affects the repeated execution of the PN. This happens

(1) When the user enters the pin correctly at the third

instance after entering it wrongly the first two times, two

tokens get collected in P9 place.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

476

(2) When the user enters the pin correctly at the second

instance after entering it wrongly the first time, one token gets

collected in P9 place.

An additional transition emptying of tokens (T9) and two

additional places, “unused token” (P10) and “count of invalid

pin entries” (P12), are added to the PN to ensure and correct

the flow, usage and removal of tokens such that the

functionality given in the specification can be completed

successfully. For this processing of residual tokens, the

“Residual tokens removal” proposition in [22] has been used.

Fig. 7 PN representation of ATM system after the second iteration of application of Algorithm 1 and Algorithm 2.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

477

b) Also, there is the accumulation of a token in the “card

is read” (P6) place due to the token from transition repeat pin

entry (T8) which goes back to place P6 in the situation when

T8 is fired thrice, i.e., a wrong pin is entered thrice. To remove
this leftover token, P6 is made to fire two transitions - the

number of attempts is exceeded (T11) at

𝑡1 = 0 (32)

and dial the pin (T4) at

𝑡1 ≥ Δ (33)

PN is incomplete with regard to the accumulation of

tokens. Thus, the PN drawn in Fig. 6 is consistent but

incomplete. Though the NL requirements are correct, the PN

implemented needs to be modified. Two transitions - the

number of attempts is exceeded&emptying of tokens have

been added in Figure 7.

The corrected PN representation is depicted in Fig. 7.

5.4. Proof of Consistency and Completeness of the final Petri

net model

The ATM PN (Fig. 7) is now examined for consistency

and completeness. The property of consistency and

completeness of the modified ATM PN is verified by running

algorithm 1 and algorithm 2, respectively. By simulation of

the PN, the execution of various transitions is found to be

successful. Thus, feedback obtained in the two iterations was

used to improve the requirements by removal of inconsistency

and incompleteness. It can be seen from this example that the

proposed algorithms are easy and are not time-consuming or

laborious to apply.

6. Discussion and Validation
The ATM case study demonstrates the use of our

technique for a typical application of an ATM. Similarly, three

other case studies (Table 1) have been carried out by using NL

requirements for the patient monitoring system [29],

Assembly system [30] and Library system.[31] All these cases

have been investigated using the methodology described in

this paper. In all the above cases, PN representations of the

requirements have been analysed and requirements corrected,

proving the soundness of our proposed methodology. The

detailed analyses of the three case studies are included in

Appendix 2. A snapshot of the outcomes of the case studies is

presented in the table below.

Table 1. Results of analysis of consistency and completeness of case

studies (requirements)

Patient

monitoring

system

Assembly

system

Library

System

Inconsistent

transitions

identified from

consistency

analysis

Two Zero Eight

New transitions

identified from

completeness

analysis

Three Five Two

New

functionalities

identified from

completeness

analysis

Two Three Two

Many researchers in literature have attempted to

formalize software requirements analysis to free them of

ambiguities, inconsistencies, incompleteness, etc., by

converting them to PNs. Using PNs for analysis helps us

greatly improve the requirements specifications. The

methodology presented here incorporates analysis and

feedback and does not need specific know-how to use the

approach. Therefore, the usage of this method is highly

advantageous. The method proposed in this paper for the

analysis of PNs is compared with the methods proposed by

Zhao and Duan [10], Lee et al. [12] and Sarmiento et al. [15]

in table 2 below.

Table 2. Comparison of the different methods for analysing PN representation of software requirements.

 Methodology
Analysis was done

for

Specific know-how required /

Disadvantages / Advantages

Zhao and

Duan [10]

(1) Use cases are transformed into Scenarios.

(2) Scenarios are transformed into Timed and

Controlled PNs (TCPN).

(3) The TCPNs are analyzed using a PN tool

(PIPE2).

(4) Feedback is used to rebuild the scenarios

and use case descriptions.

(5) After correction, Platform Independent

Models (PIM) are built.

(1) Completeness.

(2) Correctness.

(3) Consistency.

(1) Complex industrial systems are

difficult to express as PNs.

(2) Intermediate “event frames” for

each of the sentence events are

needed.

Lee et al.

[12]

(1) From use, cases create an action-condition

table with event names and pre- and post-

conditions.

(1) Completeness.

(2) Consistency.

(1) Intermediate models are

created.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

478

(2) Convert the action-condition tables into

Constraints-based Modular Petri Nets

(CMPNs).

(3) Guidelines were developed to analyze the

CMPNs for consistency and completeness.

(2) Alternative/exception flows of

use cases are not considered.

(3) The use cases do not conform to

UML.

Sarmiento

et al. [15]

(1) Define a Scenario language.

(2) Define mapping rules from Scenarios to

PNs.

(3) Transform Scenarios to PNs.

(4) Integrate partial PNs into an integrated PN.

(5) Using reachability analysis, the PN is

analyzed, and the scenarios are revised.

(1) Correctness.

(2) Consistency.

(3) Completeness.

(1) Good knowledge of writing

scenarios is needed.

Proposed

Approach

(1) Use algorithm 1 for consistency analysis.

(2) Use algorithm 2 for completeness analysis.

(3) Note the identified inconsistencies and

incompleteness to revise and modify the

given requirements from which the PN was

developed.

(4) Repeat the analysis and modify the

requirements if needed.

(5) Use improved/corrected requirements for

the next steps in SDLC.

(1) Consistency.

(2) Completeness.

(1) Both Consistency and

Completeness are identified.

(2) Can be used for conventional

PNs.

(3) Semi-automated tool available

to generate PNs easily from NL

requirements.

(4) No specific knowledge is

required to use the algorithms

presented.

7. Conclusion and Future Course of Work
Proper requirements specification is key to the successful

completion of software projects. Petri nets are a convenient

approach for representing, analysing and correcting

deficiencies in the software requirements. In this paper,

assuming the requirements and their PN expressions are given,

an analysis of the PNs has been done to identify inconsistency

and incompleteness in requirements. The feedback is used to

improve the quality of the software requirements.

The methodology of improving the requirements

specification represented as Petri nets is demonstrated in this

paper by using the Automated Teller Machine example. By

this methodology, NL requirements represented by the PNs

have undergone modifications and improved considerably.

Applying this step before the next stage in the software

development life cycle would help reduce error propagation

and consequent cost and schedule overruns. The proposed

methodology has a strong theoretical foundation. The

algorithms and conditions of proof given are simple and easy

to apply. Though not applicable to conventional NL syntax

directly, it is useful once the NL specifications are translated

to Petri nets (an automated method is proposed for converting

natural language requirements into Petri nets in [33]).

The technique needs to be verified on sizeable and

complex systems. In future, techniques for analyzing other

errors in requirements like ambiguity, repetition, conflicts,

etc., would form our scope of research. Also, we would like to

research preventing state space explosion, which usually

occurs when PNs are used for complex systems.

Appendix 1
“Residual tokens removal” proposition: In an iterative

decision-making loop, when the decision becomes true at the

nth iteration, there will be an accumulation of tokens due to

the false conditions which have occurred (n – 1) times. These

(n – 1) tokens are to be removed so that the process continues

unhindered at the nth iteration when the decision becomes

true. Normally PNs do not take care of such situations. We

expect decision-making loops to occur in our study; therefore,

we give the following proposition. This proposition plays an

important role in our approach discussed in section 4.

Statement of the proposition: A loop of one additional

transition and two additional places can clear accumulated

tokens resulting from the iterative decision-making loop.

Explanation: An example of an iterative decision-making

loop is shown in Figure A.1.1 In this representation, it is seen

that when a choice needs to be made between true and false

values of the password, one of the two transitions is fired to

test the password value. The transition check if the password

is invalid (T2) that checks if the password is a false value

occurs first at the time 𝑡 = 0 (34)

and the transition check if the password is valid (T3) that

checks if it is a true value occurs at the time 𝑡 ≥ Δ (35)

 In the situation when the value tests false and there is an

iterative decision-making loop with the maximum number of

iterations being three, the invalidated place (here “password

invalid” (P3) place) accumulates tokens which do not get

automatically cleared. These accumulated tokens need to be

removed for the system's proper functioning.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

479

Fig. A.1.1 PN representation of repetitive choice-making loop

Fig. A.1.2 PN representation of repetitive choice-making loop after application of “Residual tokens removal” proposition.

 By application of our proposition, the modified PN

representation is shown in Figure A.1.2, where an additional

transition empty tokens (T7) and two additional places, namely

“unused token” (P5) and “count of invalid password entries”

(P6), are introduced. To prove the correctness of our

proposition, the following two conditions need to be validated.

Condition 1: When the decision is false, the P6 place should

receive a token and P5 and “password valid” (P4) places should

not receive any token.

Condition 2: If the decision is true at the nth iteration, P5 and

P4 places should receive a token each, and place P6 should

clear the token accumulated in the previous iterations.

Proof of condition 1: Firing of transition T2 (implies) P6 is

incremented by one token; P4 and P5 receive no token.

Proof of condition 2: Firing of transition T3 (implies) P4 and

P5 receive a token each, P6 does not get incremented, and

accumulated tokens at P6 get cleared by firing of the empty

transition tokens (T7) repetitively.

Hence our proposition is validated.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

480

Appendix 2

Case Study – Patient Monitoring System

Requirements:

“1) A patient monitoring program is required for a hospital.

 2) Each patient is monitored by an analog device which

measures factors such as pulse, temperature, blood pressure,

and skin resistance. 3) The program reads these factors on a

periodic basis (specified for each patient) and stores these

factors in a database. 4) For each patient, safe ranges for each

factor are specified (e.g., patient X's valid temperature 'range

is 98 to 99.5 degrees Fahrenheit). 5) If a factor falls outside

of the patient's safe range, or if an analog device fails, the

nurse's station is notified.” [29]

Assumptions

The below-given assumptions have been made while

developing the PN as the required information has not been

specified in the initial specifications:

1. Setup and change of period of measurement of factors are

not included.

2. Setup and maintenance of the database needed for the

system are not included.

Fig. A.2.1. PN representation of patient monitoring system.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

481

Analysis for detection of Consistency and Completeness of

PN

First iteration - Analysis of PN drawn in Fig. A.2.1 using

Algorithm 1 and Algorithm 2

Consistency analysis:

Work through Algorithm 1.

Step 1: List of places are:

1. switched on

2. not working alarm

3. analog device ready

4. unsafe alarm

5. pulse

6. temperature

7. blood pressure

8. skin resistance

9. database

10. notification

Step 2: A place connected to more than one outgoing

transition and where these transitions do not have any other

input place connected to it or any information on their arcs

is “notification” (P10) place and transitions check if factors

are outside safe range (T7) &check if factors are within a safe

range (T8) as seen in Fig. 1.

The PN drawn in Fig. A.2.1 indicates inconsistent NL

requirements.

Solution: From the application of algorithm 1 on the PN

drawn in Fig. 1, it is seen that the two transitions, viz. check

if factors are outside the safe range (T7) and check if factors

are within the safe range (T8), are enabled together. Hence it

is a case of inconsistency. To resolve this inconsistency

problem, different priorities are assigned for T7 and T8 as per

the “Transitions with time” proposition. In this case, we

assign T7 a higher priority than T8. This resolves the

inconsistency in the PN. If the functional condition of T7 is

enabled, transition T7 is fired. Otherwise, after a duration Δ

transition T7 is fired.

Step 3: Simulate the PN to verify liveness. Simulation is

successful, and hence PN is consistent with regard to

liveness.

Step 4: Simulate the PN to verify that there are no dead

transitions. Traverse all loops in the PN to determine

transitions that are never enabled. There exist no transitions

that are never enabled, and hence PN is consistent with

regard to dead transitions.

Completeness analysis:

Work through Algorithm 2.

List of Transitions

Step 1: List of transitions are:

1. check if the analog device is not working

2. check if the analog device is working

3. informs nurses' station

4. determines safe ranges and measures

5. store measured factors

6. verify factors

7. check if factors are outside the safe range

8. check if factors are within the safe range

The list of places are:

1. switched on

2. not working alarm

3. analog device ready

4. unsafe alarm

5. pulse

6. temperature

7. blood pressure

8. skin resistance

9. database

10. notification

Step 2: Obtain a list of all functions from the requirements

specification (availability of a complete requirements

specification document is assumed at this point).

1. Turning the device on and off

2. Check if the analog device is working

3. Inform the nurse's station

4. Determine safe ranges and measures

5. Store-measured factors

6. Verify factors

7. check if factors are within a safe range

Step 3: Traverse the PN and list functions absent in PN. One

function, namely function 1 from step 2 above, is absent;

hence, PN is incomplete.

Step 4: Obtained reachability report using PIPE2 to

determine whether there is non-determinism in the PN.

There exist no transitions that are not reachable. PN is

complete with regard to non-determinism.

Step 5: Traverse PN. All places and transitions in the PN

have distinct names. PN is complete with regard to distinct

names.

Step 6: Traverse PN. There are no isolated subnets. PN is

complete with regard to isolated subnets.

Step 7: Simulate PN to determine if there are infinite loops

or program abends. The PN executes in an infinite loop.

Since the working of the patient monitoring system is 24*7,

this is not considered an error. However, this indicates that

start and stop functionality are not defined. Since this is

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

482

already determined by Step 3 above, we consider that the PN

is complete with regard to infinite loops. The PN executes

without abending.

Step 8: Simulate PN. There is no token accumulation. PN is

complete with regard to token accumulation.

Modified NL requirements for patient monitoring system

Based on the analysis, the requirements are rewritten to

resolve the identified inconsistencies and incompleteness as

below:

“1. A hospital needs a patient monitoring program for its

patients

2. Setup of safe ranges for each measured factor is done for

the patient in the monitoring program.

3. Patients are measured by the analog device.

4. If the analog device is off, it is switched on before use. In

the end, after use, the analog device is switched off.

5. The analog device measures the following factors – pulse,

temperature, blood pressure, and skin resistance.

6. The program monitors the factors.

7. The values of the factors are stored in a database.

8. The nurse station is informed if the factors’ values of a

patient fall outside the safe range.

9. The nurse station is also informed if the analog device fails

to measure one of the following factors – pulse, temperature,

blood pressure and skin resistance.”

Note 3: The bold-faced text indicates the changes made in

the requirements.

Three transitions - turn the device on, turn the device off and

check analog device status have been added in Fig. 2.

Proof of Consistency and Completeness of the final PN

model

The Patient monitoring system PN (Fig. A.2.2) is now

examined for consistency and completeness.

The property of consistency and completeness of the modified

patient monitoring system PN is verified by running algorithm

1 and algorithm 2, respectively. By simulation of the PN, the

execution of various transitions is found to be successful. The

system is now consistent and complete.

Fig. A.2.2 PN of Patient monitoring system drawn after analysis and correction for consistency and completeness is done.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

483

Case study – Assembly system

Requirements Specifications

“An assembly unit consists of a user, a belt, a vision

system, a robot with two arms, and a tray for assembly. The

user puts the dish and cup onto the belt, and the belt conveys

the parts towards the vision system. The vision system senses

on entry of a part into the sensor zone and informs the belt to

stop. The vision system then recognizes the type of part and

informs the robot to pick it up from the belt. The robot picks,

and the belt moves. An assembly is complete when a dish and

cup are placed on the tray separately by the arms of the

robot.”[30]

Assumptions

The below-given assumption has been made while

developing the PN as the required information has not been

specified in the initial specifications:

1) Assumed that robot uses one arm to pick a dish and another

arm to pick a cup.

Figure A.2.3 PN representation of Assembly system.

Analysis for detection of Consistency andCompleteness of

PN

First iteration - Analysis of PN drawn in Fig. A.2.3 using

Algorithm 1 and Algorithm 2

Consistency analysis:

Work through Algorithm 1.

Step 1: List of places are:

1) ready

2) user with dish

3) user with a cup

4) dish on the belt

5) cup on the belt

6) dish recognized

7) cup recognized

8) belt stops

9) dish using arm1

10) cup using arm2

11) dish in arm1

12) cup in arm2

13) assembly unit complete

Step 2: There is only one place connected to more than one

outgoing transition. However, these transitions have other

input places connected to them.

Place “ready” (P1) is connected to two transitions placing the

dish on the moving belt (T1) and placing the cup on the

moving belt (T2). However, these two transitions each have

another input place connected, i.e., “user with the dish” (P2)

and “user with cup” (P4), respectively.

PN is consistent with regard to non-determinism with the

“Transitions with time” proposition.

Step 3: Simulate the PN to verify liveness. Simulation is

successful, and hence PN is consistent with regard to liveness.

Step 4: Simulate the PN to verify that there are no dead

transitions. Traverse all loops in the PN to determine

transitions that are never enabled. There exist no transitions

that are never enabled, and hence PN is consistent with regard

to dead transitions.

Completeness analysis:

Work through Algorithm 2.

Corrected list of Transitions

Step 1: List of transitions are:

1) places the dish on the moving belt

2) places the cup on the moving belt

3) moves dish to sensor zone

4) moves up to the sensor zone

5) vision system senses entry and stops the belt

6) vision system informs the robot to pick up items

7) picks a dish

8) picks the cup

9) places dish and cup on the tray

10) senses task done and informs belt to move

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

484

The list of places are:

1) ready

2) user with dish

3) user with a cup

4) dish on the belt

5) cup on the belt

6) dish recognized

7) cup recognized

8) belt stops

9) dish using arm1

10) cup using arm2

11) dish in arm1

12) cup in arm2

13) assembly unit complete

Step 2: Obtain the list of all functions.

1) switch on and switch off the assembly system

2) placing the dish and cup on the moving belt

3) moving dish and cup to sensor zone

4) vision system sensing entry and stopping the belt

5) vision system informing robot to pick up items

6) picking dish and cup

7) placing dish and cup on the tray

8) sensing task done and informing belt to move

9) repeating assembly of dish and cup

Step 3: Traverse the PN and list functions absent in PN. One

function, namely function 1 from step 2 above, is absent;

hence, PN is incomplete.

Step 4: Obtained reachability report using PIPE2 to determine

whether there is non-determinism in the PN. There exist no

transitions that are not reachable. PN is complete with regard

to non-determinism.

Step 5: Traverse PN. All places and transitions in the PN have

distinct names. PN is complete with regard to distinct names.

Step 6: Traverse PN. There are no isolated subnets. PN is

complete with regard to isolated subnets.

Step 7: Simulate PN. The PN executes in an infinite loop. This

indicates that start and stop functionality is not defined. Since

this is already determined by Step 3 above, we consider that

the PN is complete with regard to infinite loops. The PN

executes without abending.

Step 8: Simulate PN. There is no token accumulation. PN is

complete with regard to token accumulation.

Thus, the PN drawn in Fig. A.2.3 is consistent but

incomplete; therefore, the NL requirements need to be

modified.

Modified NL requirements for Assembly System

Based on the analysis, the requirements are rewritten to

resolve the identified incompleteness as below:

 “An assembly unit consists of a user, a belt, a vision

system, a robot, and a tray. The robot has two arms. The tray

is used for assembly. The user, when ready, starts the

assembly unit. The user places a dish and a cup on the moving

belt. The belt conveys the dish and cup towards the vision

system. The vision system has the capability to sense the entry

of a part into the sensor zone. As soon as the vision system

senses the entry of the dish and cup on the belt into the sensor

zone, the vision system informs the belt to stop. The vision

system then recognizes the type of part, i.e., whether a dish or

a cup and informs the robot to pick it up from the belt using

its arms. The robot then picks up the dish in one arm and the

cup in another arm from the belt. The robot then places the

dish in one arm and the cup in another arm on the tray. The

vision system informs the belt to start moving, and the belt

starts to move again. An assembly is said to be complete when

a dish and cup are placed on the tray separately by the arms of

the robot. The user is given the option to stop the assembly

unit or to continue the operation of assembling the next tray

with dish and cup”.

Proof of Consistency and Completeness of the final PN

model

 The Assembly system PN (Fig. A.2.4) is now examined

for consistency and completeness.

 The property of consistency and completeness of the

modified Assembly system PN is verified by running

algorithm 1 and algorithm 2, respectively. By simulation of

the PN, the execution of various transitions is found to be

successful. The system is now consistent and complete.

Case study – Library system

Requirements Specifications

“Consider a small library database with the following

transactions:

1) Check out a copy of a book. Return a copy of a book.

2) Add a copy of a book to the library. Remove a copy of a

book from the library.

3) Get the list of books by a particular author or in a particular

subject area.

4) Find out the list of books currently checked out by a

particular borrower.

5) Find out what borrower last checked out a particular copy

of a book.”

 “There are two types of users: staff users and ordinary

borrowers. Transactions 1, 2, 4, and 5 are restricted to staff

users, except that ordinary borrowers can perform transaction

4 to find out the list of books currently borrowed by

themselves. The database must also satisfy the following

constraints:

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

485

Fig. A.2.4 PN of Assembly system drawn after analysis and correction for consistency and completeness.

Five transitions - switch assembly unit on, switch assembly unit off, assembly unit is running, performs another operation and exits from operations have been

added in Fig. A.2.4

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

486

Fig. A.2.5. PN representation of Library System.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

487

(1) All copies in the library must be available for checkout or

be checked out.

(2) No copy of the book may be both available and checked

out at the same time.

(3) A borrower may not have more than a prepare-defined per

of books checked out at one time.” [31]

Assumptions

The below-given assumptions have been made while

developing PN as the required information has not been

specified in the initial specifications:

(1) Both staff and borrowers need to be identified before they

can use the library facilities.

(2) Database constraints (bullets 1 and 2) implementation

will not be part of the PN execution.

(3) Database constraint 3 will be shown when checking is

done before the issue of a copy of the book to the

borrower.

(4) A borrower cannot be issued a book if he already has a

copy of the same already issued.

First iteration - Analysis of PN drawn in Fig. A.2.5 using

Algorithm 1 and Algorithm 2

Consistency analysis:

Work through Algorithm 1.

Step 1: List of places are:

1) ready

2) user

3) id number

4) unregistered

5) registered

6) borrower

7) staff

8) selection

9) password

10) based on the author

11) required information

12) based on subject

13) issued to self

14) invalid

15) valid

16) continue viewing

17) exit viewing

18) option

19) add the book

20) transaction is completed

21) return the book

22) acceptance

23) remove the book

24) issued books list

25) number of books

26) list of books based on the author

27) list of books based on subject

28) name of the previous borrower of the book

29) continue

30) exit transactions

Step 2: A place connected to more than one outgoing transition

and where these transitions do not have any other input place

connected to it or any information on their arcs is

1. “id number” (P3) place and transitions identify an

unregistered user (T2) & identify a registered user (T3) as seen

in Fig. A.2.5.

The PN drawn in Fig. A.2.5 indicates inconsistent NL

requirements.

Solution: From the application of algorithm 1 on the PN drawn

in Fig. 1, it is seen that the two transitions viz. T2 and T3 are

enabled together. Hence it is a case of inconsistency. Different

priorities will be assigned for T2 and T3 to resolve this

inconsistency problem as per the “Transitions with time”

proposition. In this case, we assign T2 a higher priority than

T3. This resolves the inconsistency in the PN. If the functional

condition of T2 is enabled, transition T2 is fired; otherwise,

after a duration Δ1, transition T3 is fired.

2. “registered” (P5) place and transitions identify if a user is a

borrower (T5) & identify if the user is the staff (T6) as seen in

Fig. A.2.5.

The PN drawn in Fig. A.2.5 indicates inconsistent NL

requirements.

Solution: From the application of algorithm 1 on the PN drawn

in Fig. 1, it is seen that the two transitions viz. T5 and T6 are

enabled together. Hence it is a case of inconsistency. To

resolve this inconsistency problem, different priorities are

assigned for T5 and T6 as per the “Transitions with time”

proposition. In this case, we assign T5 a higher priority than

T6. This resolves the inconsistency in the PN. If the functional

condition of T5 is enabled, transition T5 is fired; otherwise,

after a duration Δ2, transition T6 is fired.

3. “password” (P8) place and transitions check if the password

is incorrect (T12) & check if the password is correct (T13) as

seen in Fig. A.2.5.

The PN drawn in Fig. A.2.5 indicates inconsistent NL

requirements.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

488

Solution: From the application of algorithm 1 on the PN drawn

in Fig. A.2.5, it is seen that the two transitions, viz. check if

the password is incorrect (T12) and check if the password is

correct (T13), are enabled together. Hence it is a case of

inconsistency. To resolve this inconsistency problem,

different priorities are assigned for T12 and T13 as per the

“Transitions with time” proposition. In this case, we assign T12

a higher priority than T13. This resolves the inconsistency in

the PN. If the functional condition of T12 is enabled, transition

T12 is fired. Otherwise, after a duration, Δ3 transition T13 is

fired.

4. “number of books” (P25) place and transitions issue of the

book is not possible (T25) &issue book (T26) as seen in Fig.

A.2.51

The PN drawn in Fig. A.2.5 indicates inconsistent NL

requirements.

Solution: From the application of algorithm 1 on the PN drawn

in Fig. A.2.5, it is seen that the two transitions, viz., issue of

the book is not possible (T25) and issue book (T26), are enabled

together. Hence it is a case of inconsistency. To resolve this

inconsistency problem, different priorities are assigned for T25

and T26 as per the “Transitions with time” proposition. In this

case, we assign T25 a higher priority than T26. This resolves the

inconsistency in the PN. If the functional condition of T25 is

enabled, transition T25 is fired; otherwise, after a duration of

Δ4, transition T26 is fired.

Step 3: Simulate the PN to verify liveness. Simulation is

successful, and hence PN is consistent with regard to liveness.

Step 4: Simulate the PN to verify that there are no dead

transitions. Traverse all loops in the PN to determine

transitions that are never enabled. There exist no transitions

that are never enabled, and hence PN is consistent with regard

to dead transitions.

The PN is inconsistent.

Completeness analysis:

Work through Algorithm 2.

Corrected list of Transitions

Step 1: List of transitions are:

1) give the ID number

2) identify an unregistered user

3) identify a registered user

4) exit

5) identify if the user is the borrower

6) identify if a user is a staff

7) display menu for the borrower

8) ask for a password

9) view a list of books by an author

10) view the list of books by subject

11) view the list of books issued to self

12) check if the password is incorrect

13) check if the password is correct

14) return to viewing

15) exit from viewing

16) display an invalid password

17) display menu for staff

18) add the book to the library database

19) return the book to the library database

20) remove the book from a library database

21) view the list of books issued to the borrower

22) view books by the author

23) view books by subject

24) find the name of the previous borrower

25) issue of the book is not possible

26) issue book

27) sends the book to the shelf

28) perform another transaction

29) exit from the system

The list of places are:

1) ready

2) user

3) id number

4) unregistered

5) registered

6) borrower

7) staff

8) selection

9) password

10) based on the author

11) required information

12) based on subject

13) issued to self

14) invalid

15) valid

16) continue viewing

17) exit viewing

18) option

19) add the book

20) transaction is completed

21) return the book

22) acceptance

23) remove the book

24) issued books list

25) number of books

26) list of books based on the author

27) list of books based on subject

28) name of the previous borrower of the book

29) continue

30) exit transactions

Step 2: Obtain a list of all functions.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

489

1) switch on and switch off the library system

2) give the ID number to the user

3) identify a user as registered or unregistered

4) identify a user as a valid staff or borrower

5) display menu for staff

6) display menu for the borrower

7) ask and validate the password

8) return and exit to viewing

9) allow the borrower to view a list of books by an author,

 subject and issued to self

10) allow staff to add a book, return the book and remove the

 book from a library database

11) allow staff to view books by author and subject, find the

name of the previous borrower, to view a list of books

issued to the borrower (issue of the book is not possible

when a borrower has crossed pre-defined limits or if the

person has already borrowed a copy of the same book),

issue book and send the book to the shelf

12) perform another transaction

13) exit from the system

Step 3: Traverse the PN and list functions absent in PN. One

function, namely function 1 from step 2 above, is absent;

hence, PN is incomplete.

Step 4: Obtained reachability report using PIPE2 to determine

whether there is non-determinism in the PN. There exist no

transitions that are not reachable. PN is complete with regard

to non-determinism.

Step 5: Traverse PN. All places and transitions in the PN have

distinct names. PN is complete with regard to distinct names.

Step 6: Traverse PN. There are no isolated subnets. PN is

complete with regard to isolated subnets.

Step 7: Simulate PN. The PN executes in an infinite loop. This

indicates that start and stop functionality is not defined. Since

this is already determined by Step 3 above, we consider that

the PN is complete with regard to infinite loops. The PN

executes without abending.

Step 8: Simulate PN. There is no token accumulation. PN is

complete with regard to token accumulation.

The PN is incomplete.

Modified NL requirements for Library System

Based on the analysis, the requirements are rewritten to

resolve the identified inconsistencies and incompleteness as

below:

“1) Check out a copy of a book. Return a copy of a book.

2) Add a copy of a book to the library. Remove a copy of a

book from the library.

3) Get the list of books by a particular author or in a particular

subject area.

4) Find out the list of books currently checked out by a

particular borrower.

5) Find out what borrower last checked out a particular copy

of a book.

6) If the library system is off, it is switched on before use. At

the end, after using the library system is switched off.”

“There are two types of users: staff users and ordinary

borrowers. Transactions 1, 2, 4, 5 and 6 are restricted to staff

users, except that ordinary borrowers can perform transaction

4 to find the list of books currently borrowed. The database

must also satisfy the following constraints:

• All copies in the library must be available for checkout or

be checked out.

• No copy of the book may be both available and checked

out at the same time.

• A borrower may not have more than a prepare-defined per

of books checked out at once.”

7) Proof of Consistency and Completeness of the final PN

model

The Library system PN (Fig. A.2.6) is now examined for

consistency and completeness.

The property of consistency and completeness of the

modified Library system PN is verified by running algorithm

1 and algorithm 2, respectively. By simulation of the PN, the

execution of various transitions is found to be successful. The

system is now consistent and complete.

Author contribution statement
 AKB conceived, developed the methodology and

performed formal analysis and investigation. AKB developed

algorithms and propositions required. AKB wrote the

manuscript and edited it after review. VKA and JR reviewed

the methodology and supervision. All authors read and

approved the manuscript.

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

490

Fig. A.2.6 PN of Library system drawn after analysis and correction for consistency and completeness is done.

Two transitions - switch the library system on and switch the library system off have been added in Fig. A.2.6

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

491

References
[1] Michel dos Santos Soares, and Daniel Souza Cioquetta, “Analysis of Techniques for Documenting User Requirements,” Computational

Science and its Applications, Berlin: Springer, pp. 16-28, 2012. Crossref, https://doi.org/10.1007/978-3-642-31128-4_2

[2] Michael Christel, and Kyo C. Kang, “Issues in Requirements Elicitation,” Carnegie Mellon University, Technical Report, 1992.

[3] Robert Darimont, and Axel van Lamsweerde, “Formal Refinement Patterns for Goal-Driven Requirements Elaboration,” ACM SIGSOFT

Software Engineering Notes, vol. 21, no. 6, pp. 179-190, 1996. Crossref, https://doi.org/10.1145/250707.239131

[4] Shaoying Liu, “A Formal Structured Method for Requirement Specification Construction,” Proceedings of the 1992 ACM/SIGAPP

Symposium on Applied Computing: Technological Challenges of the 1990's, pp. 1055-1063, 1992.
Crossref, https://doi.org/10.1145/130069.130130

[5] Shaoying Liu, “A User-Friendly Formal Requirements Specification Method,” Proceedings of the 30th Annual Southeast Regional

Conference, pp. 211–218, 1992. Crossref, https://doi.org/10.1145/503720.503802

[6] M. Osborne, and C. K. MacNish, “Processing Natural Language Software Requirement Specifications,” Proceedings of the Second

International Conference on Requirements Engineering, Colorado Springs, pp. 229-236, 1996.
Crossref, https://doi.org/10.1109/ICRE.1996.491451

[7] Wenbin Li, “Toward Consistency Checking of Natural Language Temporal Requirements,” 26th IEEE/ACM International Conference on

Automated Software Engineering, IEEE, pp. 651-655, 2011. Crossref, https://doi.org/10.1109/ASE.2011.6100148

[8] Claudio Menghi, “Verifying Incomplete and Evolving Specifications,” Proceedings of the 36th International Conference on Software

Engineering, ACM, pp. 670–673, 2014. Crossref, https://doi.org/10.1145/2591062.2591090

[9] Kirsten Sinclair, “The Impact of Petri Nets on System-of-Systems Engineering,” Ph.D. Dissertation, Durham University, England, 2009.

[10] Jinqiang Zhao, and Zhenhua Duan, Verification of Use Case with Petri Nets in Requirement Analysis, Computational Science and Its

Applications, Springer, pp. 29-42, 2009. Crossref, https://doi.org/10.1007/978-3-642-02457-3

[11] C. Vamsikrishna, and G. Padmanabhan, “Role of Petri Nets in Flexible Manufacturing System – A Review,” International Journal of

Engineering Trends and Technology, vol. 41, no. 2, pp. 90-100, 2016. Crossref, https://doi.org/10.14445/22315381/IJETT-V41P217

[12] Woo Jin Lee, Sung Deok Cha, and Yong Rae Kwon, “Integration and Analysis of Use Cases Using Modular Petri Nets in Requirements

Engineering,” IEEE Transactions on Software Engineering, vol. 24, no. 2, pp. 1115-1130, 1998.
Crossref, https://doi.org/10.1109/32.738342

[13] K.S. Cheung, T.Y. Cheung, and K.O. Chow, “A Petri-Net-Based Synthesis Methodology for Use-Case-Driven System Design,” The Journal

of Systems and Software, vol. 79, no. 6, pp. 772–790, 2006. Crossref, https://doi.org/10.1016/j.jss.2005.06.018

[14] Stéphane S. Somé, “Formalization of Textual Use Cases Based on Petri Nets,” International Journal of Software Engineering and

Knowledge Engineering, vol. 20, no. 5, pp. 695–737, 2010. Crossref, https://doi.org/10.1142/S0218194010004931

[15] Edgar Sarmiento et al., “Analysis of Scenarios with Petri Net Models,” 29th Brazilian Symposium on Software Engineering, pp. 90-99,

2015. Crossref, https://doi.org/10.1109/SBES.2015.13

[16] Daniel Sinnig, Patrice Chalin, and Ferhat Khendek, “LTS Semantics for Use Case Models,” Proceedings of the 2009 ACM Symposium on

Applied Computing, pp. 365–370, 2009. Crossref, https://doi.org/10.1145/1529282.1529362

[17] Edgar Sarmiento-Calisaya et al., “Towards the Improvement of Natural Language Requirements Descriptions: The C&L Tool,”

Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1405–1413, 2020.

Crossref, https://doi.org/10.1145/3341105.3374028

[18] R.Sunther, "Simplification of a Petri Net Controller in Industrial Systems," SSRG International Journal of Industrial Engineering, vol. 2,

no. 1, pp. 4-7, 2015. Crossref, https://doi.org/10.14445/23499362/IJIE-V2I2P102

[19] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow Management,” Journal of Circuits, System, and Computers, vol. 8, no.

1, pp. 21–66, 1998.

[20] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.
Crossref, https://doi.org/10.1109/5.24143

[21] Ian Sommerville, Software Engineering, 9th Edition, Boston: Addison-Wesley, 1995.

[22] Philip Meir Merlin, “A Study of the Recoverability of Computing Systems,” Ph.D. Dissertation, University of California, Irvine, U.S.A, 1974.

[23] Thomas Hujsa, and Raymond Devillers, “On Dead Lock Ability, Liveness and Reversibility in Subclasses of Weighted Petri Nets,”

Fundamentals of Informatics, Polish Mathematical Society, vol. 161, no. 4, pp. 383-421, 2018.
Crossref, https://doi.org/10.3233/FI-2018-1708

[24] B. W. Boehm, “Verifying and Validating Software Requirements and Design Specifications,” IEEE Software, vol. 1, no. 1, pp. 75-88, 1984.

Crossref, https://doi.org/10.1109/MS.1984.233702

[25] M.P.E. Heimdahl, and N.G. Leveson, “Completeness and Consistency in Hierarchical State-Based Requirements,” IEEE Transactions on

Software Engineering, vol. 22, no. 6, pp. 363-377, 1996. Crossref, https://doi.org/10.1109/32.508311

A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023

492

[26] Ngnassi Djami Aslain Brisco, Nzié Wolfgang, and Doka Yamigno Serge, "Maintenance Modularity Optimization using Clustering

Algorithm: Application," SSRG International Journal of Industrial Engineering, vol. 7, no. 1, pp. 12-24, 2020.

Crossref, https://doi.org/10.14445/23499362/IJIE-V7I1P102

[27] Olaf Kummer et al., 2016. [Online]. Available: http://www.renew.de

[28] Connie U. Smith, and Lloyd G. Williams, “Performance Engineering Evaluation of Object-Oriented Systems with SPE•EDTM,” Computer

Performance Evaluation Modelling Techniques and Tools, Lecture Notes in Computer Science, Heidelberg: Springer, 1997.

[29] W. P. Stevens, G. F. Myers, and L. C. Constantine, “Structured Design,” IBM Systems Journal, vol. 13, no.2, pp. 115-139, 1974.
Crossref, https://doi.org/10.1147/sj.132.0115

[30] Imran Sarwar Bajwa, and M. Asif Naeem, “On Specifying Requirements Using a Semantically Controlled Representation,” Natural

Language Processing and Information Systems NLD, Berlin: Springer, pp. 217-220, 2011.
Crossref, https://doi.org/10.1007/978-3-642-22327-3_23

[31] Jeannette M. Wing, “A Study of 12 Specifications of the Library Problem,” IEEE Software, vol. 5, no. 4, pp. 66-76, 1988.
Crossref, https://doi.org/10.1109/52.17803

[32] Lian Yu et al., “Completeness and Consistency Analysis on Requirements of Distributed Event-Driven Systems,” 2nd IFIP/IEEE

International Symposium on Theoretical Aspects of Software Engineering, pp. 241-244, 2008.
Crossref, https://doi.org/10.1109/TASE.2008.46

[33] A. K. Bharadwaj, V. K. Agrawal, and J. Reddy, “Transforming Natural Language Requirements into Petri Nets - A Semi-Automated

Approach,” International Conference on Artificial Intelligence and Data Science, 2022.

