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Abstract - Stakeholders of most software projects express requirements in natural language. (English is taken as the natural 

language here). To minimize errors in the requirements, an analysis of requirements is necessary. Direct analysis of 

requirements expressed in natural language is complex. Hence it is preferable that they be expressed using some formal method 

before they are analyzed and used for specifications development. In this paper, we have made the assumption that specification 

documents and Petri net models of the software requirements are available to us. We propose methods to analyze these Petri 

net models for inconsistency and incompleteness in the software requirements. Results obtained from the analysis are used to 

redefine the given user requirements such that inconsistency and incompleteness are removed. The example of an Automated 

Teller Machine has been used to demonstrate our approach. 

Keywords - Analysis, Completeness, Consistency, Petri nets, Requirements. 

1. Introduction 
Successful software project completion largely depends 

on good requirements and specifications. The development of 

consistent and complete requirement specifications is an 

iterative process. It involves analysis and incorporation of 

feedback from the analysis done. Natural language (NL), i.e., 

the English language, is generally used to express 

requirements as it is the most widely spoken.[1] Yet the 

requirements provided by users are often ambiguous and 

incomplete and rely on implicit information.[2] Such 

informally expressed requirements are not easy to analyse. It 

is, therefore, necessary to translate user requirements 

expressed in NL using one of the many formal techniques 

[3,4] so that they can be analysed for consistency and 

completeness, among other properties. Though these formal 

methods are difficult and costly to use, among other 

disadvantages [3], they help create precise, unambiguous 

specifications and thereby enable reasoning and analysis.[4] 

The use of formal methods like State charts, Alloy, etc., 

for developing requirement specifications, has been practiced 

by several researchers.[5,6,7,8] But these methods are mostly 

manual and quite complex.[5,6,7,8] In the case of Petri nets 

(PNs), there is not only scope for automation and tool 

development, but they are also relatively easier to 

analyse.[9,10]In [11], the many advantages of using PNs have 

been brought out well. Using PNs, some approaches have been 

put forth to check the inconsistency of requirements, but most 

are difficult to apply.  

Secondly, very little research has been done using PNsto 

to analyse incompleteness[10,12,13,14,15] in requirements. 

Inconsistency and incompleteness in requirements are a sure 

cause for schedule and cost overruns in a project. Thus, there 

is a need for a simple, easy methodology that analyses a PN 

for both inconsistency and incompleteness. This analysis 

would help improve the software requirements and thus rein 

the cost and schedule difficulties that would otherwise arise. 

Hence, this paper proposes algorithms to analyse the PN 

model of NL requirements for the characteristics of 

consistency and completeness. Based on the information 

derived from such analysis, the given requirements are 

rewritten till they are free of inconsistency and 

incompleteness.  

The proposed approach is demonstrated with a practical 

example of an Automated Teller Machine (ATM). Additional 

examples are also included to reinforce the methodology. 

The paper structure is described below. Section 2 

provides a general idea of the approaches used in the related 

work. To facilitate further discussion, a short introduction to 

PNs and basic definitions are given in section 3. The proposed 

methodology is detailed in section 4, while section 5 illustrates 

our reference case study of an ATM used to demonstrate the 

methodology described in section 4. Section 6 is about 

discussion and validation. Section 7 provides conclusions 

and future directions for research.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Work and Research Gap 
Several researchers in the literature have tried to 

formalize the analysis of software requirements for 

ambiguities, inconsistencies, incompleteness, liveness and 

reversibility. 

  

Lee, Cha and Kwon [12] define a procedure to convert 

use cases stated in NL to a CMPN(Constraints-based Modular 

Petri Nets) model; and define guidelines for finding 

inconsistency and incompleteness in CMPNs. However, their 

approach is manual, and the use cases do not conform to the 

UML. Also, they do not consider alternative/exception flow of 

use cases. 

 

In [13], Cheung, Cheung and Chow propose a synthesis 

methodology wherein use cases are specified as labeled PNs 

or C-nets, and by synthesizing these nets, a system design is 

derived. They provide an algorithm to verify liveness and 

reversibility, but their methodology is complex. 

 

In [16], Sinnig, Chalin, and Khendekuse LTS (Labelled 

Transition Systems) formalize the use case models by a map 

the use case steps and types. It allows them to detect semantic 

checks like livelocks and model refinement validation, for 

which they have developed a tool called “Use Case Model 

Analyzer”. 

 

Zhao and Duan in [10] transform use cases into scenarios 

and then into their corresponding PNs. These PN models are 

analyzed, flaws detected and models of the level of Platform 

Independent Model (PIM) constructed based on analysis. This 

approach suffers from the need to create intermediate “event 

frames” for the extraction of objects and messages from each 

one of the sentence events. 

 

Somѐ in [14] describes use cases using an abstract syntax 

(tuple structure) and a concrete one (restricted NL)before 

mapping them into reactive nets. However, interaction in the 

case of concurrent use cases is not dealt with. 

 

Sarmiento, Leite and Almentero, in their paper [15], 

translate Scenarios into equivalent Place / Transition PNs and 

evaluate them for consistency, correctness and completeness. 

Based on the analysis of the PNs, they revised the Scenarios. 

However, their method suffers from the disadvantage that the 

systems engineer must be knowledgeable in using the syntax 

and semantic rules described for writing scenarios. 

 

Sarmiento-Calisaya et al. [17] describe a C&L prototype 

tool that does an analysis of scenarios (Static) and equivalent 

PNs (Dynamic) for indicators of ambiguity, completeness, and 

consistency. This transformation part of the tool is, however, 

sensitive to the correct syntax of scenarios. 

 

Yu et al. [32] use a scenario model based on first-order 

logic for consistency analysis. However, the approach has 

been applied only to simple systems and needs further 

validation on large-scale systems. 

 

From the above background study, we may conclude that 

the formal methods to detect inconsistency and 

incompleteness in the literature to date are manual, complex 

and not based on conventional PNs. In this paper, we have 

developed a methodology to analyse inconsistency and 

incompleteness in PNs, thereby in the underlying NL 

requirements. 

 

3. Background Information and Definitions 
Petri nets, also known as Place / Transition Nets, were 

introduced to model concurrency, non-determinism, and 

control flow by Carl Adam Petri in 1962. A PN is a group of 

arcs connecting transitions and places. Places represent the 

system states, and transitions are the events that occur which 

may lead to a modification in the states of the system. Places 

may possess tokens. The tokens enable the transitions when 

the transition gets fired. The tokens get allocated as per the 

weight given on arcs. PNs supply a mathematically rigorous 

modeling framework and are bipartite graphs.[19,20] 

3.1. Definition of PNs 

A PN is a 5-tuple, [21] 

𝑃𝑁 = (𝑃, 𝑇, 𝐹, 𝑊, 𝑀𝑜)(1) 
where: 

𝑃 = {𝑝1, 𝑝2, … . . 𝑝𝑚}     (2) 
is a finite set of places, 

𝑇 = {𝑡1, 𝑡2, … . . 𝑡𝑛}     (3) 
is a finite set of transitions, 

𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃)     (4) 
is a set of arcs (flow relation), 

𝑊 ∶ 𝐹 → (1,2,3 … . . )     (5) 
is a weight function, 

𝑀𝑜 ∶ 𝑃 →  (0,1,2,3 … . )     (6) 
is the initial marking, 

𝑃 ∩ 𝑇 =  𝜙 𝑎𝑛𝑑 𝑃 ∪ 𝑇 ≠  𝜙     (7) 
A PN structure  

𝑁 = (𝑃, 𝑇, 𝐹, 𝑊)    (8) 
without any specific initial marking is denoted by N. 

A PN with the given initial marking is denoted by (𝑁, 𝑀𝑜) 

3.1.1. Time PNs 

Time PN is an extension of the PN model where each 

transition tj is associated with two timings τ1,j and τ2,j.[22] A 

transition tj can fire only if it has been enabled for at least time 

τ1,j, and it must fire before τ2,j if enabled.[22] Unless otherwise 

specified, it is assumed 

𝜏𝑖,𝑗 =  𝜏2,𝑗 = 0    (9) 

As a special case if 

𝜏𝑖,𝑗 =  𝜏2,𝑗 = 𝑡     (10) 

it means that the transition is fired at t if it is enabled. 
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3.2. Related Properties of PNs 

Let  

𝑃𝑁 = (𝑁, 𝑀𝑜)(11) 
be a system.[23] 

A transition t is said to be dead in a PN if no marking of 

M0 enables t. A deadlock, or dead marking, is when a marking 

is not enabling any transition. PN is deadlock-free if no 

deadlock belongs to M0; otherwise, it is dead-lockable. 

A transition t is live in PN for every marking M in M0 if 

there is a marking M′ in M enabling t. PN is said to be live if 

every transition is live in PN.  

A marking M is called a home state of PN if it can be 

reached from every marking in M0.  

PN is bounded if an integer k exists such that: 

∀ 𝑀 ∈  𝑀𝑜     (12) 

for each place p, 

𝑀(𝑝) ≤ 𝑘     (13) 

A marking M′ is known to be reachable from the marking 

M if there is a firing sequence σ feasible in (N, M) such that 

 𝑀
𝜎
→ 𝑀′     (14) 

Since our primary aim is to develop software 

requirements which are characterized by consistency and 

completeness, these terms are also being defined here: 

3.2.1. Consistency 

Boehm [24] defines a consistent Software Requirements 

Specification (SRS) as one which does not have conflicting 

requirements. If a requirement is overridden by another 

requirement or when users give conflicting requirements, then 

the requirements are said to be inconsistent.  

3.2.2. Completeness 

Boehm [24] defines an SRS to be complete when all its 

parts are present, and each part is fully developed. He opines 

that no TBDs (TBDs are places in the requirements 

specification where the decisions are postponed by writing 

“To be Determined” or “TBD”), no non-existent references, 

no missing specifications items and no missing functions are 

the properties that are to be satisfied for completeness to be 

validated. 

4. Proposed Methodology for Analysis 
Requirements specifications are used to describe 

requirements – both functional and non-functional of a 

system. The functional part covers what the software system 

should do depending on the system and its relationship with 

the environment. Non-functional requirements delineate the 

constraints under which the software system must operate and 

any design restrictions forced on the system. Here functional 

requirements alone are being considered.[21] 

Researchers have designated the below-given properties 

to identify and resolve inconsistency and incompleteness. 

Inconsistency can be avoided by ensuring the following 

properties: 

• No non-determinism and conflicting requirements, i.e., 

two transitions should not be enabled simultaneously by 

a single token in a place [25], 

• liveness of the PN, i.e., if life, it indicates the absence of 

total or partial deadlocks [10,12] and 

• no dead transitions.[12] 

 

Proof: Let  

𝛾 = {𝛾1, 𝛾2, … . . 𝛾𝑘}     (15) 

where 

𝛾 ∈  set of conflicting transitions.    (16) 

Let time 

𝑡 = {𝑡1, 𝑡2, … . . 𝑡𝑘}     (17) 

 

where ti is the time when a transition can fire after the 

transition is enabled. Also, 

{𝑡𝑖  ≠ 𝑡𝑗}     (18) 

 

If a place connected to two transitions say γi and γj, 
receives a token, transition γi is evaluated after 

𝑡 =  𝑡𝑖      (19) 

and γj is evaluated after 

𝑡 =  𝑡𝑗     (20) 

and 

𝑡𝑖 ≠  𝑡𝑗 (21) 

(By assumption) then an inconsistency situation is 

avoided. Hence our proposition is validated. 

In order to solve the inconsistency arising in the case of 

non-determinism, the “Transitions with time” proposition is 

being proposed. Accordingly, when two transitions are 

connected to a place, the transitions do not have any other 

input place connected to it or any other information on their 

arcs by assigning one of the transitions a higher priority than 

the other by introducing a time component. 
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4.1. Statement of “Transitions with time” proposition 

A token at a place, if it enables two transitions 

simultaneously, then one of the transitions may be assigned a 

higher priority (by introducing a time component) than the 

other.  

Explanation: An example of two transitions fired 

simultaneously by a token in a place is shown in Figure 1. 

 
Fig. 1 PN representation of more than one transition connected to a 

place 

By application of the proposed proposition, the modified PN 

representation is shown in Figure 2, where a time component 

of 

 

𝑡 =  0    (22) 

is specified on the arc connecting place P1 to transition T1, and 

a time component of  

𝑡 =  Δ     (23) 

is specified on the arc connecting place P1 to transition T2. 

 

Fig. 2 PN representation of more than one transition connected to a 

place after application of the “Transitions with time” proposition 

To prove the correctness of the proposition, the following two 

conditions need to be validated: 

 

Fig. 3 Algorithm 1 for detecting Inconsistency in a PN 

 

Input: Given a PN.  

Output: Identified inconsistencies in the PN.  

Result: Inconsistency determined.  

Step 1 [Listing all places in the PN.] List all places  

(P1, P2...Pn)  

that are in the PN representation of the NL requirements;  

Step 2 [Verifying non-determinism with Transitions with time proposition.] Simulate the PN;  

Traverse the PN;  

for each place in the PN do 

if a place is connected to more than one outgoing transition and these transitions do not have any other input place 

connected to it or any information on their arcs then 

return PN is inconsistent;  

end  

end  

Step 3 [Verifying liveness by simulation.] Simulate the PN;  

if simulation is not successful then 

return PN is inconsistent;  

end  

Step 4 [Verifying that there are no dead transitions in the PN.] Simulate the PN;  

Traverse all loops in the PN to determine transitions that are never enabled; 

if there exist transitions that are never enabled then 

return PN is inconsistent;  

end  

return PN is consistent; 
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Accumulated tokens due to looping and decision-making 

structure can affect the subsequent execution of the PN. These 

tokens have to be removed. This removal can be done through 

a proposition for handling and removal of residual tokens 

called the “Residual tokens removal” proposition.[33] It has 

been included in detail in Appendix 1. This proposition helps 

in the analysis of PN and the resolution of gaps. Based on the 

above, an algorithm, as shown in Figure 4, has been developed 

to analyse the given PN representation of NL requirements for 

incompleteness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 4 Algorithm 2 for detecting incompleteness in a PN 
 

 

 

 

 

Input: Given a PN.  

Output: Identified incompleteness in the PN.  

Result: Incompleteness determined.  

Step 1 [Listing all transitions in the PN.] List all transitions 

 (T1, T2...Tn) 

and places  

(P1, P2...Pn)  

that are in the PN representation of the NL requirements; 

Step 2 [Functions in requirement specifications in NL.] Obtain list of all functions 

(f1, f2...fn)  

from requirements specification in NL; 

Step 3 [Verifying no function is absent in the PN.] Simulate the PN;  

Traverse the PN and list functions that are not represented by one or more transition in 

the PN;  

if any function is absent in PN then 

return PN is incomplete;  

end 

Step 4 [Verifying no non-determinism in the PN.] Obtain reachability report using 

PIPE2;  

if there exist transitions are not reachable then 

return PN is incomplete;  

end 

Step 5 [Verifying distinct names for all places and transitions in the PN.] Simulate the 

PN; Traverse the PN;  

if all the places and transitions are not specified by distinct names then 

return PN is incomplete;  

end 

Step 6 [Verifying no isolated subnets in the PN.] Simulate the PN;  

Traverse the PN;  

if there exists any transition that remains not traversed then there is an isolated subnet in 

the PN then 

return PN is incomplete;  

end 

Step 7 [Verifying no infinite loops or program abends in the PN.] Simulate the PN;  

if there are infinite loops or program abends then 

return PN is incomplete;  

end 

Step 8 [Verifying no token accumulation in the PN.] Simulate the PN;  

if repeated execution of PN results in error then this implies that there could be token 

accumulation due to looping and decision-making structure in the PN then 

return PN is incomplete;  

end 

return PN is complete; 
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Fig. 5 PN representation of ATM system 



A Keshav Bharadwaj et al. / IJETT, 71(2), 466-492, 2023 

 

472 

The requirements specification and the corresponding PN 

representation are the inputs to the proposed methodology. 

From the requirements specification, the list of functions is 

taken. The PN is simulated using the Renew2.5 tool.[27] 

Based on algorithm 1 & algorithm 2, analysis is done, and 

issues are identified. The NL requirements are then rewritten 

to resolve the identified issues related to inconsistency and 

incompleteness. This process may have to be iterated if the 

modified requirements introduce any inconsistency or 

incompleteness. The requirements are finally approved by the 

user and then used in the subsequent stages of the SDLC 

(software development life cycle). 

 
𝑀𝑜(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑘𝑖𝑛𝑔) = 
< 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18

>< 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 > (30) 

 

5. Example Case Study – Automated Teller 

Machine 
In order to demonstrate our methodology, a case study of 

ATMs in their simple form is taken. An ATM’s operations 

were summarized in NL as follows: [28] 

“The ATM will read an ATM card, take inputs from a 

keyboard and then display output, thus interacting with the 

customer. It then performs the requested action – gives cash 

or transfers money from one account to another. After this, a 

printed receipt is produced. This ends one transaction, and the 

user can perform repeated transactions. The machine can be 

started or stopped by an operator. The ATM interacts with the 

bank's computer for validation using the network. The ATM 

card will be inserted, and a personal identification number 

(PIN) (this information is sent to the bank for validation) will 

be entered. If a wrong PIN is entered, a card will be ejected. 

The customer can perform one or more transactions, after 

which the card is ejected. The ATM will provide the following 

services to the customer: 

(1) Obtaining Balance Information 

(2) Withdrawal of Cash 

(3) Transfer of Funds.” 

 

The PN for the ATM system taken from the requirements 

specifications pertaining to the above user requirements is 

shown in Figure 5 below. 

5.1. First iteration – Analysis of PN drawn in Fig 5 using 

Algorithm 1 and Algorithm 2 

Consistency analysis: 

Work through Algorithm 1. 

Step 1: List of places are: 

1. atm off 

2. on button  

3. atm ready 

4. off button 

5. user 

6. card is read 

7. pin 

8. response 

9. invalid pin 

10. valid pin 

11. choice of transaction 

12. cash dispensation 

13. fund transfer 

14. complete transaction 

15. decision 

16. continue 

17. exit atm 

18. exit status 

 

Step 2: A place connected to more than one outgoing 

transition and where these transitions do not have any other 

input place connected to it or any information on their arcs is 

“response” (P8) place and transitions checking if the pin is 

invalid (T6) &checking if the pin is valid (T7) as seen in Fig. 

5. The PN drawn in Fig. 5 indicates that the NL requirements 

are inconsistent. 

 

Step 3: Simulate the PN to verify liveness. Simulation is 

successful, and hence PN is consistent with regard to liveness.  

 

Step 4: Simulate the PN to verify that there are no dead 

transitions. Traverse all loops in the PN to determine 

transitions that are never enabled. There exist no transitions 

that are never enabled, and hence PN is consistent with regard 

to dead transitions. 

 

5.1.1. Completeness Analysis 

Work through Algorithm 2. 

Corrected list of Transitions 

Step 1: List of transitions are: 

1. operator switches the machine on 

2. operator switches the machine off 

3. inserts the card  

4. dial the pin 

5. sends to the bank for verification 

6. checking if the pin is invalid 

7. checking if the pin is valid 

8. eject card on invalid pin entry 

9. accept the pin 

10. withdraw cash 

11. transfer cash 

12. print the receipt 

13. perform another transaction 

14. exit from transactions 

15. eject card. 

 

The list of places is the same as given previously. 

Step 2: Obtain the list of all functions. 

 

1. switching on and off the atm 

2. verify the validity of the pin 
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3. eject card   

4. display balance information 

5. withdrawal of cash 

6. cash transfer 

7. print the receipt 

8. performing transactions 

9. exit from the transaction 
 

Step 3: Traverse the PN and list functions absent in PN. 

One function, namely 4 from step 2 above, is absent; hence, 

PN is incomplete with regard to functions. A transition display 

of balance information(T12) is added to represent the missing 

functionality in the PN in Fig. 6. 
 

Step 4: Obtained reachability report using PIPE2 to 

determine whether there is non-determinism in the PN. There 

exist no transitions that are not reachable. PN is complete with 

regard to non-determinism. 
 

Step 5: Traverse PN. All places and transitions in the PN 

have distinct names. PN is complete with regard to distinct 

names. 
 

Step 6: Traverse PN. There are no isolated subnets. PN is 

complete with regard to isolated subnets. 
 

Step 7: Simulate PN to determine if there are infinite 

loops or program abends. 
 

Step 8: Simulate PN. There is no token accumulation. PN 

is complete with regard to token accumulation. 
 

Thus, the PN drawn in Fig. 5 is inconsistent and 

incomplete; therefore, the NL requirements need to be 

modified. 

5.1.2. Observations and Solution 

Inconsistency 

From the application of algorithm 1 on the PN drawn in 

Fig. 5, it is seen that the two transitions viz. T6 and T7 are 

enabled together. Hence it is a case of inconsistency. To 

resolve this inconsistency problem, different priorities are to 

be assigned for T6 and T7 as per the ‘Transitions with time’ 

proposition. In this case, we assign T6 a higher priority than 

T7. This resolves the inconsistency in the PN. If the functional 

condition of T6 is enabled, then transition T6 is fired. 

Otherwise, after a duration Δ1 transition T7 is fired. 

Incompleteness 

(1) During simulation, the PN execution results in an 

endless looping condition. It is seen that the requirements of 

the following functionalities - the choice to repeat the 

transaction, accept the pin given, validate the pin and eject the 

card on the wrong pin are inadequately given, which leads to 

the infinite looping situation. 

 

(2) A single user repeatedly entering the pin for validation 

would prevent others from using the atm. A threshold on the 

number of times a user is allowed to enter the pin for 

validation must be incorporated. Alternatively, a time limit for 

the action can be incorporated. 

 

(3) A single user repeatedly performing transactions 

preventing/delaying other users. Again, either a limit on the 

number of transactions a user can be allowed must be 

incorporated, or a time limit for the user usage can be 

incorporated. 

 

To satisfy completeness, the following needs to be done: 

To do (1), a limit on the number of attempts for dialling 

the pin, say three times, is added as shown in PN drawn in Fig. 

6. A maximum of three attempts for dialling the pin has been 

introduced by adding a transition repeat pin entry (T8). 
 

For (2), a time limit within which the user must take 

action while making transactions, say thirty seconds, must be 

introduced. In Fig. 6 drawn, a time limit for executing a 

transaction has been introduced by adding two transitions, 

activating the timer (T11) and exceeding the time limit (T15) 

and two places, “timer request” (P11) & “end of the timer” (P13) 

with a time limit (t3) of 30 seconds.  

 

Though identified, the maximum number of transactions 

and a timer for dialling the pin have not been included, as the 

repetition in the PN would not add to the analysis. 

 
5.2. Modified requirements for Automated Teller Machine 

Based on the analysis, the requirements are rewritten to 

resolve the identified inconsistencies and incompleteness as 

below: 
 

“The ATM will be able to read an ATM card, take inputs 

from a keyboard and then display output, thus interacting with 

the customer. It then performs the requested action – gives 

balance information, allows cash withdrawal, or transfers 

money from one account to another. After this, a printed 

receipt is produced. This ends one transaction, and the user 

can perform repeated transactions. The machine can be started 

or stopped by an operator. The ATM interacts with the bank's 

computer for validation using the network. The ATM card will 

be inserted, and a personal identification number (PIN) (this 

information is sent to the bank for validation) will be entered. 

If a wrong PIN is entered, a card will be ejected. The customer 

is allowed three attempts to enter the correct PIN; else card is 

ejected out. Similarly, the customer is allowed to perform a 

maximum of three transactions, after which the card is ejected 

out. Time taken by the customer for PIN entry or for making 

transactions needs to be limited to 30 seconds in each case. In 

case of delay by the customer, the card should be ejected out.” 
 

Note 1: The bold-faced text indicates the changes made 

in the requirements. 
 

The PN of the ATM system is then redrawn based on the 

rewritten requirements. The PN for the above specifications 

drawn using our approach is depicted in Fig. 6. 
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𝑀𝑜(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑎𝑟𝑘𝑖𝑛𝑔) = < 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19, 𝑝20, 𝑝21 ><
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 >(31)

 

 
Fig. 6 PN representation of ATM system after the first iteration of application of Algorithm 1 and Algorithm 2. 
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One transition - eject card on invalid pin entry in Fig. 5 is 

removed, and five transitions - repeat pin entry, eject card on 

exceeding pin entry attempts, activates timer, display of 

balance information and exceeding time limit have been added 

in Fig. 6. 

5.3. Second iteration 

Analysis of PN drawn in Fig 6 using Algorithm 1 and 

Algorithm 2 

Now the methodology is iterated.  

Consistency analysis: 

Application of Algorithm 1 shows that the PN is 

consistent.  

Completeness analysis: 

Work through Algorithm 2. 

 

Step 1: List of transitions 

1. operator switches the machine on 

2. operator switches the machine off 

3. inserts the card 

4. dial the pin 

5. sends to the bank for verification 

6. checking if the pin is invalid 

7. checking if the pin is valid 

8. repeat pin entry 

9. accept the pin 

10. eject card on exceeding pin entry attempts  

11. activates timer 

12. display of balance information 

13. withdraw cash 

14. transfer cash 

15. exceeding time limit 

16. print receipt 

17. perform another transaction 

18. exit from transactions 

19. eject card. 

 

The list of places are: 

1. atm off 

2. on button 

3. atm ready 

4. off button 

5. user 

6. card is read 

7. pin 

8. response 

9. invalid pin 

10. valid pin 

11. timer request 

12. choice of transaction 

13. end of timer 

14. balance information 

15. complete transaction 

16. cash dispensation 

17. fund transfer 

18. exit status 

19. decision 

20. continue 

21. exit ATM        

Step 2: Obtain the list of all functions. 

1. switching on and off the atm 

2. verify the validity of the pin 

3. repeat pin entry 

4: eject card on exceeding pin entry attempts  

5: activates the timer 

6: exceeding the time limit 

7: the display of balance information 

8: withdrawal of cash 

9. cash transfer 

10. print receipt 

11. performing transactions 

12. exit from the transaction 

13. eject card 

 

Step 3: Traverse the PN and list functions absent in PN. 

All the functions are present. PN is complete with regard to 

functions. 

 

Step 4: Obtained reachability report using PIPE2 to 

determine whether there is non-determinism in the PN. There 

exist no transitions that are not reachable. PN is complete with 

regard to non-determinism. 

 

Step 5: Traverse PN. All places and transitions in the PN 

have distinct names. PN is complete with regard to distinct 

names. 

 

Step 6: Traverse PN. There are no isolated subnets. PN is 

complete with regard to isolated subnets. 

 

Step 7: Simulate PN to determine if there are infinite 

loops or program abends. There is neither any infinite loop nor 

any program abend. PN is complete with regard to infinite 

loops or program abends. 

 

Step 8: Simulate PN. Two errors are identified. 

 

5.3.1. Observations and Solution 

Inconsistency 

There is no inconsistency. 

Incompleteness 

a) In the simulation of the PN, it is noticed that there is an 

accumulation of tokens in the “invalid pin” (P9) place which 

affects the repeated execution of the PN. This happens  

(1) When the user enters the pin correctly at the third 

instance after entering it wrongly the first two times, two 

tokens get collected in P9 place. 
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(2) When the user enters the pin correctly at the second 

instance after entering it wrongly the first time, one token gets 

collected in P9 place. 

An additional transition emptying of tokens (T9) and two 

additional places, “unused token” (P10) and “count of invalid 

pin entries” (P12), are added to the PN to ensure and correct 

the flow, usage and removal of tokens such that the 

functionality given in the specification can be completed 

successfully. For this processing of residual tokens, the 

“Residual tokens removal” proposition in [22] has been used. 

 
Fig. 7 PN representation of ATM system after the second iteration of application of Algorithm 1 and Algorithm 2. 
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b) Also, there is the accumulation of a token in the “card 

is read” (P6) place due to the token from transition repeat pin 

entry (T8) which goes back to place P6 in the situation when 

T8 is fired thrice, i.e., a wrong pin is entered thrice. To remove 
this leftover token, P6 is made to fire two transitions - the 

number of attempts is exceeded (T11) at 

𝑡1 =  0    (32) 

and dial the pin (T4) at  

𝑡1 ≥  Δ     (33) 

PN is incomplete with regard to the accumulation of 

tokens. Thus, the PN drawn in Fig. 6 is consistent but 

incomplete. Though the NL requirements are correct, the PN 

implemented needs to be modified. Two transitions - the 

number of attempts is exceeded&emptying of tokens have 

been added in Figure 7. 

 

The corrected PN representation is depicted in Fig. 7. 

5.4. Proof of Consistency and Completeness of the final Petri 

net model 

The ATM PN (Fig. 7) is now examined for consistency 

and completeness. The property of consistency and 

completeness of the modified ATM PN is verified by running 

algorithm 1 and algorithm 2, respectively. By simulation of 

the PN, the execution of various transitions is found to be 

successful.  Thus, feedback obtained in the two iterations was 

used to improve the requirements by removal of inconsistency 

and incompleteness. It can be seen from this example that the 

proposed algorithms are easy and are not time-consuming or 

laborious to apply. 

6. Discussion and Validation  
The ATM case study demonstrates the use of our 

technique for a typical application of an ATM. Similarly, three 

other case studies (Table 1) have been carried out by using NL 

requirements for the patient monitoring system [29], 

Assembly system [30] and Library system.[31] All these cases 

have been investigated using the methodology described in 

this paper. In all the above cases, PN representations of the 

requirements have been analysed and requirements corrected, 

proving the soundness of our proposed methodology. The 

detailed analyses of the three case studies are included in 

Appendix 2. A snapshot of the outcomes of the case studies is 

presented in the table below. 

Table 1. Results of analysis of consistency and completeness of case 

studies (requirements) 

 
Patient 

monitoring 

system 

Assembly 

system 

Library 

System 

Inconsistent 

transitions 

identified from 

consistency 

analysis 

Two Zero Eight 

New transitions 

identified from 

completeness 

analysis 

Three Five Two 

New 

functionalities 

identified from 

completeness 

analysis 

Two Three Two 

 

Many researchers in literature have attempted to 

formalize software requirements analysis to free them of 

ambiguities, inconsistencies, incompleteness, etc., by 

converting them to PNs. Using PNs for analysis helps us 

greatly improve the requirements specifications. The 

methodology presented here incorporates analysis and 

feedback and does not need specific know-how to use the 

approach. Therefore, the usage of this method is highly 

advantageous. The method proposed in this paper for the 

analysis of PNs is compared with the methods proposed by 

Zhao and Duan [10], Lee et al. [12] and Sarmiento et al. [15] 

in table 2 below. 

Table 2. Comparison of the different methods for analysing PN representation of software requirements. 

 Methodology 
Analysis was done 

for 

Specific know-how required / 

Disadvantages / Advantages 

Zhao and 

Duan [10] 

(1) Use cases are transformed into Scenarios. 

(2) Scenarios are transformed into Timed and 

Controlled PNs (TCPN). 

(3) The TCPNs are analyzed using a PN tool 

(PIPE2). 

(4) Feedback is used to rebuild the scenarios 

and use case descriptions. 

(5) After correction, Platform Independent 

Models (PIM) are built. 

(1) Completeness. 

(2) Correctness. 

(3) Consistency. 

(1) Complex industrial systems are 

difficult to express as PNs. 

(2) Intermediate “event frames” for 

each of the sentence events are 

needed. 

Lee et al. 

[12] 

(1) From use, cases create an action-condition 

table with event names and pre- and post-

conditions. 

(1) Completeness. 

(2) Consistency. 

(1) Intermediate models are 

created. 
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(2) Convert the action-condition tables into 

Constraints-based Modular Petri Nets 

(CMPNs). 

(3) Guidelines were developed to analyze the 

CMPNs for consistency and completeness. 

(2) Alternative/exception flows of 

use cases are not considered. 

(3) The use cases do not conform to 

UML. 

Sarmiento 

et al. [15] 

(1) Define a Scenario language. 

(2) Define mapping rules from Scenarios to 

PNs. 

(3) Transform Scenarios to PNs. 

(4) Integrate partial PNs into an integrated PN. 

(5) Using reachability analysis, the PN is 

analyzed, and the scenarios are revised. 

(1) Correctness. 

(2) Consistency. 

(3) Completeness. 

(1) Good knowledge of writing 

scenarios is needed. 

Proposed 

Approach 

(1) Use algorithm 1 for consistency analysis. 

(2) Use algorithm 2 for completeness analysis. 

(3) Note the identified inconsistencies and 

incompleteness to revise and modify the 

given requirements from which the PN was 

developed. 

(4) Repeat the analysis and modify the 

requirements if needed. 

(5) Use improved/corrected requirements for 

the next steps in SDLC. 

(1) Consistency. 

(2) Completeness. 

(1) Both Consistency and 

Completeness are identified. 

(2) Can be used for conventional 

PNs. 

(3) Semi-automated tool available 

to generate PNs easily from NL 

requirements. 

(4) No specific knowledge is 

required to use the algorithms 

presented. 

7. Conclusion and Future Course of Work 
Proper requirements specification is key to the successful 

completion of software projects. Petri nets are a convenient 

approach for representing, analysing and correcting 

deficiencies in the software requirements. In this paper, 

assuming the requirements and their PN expressions are given, 

an analysis of the PNs has been done to identify inconsistency 

and incompleteness in requirements. The feedback is used to 

improve the quality of the software requirements. 

The methodology of improving the requirements 

specification represented as Petri nets is demonstrated in this 

paper by using the Automated Teller Machine example. By 

this methodology, NL requirements represented by the PNs 

have undergone modifications and improved considerably. 

Applying this step before the next stage in the software 

development life cycle would help reduce error propagation 

and consequent cost and schedule overruns. The proposed 

methodology has a strong theoretical foundation. The 

algorithms and conditions of proof given are simple and easy 

to apply. Though not applicable to conventional NL syntax 

directly, it is useful once the NL specifications are translated 

to Petri nets (an automated method is proposed for converting 

natural language requirements into Petri nets in [33]).  

The technique needs to be verified on sizeable and 

complex systems. In future, techniques for analyzing other 

errors in requirements like ambiguity, repetition, conflicts, 

etc., would form our scope of research. Also, we would like to 

research preventing state space explosion, which usually 

occurs when PNs are used for complex systems. 

Appendix 1 
“Residual tokens removal” proposition: In an iterative 

decision-making loop, when the decision becomes true at the 

nth iteration, there will be an accumulation of tokens due to 

the false conditions which have occurred (n – 1) times. These 

(n – 1) tokens are to be removed so that the process continues 

unhindered at the nth iteration when the decision becomes 

true. Normally PNs do not take care of such situations. We 

expect decision-making loops to occur in our study; therefore, 

we give the following proposition. This proposition plays an 

important role in our approach discussed in section 4. 

Statement of the proposition: A loop of one additional 

transition and two additional places can clear accumulated 

tokens resulting from the iterative decision-making loop. 

Explanation: An example of an iterative decision-making 

loop is shown in Figure A.1.1 In this representation, it is seen 

that when a choice needs to be made between true and false 

values of the password, one of the two transitions is fired to 

test the password value. The transition check if the password 

is invalid (T2) that checks if the password is a false value 

occurs first at the time                                            𝑡 =  0    (34) 

and the transition check if the password is valid (T3) that 

checks if it is a true value occurs at the time     𝑡 ≥  Δ     (35) 

 In the situation when the value tests false and there is an 

iterative decision-making loop with the maximum number of 

iterations being three, the invalidated place (here “password 

invalid” (P3) place) accumulates tokens which do not get 

automatically cleared. These accumulated tokens need to be 

removed for the system's proper functioning.
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Fig. A.1.1 PN representation of repetitive choice-making loop 

 
Fig. A.1.2 PN representation of repetitive choice-making loop after application of “Residual tokens removal” proposition. 

 By application of our proposition, the modified PN 

representation is shown in Figure A.1.2, where an additional 

transition empty tokens (T7) and two additional places, namely 

“unused token” (P5) and “count of invalid password entries” 

(P6), are introduced. To prove the correctness of our 

proposition, the following two conditions need to be validated.  

Condition 1: When the decision is false, the P6 place should 

receive a token and P5 and “password valid” (P4) places should 

not receive any token.  

Condition 2: If the decision is true at the nth iteration, P5 and 

P4 places should receive a token each, and place P6 should 

clear the token accumulated in the previous iterations. 

Proof of condition 1: Firing of transition T2 (implies) P6 is 

incremented by one token; P4 and P5 receive no token. 

Proof of condition 2: Firing of transition T3 (implies) P4 and 

P5 receive a token each, P6 does not get incremented, and 

accumulated tokens at P6 get cleared by firing of the empty 

transition tokens (T7) repetitively. 

Hence our proposition is validated. 
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Appendix 2 

Case Study – Patient Monitoring System 

Requirements: 

“1)  A patient monitoring program is required for a hospital.  

 2) Each patient is monitored by an analog device which 

measures factors such as pulse, temperature, blood pressure, 

and skin resistance. 3) The program reads these factors on a 

periodic basis (specified for each patient) and stores these 

factors in a database. 4) For each patient, safe ranges for each 

factor are specified (e.g., patient X's valid temperature 'range 

is 98 to 99.5 degrees Fahrenheit). 5) If a factor falls outside 

of the patient's safe range, or if an analog device fails, the 

nurse's station is notified.” [29] 

Assumptions 

The below-given assumptions have been made while 

developing the PN as the required information has not been 

specified in the initial specifications: 

1. Setup and change of period of measurement of factors are 

not included. 

2. Setup and maintenance of the database needed for the 

system are not included. 

Fig. A.2.1. PN representation of patient monitoring system. 
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Analysis for detection of Consistency and Completeness of 

PN 

First iteration - Analysis of PN drawn in Fig. A.2.1 using 

Algorithm 1 and Algorithm 2 

Consistency analysis: 

Work through Algorithm 1. 

Step 1: List of places are: 

1. switched on 

2. not working alarm 

3. analog device ready 

4. unsafe alarm  

5. pulse 

6. temperature 

7. blood pressure 

8. skin resistance 

9. database 

10. notification 

Step 2: A place connected to more than one outgoing 

transition and where these transitions do not have any other 

input place connected to it or any information on their arcs 

is “notification” (P10) place and transitions check if factors 

are outside safe range (T7) &check if factors are within a safe 

range (T8) as seen in Fig. 1. 

The PN drawn in Fig. A.2.1 indicates inconsistent NL 

requirements. 

Solution: From the application of algorithm 1 on the PN 

drawn in Fig. 1, it is seen that the two transitions, viz. check 

if factors are outside the safe range (T7) and check if factors 

are within the safe range (T8), are enabled together. Hence it 

is a case of inconsistency. To resolve this inconsistency 

problem, different priorities are assigned for T7 and T8 as per 

the “Transitions with time” proposition. In this case, we 

assign T7 a higher priority than T8. This resolves the 

inconsistency in the PN. If the functional condition of T7 is 

enabled, transition T7 is fired. Otherwise, after a duration Δ 

transition T7 is fired. 

Step 3: Simulate the PN to verify liveness. Simulation is 

successful, and hence PN is consistent with regard to 

liveness.  

Step 4: Simulate the PN to verify that there are no dead 

transitions. Traverse all loops in the PN to determine 

transitions that are never enabled. There exist no transitions 

that are never enabled, and hence PN is consistent with 

regard to dead transitions. 

Completeness analysis: 

Work through Algorithm 2. 

List of Transitions 

Step 1: List of transitions are: 

1. check if the analog device is not working 

2. check if the analog device is working 

3. informs nurses' station 

4. determines safe ranges and measures 

5. store measured factors 

6. verify factors 

7. check if factors are outside the safe range 

8. check if factors are within the safe range 

The list of places are: 

1. switched on 

2. not working alarm 

3. analog device ready 

4. unsafe alarm  

5. pulse 

6. temperature 

7. blood pressure 

8. skin resistance 

9. database 

10. notification 

Step 2: Obtain a list of all functions from the requirements 

specification (availability of a complete requirements 

specification document is assumed at this point). 

1. Turning the device on and off 

2. Check if the analog device is working 

3. Inform the nurse's station 

4. Determine safe ranges and measures 

5. Store-measured factors 

6. Verify factors 

7. check if factors are within a safe range 

Step 3: Traverse the PN and list functions absent in PN. One 

function, namely function 1 from step 2 above, is absent; 

hence, PN is incomplete. 

Step 4: Obtained reachability report using PIPE2 to 

determine whether there is non-determinism in the PN. 

There exist no transitions that are not reachable. PN is 

complete with regard to non-determinism. 

Step 5: Traverse PN. All places and transitions in the PN 

have distinct names. PN is complete with regard to distinct 

names. 

Step 6: Traverse PN. There are no isolated subnets. PN is 

complete with regard to isolated subnets. 

Step 7: Simulate PN to determine if there are infinite loops 

or program abends. The PN executes in an infinite loop. 

Since the working of the patient monitoring system is 24*7, 

this is not considered an error. However, this indicates that 

start and stop functionality are not defined. Since this is 
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already determined by Step 3 above, we consider that the PN 

is complete with regard to infinite loops. The PN executes 

without abending. 

Step 8: Simulate PN. There is no token accumulation. PN is 

complete with regard to token accumulation. 

Modified NL requirements for patient monitoring system 

Based on the analysis, the requirements are rewritten to 

resolve the identified inconsistencies and incompleteness as 

below: 

“1. A hospital needs a patient monitoring program for its 

patients 

2. Setup of safe ranges for each measured factor is done for 

the patient in the monitoring program. 

3. Patients are measured by the analog device. 

4. If the analog device is off, it is switched on before use. In 

the end, after use, the analog device is switched off. 

5. The analog device measures the following factors – pulse, 

temperature, blood pressure, and skin resistance.  

6. The program monitors the factors. 

7. The values of the factors are stored in a database. 

8. The nurse station is informed if the factors’ values of a 

patient fall outside the safe range. 

9. The nurse station is also informed if the analog device fails 

to measure one of the following factors – pulse, temperature, 

blood pressure and skin resistance.” 

Note 3: The bold-faced text indicates the changes made in 

the requirements. 

Three transitions - turn the device on, turn the device off and 

check analog device status have been added in Fig. 2. 

Proof of Consistency and Completeness of the final PN 

model 

The Patient monitoring system PN (Fig. A.2.2) is now 

examined for consistency and completeness. 

The property of consistency and completeness of the modified 

patient monitoring system PN is verified by running algorithm 

1 and algorithm 2, respectively. By simulation of the PN, the 

execution of various transitions is found to be successful. The 

system is now consistent and complete.

Fig. A.2.2 PN of Patient monitoring system drawn after analysis and correction for consistency and completeness is done. 
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Case study – Assembly system 

Requirements Specifications 

“An assembly unit consists of a user, a belt, a vision 

system, a robot with two arms, and a tray for assembly. The 

user puts the dish and cup onto the belt, and the belt conveys 

the parts towards the vision system. The vision system senses 

on entry of a part into the sensor zone and informs the belt to 

stop. The vision system then recognizes the type of part and 

informs the robot to pick it up from the belt. The robot picks, 

and the belt moves. An assembly is complete when a dish and 

cup are placed on the tray separately by the arms of the 

robot.”[30] 

 

Assumptions 

The below-given assumption has been made while 

developing the PN as the required information has not been 

specified in the initial specifications: 

1) Assumed that robot uses one arm to pick a dish and another 

arm to pick a cup. 

 

 
 

Figure A.2.3 PN representation of Assembly system. 

Analysis for detection of Consistency andCompleteness of 

PN 

First iteration - Analysis of PN drawn in Fig. A.2.3 using 

Algorithm 1 and Algorithm 2 

Consistency analysis: 

Work through Algorithm 1. 

Step 1: List of places are: 

1) ready 

2) user with dish 

3) user with a cup 

4) dish on the belt 

5) cup on the belt 

6) dish recognized 

7) cup recognized 

8) belt stops 

9) dish using arm1 

10) cup using arm2 

11) dish in arm1 

12) cup in arm2 

13) assembly unit complete 

 

Step 2: There is only one place connected to more than one 

outgoing transition. However, these transitions have other 

input places connected to them. 

Place “ready” (P1) is connected to two transitions placing the 

dish on the moving belt (T1) and placing the cup on the 

moving belt (T2). However, these two transitions each have 

another input place connected, i.e., “user with the dish” (P2) 

and “user with cup” (P4), respectively. 

PN is consistent with regard to non-determinism with the 

“Transitions with time” proposition. 

Step 3: Simulate the PN to verify liveness. Simulation is 

successful, and hence PN is consistent with regard to liveness.  

Step 4: Simulate the PN to verify that there are no dead 

transitions. Traverse all loops in the PN to determine 

transitions that are never enabled. There exist no transitions 

that are never enabled, and hence PN is consistent with regard 

to dead transitions. 

 

Completeness analysis: 

Work through Algorithm 2. 

Corrected list of Transitions 

Step 1: List of transitions are: 

1) places the dish on the moving belt 

2) places the cup on the moving belt 

3) moves dish to sensor zone 

4) moves up to the sensor zone 

5) vision system senses entry and stops the belt 

6) vision system informs the robot to pick up items 

7) picks a dish 

8) picks the cup 

9) places dish and cup on the tray 

10) senses task done and informs belt to move 
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The list of places are: 

1) ready 

2) user with dish 

3) user with a cup 

4) dish on the belt 

5) cup on the belt 

6) dish recognized 

7) cup recognized 

8) belt stops 

9) dish using arm1 

10) cup using arm2 

11) dish in arm1 

12) cup in arm2 

13) assembly unit complete 

 

Step 2: Obtain the list of all functions. 

1) switch on and switch off the assembly system  

2) placing the dish and cup on the moving belt 

3) moving dish and cup to sensor zone 

4) vision system sensing entry and stopping the belt 

5) vision system informing robot to pick up items 

6) picking dish and cup 

7) placing dish and cup on the tray 

8) sensing task done and informing belt to move 

9) repeating assembly of dish and cup 

 

Step 3: Traverse the PN and list functions absent in PN. One 

function, namely function 1 from step 2 above, is absent; 

hence, PN is incomplete. 

Step 4: Obtained reachability report using PIPE2 to determine 

whether there is non-determinism in the PN. There exist no 

transitions that are not reachable. PN is complete with regard 

to non-determinism. 

Step 5: Traverse PN. All places and transitions in the PN have 

distinct names. PN is complete with regard to distinct names. 

Step 6: Traverse PN. There are no isolated subnets. PN is 

complete with regard to isolated subnets. 

Step 7: Simulate PN. The PN executes in an infinite loop. This 

indicates that start and stop functionality is not defined. Since 

this is already determined by Step 3 above, we consider that 

the PN is complete with regard to infinite loops. The PN 

executes without abending. 

Step 8: Simulate PN. There is no token accumulation. PN is 

complete with regard to token accumulation. 

 

Thus, the PN drawn in Fig. A.2.3 is consistent but 

incomplete; therefore, the NL requirements need to be 

modified. 

 

Modified NL requirements for Assembly System 

Based on the analysis, the requirements are rewritten to 

resolve the identified incompleteness as below: 

 

 “An assembly unit consists of a user, a belt, a vision 

system, a robot, and a tray. The robot has two arms. The tray 

is used for assembly. The user, when ready, starts the 

assembly unit. The user places a dish and a cup on the moving 

belt. The belt conveys the dish and cup towards the vision 

system. The vision system has the capability to sense the entry 

of a part into the sensor zone. As soon as the vision system 

senses the entry of the dish and cup on the belt into the sensor 

zone, the vision system informs the belt to stop. The vision 

system then recognizes the type of part, i.e., whether a dish or 

a cup and informs the robot to pick it up from the belt using 

its arms. The robot then picks up the dish in one arm and the 

cup in another arm from the belt. The robot then places the 

dish in one arm and the cup in another arm on the tray. The 

vision system informs the belt to start moving, and the belt 

starts to move again. An assembly is said to be complete when 

a dish and cup are placed on the tray separately by the arms of 

the robot. The user is given the option to stop the assembly 

unit or to continue the operation of assembling the next tray 

with dish and cup”. 

 
Proof of Consistency and Completeness of the final PN 

model 

 The Assembly system PN (Fig. A.2.4) is now examined 

for consistency and completeness. 

 The property of consistency and completeness of the 

modified Assembly system PN is verified by running 

algorithm 1 and algorithm 2, respectively. By simulation of 

the PN, the execution of various transitions is found to be 

successful. The system is now consistent and complete. 

Case study – Library system 

Requirements Specifications 

“Consider a small library database with the following 

transactions: 

1) Check out a copy of a book. Return a copy of a book. 

2) Add a copy of a book to the library. Remove a copy of a 

book from the library. 

3) Get the list of books by a particular author or in a particular 

subject area. 

4) Find out the list of books currently checked out by a 

particular borrower. 

5) Find out what borrower last checked out a particular copy 

of a book.” 

 “There are two types of users: staff users and ordinary 

borrowers. Transactions 1, 2, 4, and 5 are restricted to staff 

users, except that ordinary borrowers can perform transaction 

4 to find out the list of books currently borrowed by 

themselves. The database must also satisfy the following 

constraints: 
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Fig. A.2.4 PN of Assembly system drawn after analysis and correction for consistency and completeness. 

Five transitions - switch assembly unit on, switch assembly unit off, assembly unit is running, performs another operation and exits from operations have been 

added in Fig. A.2.4 
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Fig. A.2.5. PN representation of Library System. 
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(1) All copies in the library must be available for checkout or 

be checked out. 

(2) No copy of the book may be both available and checked 

out at the same time. 

(3) A borrower may not have more than a prepare-defined per 

of books checked out at one time.” [31] 

Assumptions 

The below-given assumptions have been made while 

developing PN as the required information has not been 

specified in the initial specifications: 

(1) Both staff and borrowers need to be identified before they 

can use the library facilities. 

(2) Database constraints (bullets 1 and 2) implementation 

will not be part of the PN execution. 

(3) Database constraint 3 will be shown when checking is 

done before the issue of a copy of the book to the 

borrower.  

(4) A borrower cannot be issued a book if he already has a 

copy of the same already issued. 

 

First iteration - Analysis of PN drawn in Fig. A.2.5 using 

Algorithm 1 and Algorithm 2 

Consistency analysis: 

Work through Algorithm 1. 

Step 1: List of places are: 

1) ready 

2) user 

3) id number 

4) unregistered 

5) registered 

6) borrower 

7) staff 

8) selection 

9) password 

10) based on the author 

11) required information 

12) based on subject 

13) issued to self 

14) invalid 

15) valid 

16) continue viewing 

17) exit viewing 

18) option 

19) add the book 

20) transaction is completed 

21) return the book 

22) acceptance 

23) remove the book 

24) issued books list 

25) number of books 

26) list of books based on the author 

27) list of books based on subject 

28) name of the previous borrower of the book 

29) continue 

30) exit transactions 

Step 2: A place connected to more than one outgoing transition 

and where these transitions do not have any other input place 

connected to it or any information on their arcs is  

1. “id number” (P3) place and transitions identify an 

unregistered user (T2) & identify a registered user (T3) as seen 

in Fig. A.2.5. 

The PN drawn in Fig. A.2.5 indicates inconsistent NL 

requirements. 

Solution: From the application of algorithm 1 on the PN drawn 

in Fig. 1, it is seen that the two transitions viz. T2 and T3 are 

enabled together. Hence it is a case of inconsistency. Different 

priorities will be assigned for T2 and T3 to resolve this 

inconsistency problem as per the “Transitions with time” 

proposition. In this case, we assign T2 a higher priority than 

T3. This resolves the inconsistency in the PN. If the functional 

condition of T2 is enabled, transition T2 is fired; otherwise, 

after a duration Δ1, transition T3 is fired. 

2. “registered” (P5) place and transitions identify if a user is a 

borrower (T5) & identify if the user is the staff (T6) as seen in 

Fig. A.2.5. 

The PN drawn in Fig. A.2.5 indicates inconsistent NL 

requirements. 

Solution: From the application of algorithm 1 on the PN drawn 

in Fig. 1, it is seen that the two transitions viz. T5 and T6 are 

enabled together. Hence it is a case of inconsistency. To 

resolve this inconsistency problem, different priorities are 

assigned for T5 and T6 as per the “Transitions with time” 

proposition. In this case, we assign T5 a higher priority than 

T6. This resolves the inconsistency in the PN. If the functional 

condition of T5 is enabled, transition T5 is fired; otherwise, 

after a duration Δ2, transition T6 is fired. 

3. “password” (P8) place and transitions check if the password 

is incorrect (T12) & check if the password is correct (T13) as 

seen in Fig. A.2.5. 

The PN drawn in Fig. A.2.5 indicates inconsistent NL 

requirements. 
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Solution: From the application of algorithm 1 on the PN drawn 

in Fig. A.2.5, it is seen that the two transitions, viz. check if 

the password is incorrect (T12) and check if the password is 

correct (T13), are enabled together. Hence it is a case of 

inconsistency. To resolve this inconsistency problem, 

different priorities are assigned for T12 and T13 as per the 

“Transitions with time” proposition. In this case, we assign T12 

a higher priority than T13. This resolves the inconsistency in 

the PN. If the functional condition of T12 is enabled, transition 

T12 is fired. Otherwise, after a duration, Δ3 transition T13 is 

fired. 

4. “number of books” (P25) place and transitions issue of the 

book is not possible (T25) &issue book (T26) as seen in Fig. 

A.2.51 

The PN drawn in Fig. A.2.5 indicates inconsistent NL 

requirements. 

Solution: From the application of algorithm 1 on the PN drawn 

in Fig. A.2.5, it is seen that the two transitions, viz., issue of 

the book is not possible (T25) and issue book (T26), are enabled 

together. Hence it is a case of inconsistency. To resolve this 

inconsistency problem, different priorities are assigned for T25 

and T26 as per the “Transitions with time” proposition. In this 

case, we assign T25 a higher priority than T26. This resolves the 

inconsistency in the PN. If the functional condition of T25 is 

enabled, transition T25 is fired; otherwise, after a duration of 

Δ4, transition T26 is fired. 

Step 3: Simulate the PN to verify liveness. Simulation is 

successful, and hence PN is consistent with regard to liveness.  

Step 4: Simulate the PN to verify that there are no dead 

transitions. Traverse all loops in the PN to determine 

transitions that are never enabled. There exist no transitions 

that are never enabled, and hence PN is consistent with regard 

to dead transitions. 

The PN is inconsistent. 

Completeness analysis: 

Work through Algorithm 2. 

Corrected list of Transitions 

Step 1: List of transitions are: 

1) give the ID number 

2) identify an unregistered user 

3) identify a registered user 

4) exit 

5) identify if the user is the borrower 

6) identify if a user is a staff 

7) display menu for the borrower 

8) ask for a password 

9) view a list of books by an author 

10) view the list of books by subject 

11) view the list of books issued to self 

12) check if the password is incorrect 

13) check if the password is correct 

14) return to viewing 

15) exit from viewing 

16) display an invalid password 

17) display menu for staff 

18) add the book to the library database 

19) return the book to the library database 

20) remove the book from a library database 

21) view the list of books issued to the borrower 

22) view books by the author 

23) view books by subject 

24) find the name of the previous borrower 

25) issue of the book is not possible 

26) issue book 

27) sends the book to the shelf 

28) perform another transaction 

29) exit from the system 

The list of places are: 

1) ready 

2) user 

3) id number 

4) unregistered 

5) registered 

6) borrower 

7) staff 

8) selection 

9) password 

10) based on the author 

11) required information 

12) based on subject 

13) issued to self 

14) invalid 

15) valid 

16) continue viewing 

17) exit viewing 

18) option 

19) add the book 

20) transaction is completed 

21) return the book 

22) acceptance 

23) remove the book 

24) issued books list 

25) number of books 

26) list of books based on the author 

27) list of books based on subject 

28) name of the previous borrower of the book 

29) continue 

30) exit transactions 

Step 2: Obtain a list of all functions. 
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1) switch on and switch off the library system 

2) give the ID number to the user 

3) identify a user as registered or unregistered 

4) identify a user as a valid staff or borrower 

5) display menu for staff  

6)  display menu for the borrower 

7)  ask and validate the password 

8)  return and exit to viewing 

9)  allow the borrower to view a list of books by an author, 

 subject and issued to self 

10) allow staff to add a book, return the book and remove the 

 book from a library database 

11)  allow staff to view books by author and subject, find the 

name of the previous borrower, to view a list of books 

issued to the borrower (issue of the book is not possible 

when a borrower has crossed pre-defined limits or if the 

person has already borrowed a copy of the same book), 

issue book and send the book to the shelf 

12)  perform another transaction 

13)  exit from the system 

Step 3: Traverse the PN and list functions absent in PN. One 

function, namely function 1 from step 2 above, is absent; 

hence, PN is incomplete. 

Step 4: Obtained reachability report using PIPE2 to determine 

whether there is non-determinism in the PN. There exist no 

transitions that are not reachable. PN is complete with regard 

to non-determinism. 

Step 5: Traverse PN. All places and transitions in the PN have 

distinct names. PN is complete with regard to distinct names. 

Step 6: Traverse PN. There are no isolated subnets. PN is 

complete with regard to isolated subnets. 

Step 7: Simulate PN. The PN executes in an infinite loop. This 

indicates that start and stop functionality is not defined. Since 

this is already determined by Step 3 above, we consider that 

the PN is complete with regard to infinite loops. The PN 

executes without abending. 

Step 8: Simulate PN. There is no token accumulation. PN is 

complete with regard to token accumulation. 

The PN is incomplete. 

Modified NL requirements for Library System 

Based on the analysis, the requirements are rewritten to 

resolve the identified inconsistencies and incompleteness as 

below: 

“1) Check out a copy of a book. Return a copy of a book. 

2) Add a copy of a book to the library. Remove a copy of a 

book from the library. 

3) Get the list of books by a particular author or in a particular 

subject area. 

4) Find out the list of books currently checked out by a 

particular borrower. 

5) Find out what borrower last checked out a particular copy 

of a book. 

6) If the library system is off, it is switched on before use. At 

the end, after using the library system is switched off.” 

“There are two types of users: staff users and ordinary 

borrowers. Transactions 1, 2, 4, 5 and 6 are restricted to staff 

users, except that ordinary borrowers can perform transaction 

4 to find the list of books currently borrowed. The database 

must also satisfy the following constraints: 

• All copies in the library must be available for checkout or 

be checked out. 

• No copy of the book may be both available and checked 

out at the same time. 

• A borrower may not have more than a prepare-defined per 

of books checked out at once.” 

7) Proof of Consistency and Completeness of the final PN 

model 

The Library system PN (Fig. A.2.6) is now examined for 

consistency and completeness. 

 

The property of consistency and completeness of the 

modified Library system PN is verified by running algorithm 

1 and algorithm 2, respectively. By simulation of the PN, the 

execution of various transitions is found to be successful. The 

system is now consistent and complete. 
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Fig. A.2.6 PN of Library system drawn after analysis and correction for consistency and completeness is done. 

Two transitions - switch the library system on and switch the library system off have been added in Fig. A.2.6 
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