
International Journal of Engineering Trends and Technology Volume 71 Issue 3, 81-90, March 2023

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V71I3P210 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Distributed Attack Detection System for SDN Using

Stack of Classifiers

Ravindra Kumar Chouhan1, Mithilesh Atulkar2, Naresh Kumar Nagwani3

1Central Computer Center, NIT Raipur, GE Road, Raipur, CG, India

2Department of Computer Applications, NIT Raipur, GE Road, Raipur, CG, India
3Department of Computer Science & Engineering, NIT Raipur, GE Road, Raipur, CG, India

1Corresponding Author: rchauhan@nitrr.ac.in

Received: 08 August 2022 Revised: 08 January 2023 Accepted: 06 February 2023 Published: 25 March 2023

Abstract - For the last few years, the Software Defined Network (SDN) architecture has grown in popularity in industries and

academia due to its advantages over traditional networks. Because of its emergence, it has attracted many attackers who

interfere with the network's normal operation. To defend against such attacks, the SDN controller centrally monitors all

network activities and then takes appropriate action. This task consumes the majority of the controller's resources, resulting

in controller performance degradation. To address this problem, this paper proposes an architecture in which data plane

resources are used for intrusion detection, freeing up the controller for other network-related tasks. In the switch of the data

plane, a stack of classifiers composed of Random Forest (RF) and K-Nearest Neighbour (KNN) at level 0 and Logistic

Regression (LR) at level 1 is used. Also, to fasten the attack detection process, the appropriate features have been selected

using Pearson's Correlation Coefficient and mutual information of the features. The UNSW-NB15 dataset has been used to

demonstrate this architecture's performance. The performance has been measured under the metrics Precision, Accuracy, F1

value, Recall, Prediction Time, and Cohen's Kappa Coefficient. In terms of recall, accuracy, CKC, and feature count, the

classifier stack surpasses the individual classifiers. Its performance is slightly inferior to that of other classifiers under

precision, F1, and prediction time, but the difference is manageable when other parameters are considered. Hence, the stack

of the classifier is selected for deployment in the data plane devices.

Keywords - Intrusion Detection System (IDS), KNN, Machine Learning, OpenFlow, Random Forest, Software Defined

Network (SDN), Stack of Classifiers.

1. Introduction
SDN is an innovative approach to the design of

computer networks that offers advantages over traditional

network architectures, such as programmability, centralized

control, vendor neutrality, expandability, quickness, and

lower capital and operational expenditure [1], [2]. The SDN

diagram is depicted in Figure 1. The infrastructure layer

comprises all network devices, both physical and virtual,

concerned with forwarding data. Examples of such devices

include switches and routers. The control layer is the layer

that contains the controller, which is the brain of the SDN

[3] and thus controls all network-related activities that occur

in the network. This functionality gives the controller a

comprehensive overview of the network[4]. The SDN

controller is the one location for all logic involved in

decision-making; thus, all decisions are made by the

controller. The third layer, the application layer, sits on top

of the SDN architecture and serves as the user interface.

Users can interact with the control plane via applications

developed by them to provide instructions to the controller,

which can then instruct the data plane to carry out those

instructions.

Instructions for transferring information between the

control and data planes are known as southbound rules. As a

southbound rule, the OpenFlow protocol is used. The fields

of OpenFlow protocol are used to send and receive various

information between the controller and data plane devices,

allowing necessary decisions for data coming into or

leaving the network. In addition, some APIs known as

northbound rules are used to provide communication

between the controller and the application layer.

Fig. 1 Diagram of SDN

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

82

Because of the popularity of SDN architecture in new

environments such as industry networks, data centres, and

clouds has attracted many attackers to steal user-related data

from the network or clog the network in such a way that it

cannot fulfil genuine requests of the users. To choke the

network, attackers flood the network with different types of

traffic, such as TCP, UDP, or ICMP traffic, causing the

network's critical resources to become overburdened in

responding to these requests (DDoS attack). To counter

such attacks, the controller has an integrated intrusion

detection system, which analyses the behaviour of traffic

between the controller and data plane devices and prevents

attacks by enforcing the rules at the data plane level.

In the preceding scenario, the controller makes all

decisions related to intrusion detection, so it consumes a

large portion of the controller's resources, causing the

controller's performance to deteriorate and, as a result, the

network's responsiveness to suffering. At the same time, the

resources available in data plane devices remain idle, and

while they are doing their work, a large portion of their

resources remain idle. If the resources available with these

devices could be used for intrusion detection, some of the

burdens from the controller would be lifted, allowing the

controller to perform its other more important tasks more

efficiently. The attacks that were entering the network

through data plane devices can only be stopped there, and

the spread of these attacks in the network can be stopped.

Apart from the above point, to make the prediction

faster, a smaller number of features should be used in the

classifier for making a prediction. For this purpose, in this

work, feature selection has been performed. Pearson's

Correlation Coefficient and Mutual Information of the

features have been considered. A smaller number of

selected features provide faster prediction in data plane

devices of SDN.

There are two types of attack detection techniques used

for attack detection: Anomaly-based IDS (AIDS) and

Signature-based IDS (SIDS) [5]. SIDS are systems that

store the pattern or signature of attacks in a database. An

attack occurs when a new request arrives with a signature

that matches one previously stored pattern. The advantage

of SIDS is that it works more efficiently and quickly but

fails when subjected to unforeseen attacks.

AIDS is being used to combat this problem. In the case

of AIDS, a model is learned by observing normal traffic

behaviour. Any traffic that deviates from normal behaviour

is considered an attack. In the proposed work, AIDS is used

to detect attacks in the SDN data plane using a stack of

classifiers.

It is found in this work that using the classifier stack

results in better performance. [6] has also demonstrated

stack performance in their work. A classifier stack is one in

which more than one classifier is used to predict an attack.

Fig. 2 depicts the classifier stack diagram. The level 0

classifiers are given the training data, and the predictions

made by the level 0 classifiers are utilized as input into the

level 1 classifier, also known as the final estimator. The

prediction provided by the final estimator is used as the

trained model's final prediction.

The paper is divided into seven sections: Section 2

presents Related Work, Section 3 presents Proposed Work,

Section 4 presents Experiments and Result Analysis,

Section 5 presents Deployment of the Trained Model,

Section 6 presents Contribution, and finally, Section 7

presents the Conclusion and Future Work.

2. Related Work
For attack detection and mitigation, much work has

been done. Most works are implemented in the control

plane of the SDN [7,23]. The paper [8] demonstrates

investigating a DDoS attack on a primary server. The attack

is probed by flooding the switch that connects to the main

server with a huge quantity of packets containing

destination IP addresses. The (POX) controller repeatedly

installs flow table rules into this switch, causing its flow

table space to be exhausted. The article discusses a scenario

of a weak attack in which flow entries that the controller

directly installs are considered to attack traffic. However,

flow entries that are requested by the switch are considered

to be legal traffic. The scenario is described in the paper.

Mitigation is implemented by manually manipulating the

"TIMEOUT" parameter value without an SDN application.

[9] proposes a method for detecting DDoS attacks using

SVM algorithms. It uses flow data available to controllers

to form a 6-tuple, which is then used to learn and classify

traffic into normal and spurious traffic on the control plane.

Fig. 2 Stack of the classifiers

Prediction

Prediction

Classifier 1

Classifier 2

Classifier N

Final Classifier

Prediction

Training Data

Training Data

Training Data

Level 0
Level 1

Final Prediction

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

83

Fig. 3 Flow Diagram of Proposed Method

To prevent attacks, the authors of [10] proposed a

distributed design of stateful switches as an alternative to

traditional SDN centralized solutions, which may be more

susceptible to computational resource limitations. Because

these methods require less time to evaluate a significant

volume of traffic, entropy-based methods are widely used to

identify attacks in SDN networks [11]. [12] has presented a

control plane DDoS attack detection solution based on

entropy. The Ryu controller and Mininet were used to

simulate several attacks for simulation purposes. Using

entropy to determine the unpredictability of the flow data

[13] has offered a strategy for early detection and mitigation

of DDoS attacks. They have used Floodlight and Mininet to

develop a variety of attacks and scenarios for their work.

[14,15] have employed SVM augmented by kernel principal

component analysis (KPCA), utilizing KPCA to reduce the

dimension of feature vectors and a genetic approach to

optimize SVM parameters. [30] have suggested a technique

for attack detection that employs both SDN layers. One

controller functions as the master controller, while the other

functions as the slave controller. For the demonstration, the

Mininet emulator and Ryu Controller were utilized. In the

data plane, [14,15] uses attack detection systems based on

triggers. In the control plane, KNN and K-means were

utilized to determine whether or not the warning provided

by the data plane was accurate. In the data plane, the

Packet-In message is observed; if its rate is high, the switch

notifies the controller by sending an alarm. The controller

then retrieves five vector tuples from the respective switch's

traffic and utilizes them for prediction. The defence plan is

activated if the controller identifies it as an attack. ONOS is

employed as the SDN controller to demonstrate their work,

and Mininet is used to establish the SDN topology.

3. Proposed Work
In this section, the architecture of the proposed work

has been discussed. The work has been completed in 3

phases, as shown in Fig.3. In phase 1; data preprocessing is

done.

P
h

as
e

1

P
h

as
e

2

Phase 3

N
et

w
o

rk
 T

ra
ff

ic

Dataset Pre-processing

1. Feature Mapping

 2. Imputation

 3. Normalization

KNN RF

P1

LR

P2

Dataset Pre-

processing

In IDS enabled

Switch Check

if the traffic is

attack or not

Final Trained

Model

Send the request

to the Controller

if no entry is

found in the

Flow Table

Drop the traffic

No
Y

es

Install the trained model in

Open flow enabled

Switch

Training and Testing Data

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

84

In phase 2, the stack of the classifiers, an ensemble of

classifiers [16], [17], which at level 0 includes KNN and RF

and at level 1 includes Logistic regression, was trained. To

check the model's performance, the testing data is given to

the trained model and the Precision, Accuracy, F1 value,

Recall, Prediction Time, and Cohen's Kappa Coefficient are

calculated. In Phase 3, the trained and tested model is

installed in the data plane, i.e., in the switch of the SDN.

Now whenever any new request comes to the switch, the

required features are extracted from the live traffic, and then

preprocessing is performed. The model (IDS) installed in

the switch of the SDN takes the values of the features for

which it has been trained and checks whether the coming

traffic is normal traffic or attack traffic. If the traffic is

predicted as the attack traffic, it is blocked by the switch

itself. If the traffic is predicted as normal traffic, then the

switch first searches its FlowTable to check whether or not

the information related to dealing with this type of traffic

exists. Suppose the information is already available in the

FlowTable in the form of a flow entry. In that case, the

action is taken accordingly. If there is no information

available in the switch table, then the request to ask how to

deal with these packets is sent to the controller using

OpenFlow protocol in the form of a PacketIn request. The

controller then sends the response using the same protocol

but in the form of PacketOut action, and the sent rule is

installed in the FlowTable in the form of flow entry.

3.1. Dataset Preprocessing

Dataset preprocessing is an essential part of any

machine learning classifier. Under this, all non-numerical

data of the dataset is converted into some numerical form.

Also, it might give more weightage to higher numeric

values, so all the numeric values are brought in the same

scale. Only after performing the task of preprocessing the

values of the dataset can it be used for training and testing

the classifiers. In the current work, some essential

operations mentioned below have been performed on the

UNSW-NB15 dataset.

3.1.1. Feature Mapping of Categorical Features

Some features of the dataset contain categorical values,

so to deal with such values, Label Encoding (LE) and One

Hot Encoding (OHE) have been performed. In the case of

Label Encoding, 'n' different values are generated, and in

the case of OHE' n', different columns are generated if there

are 'n' different values in that feature[18].

3.1.2. Imputing the missing values

Some features contain missing values. Before using

such features for training and testing, these missing values

need to be removed. Many approaches are used to remove

those missing values, like taking that feature's maximum,

minimum, and average values to fill the missing values.

Sometimes those rows/columns are removed altogether. In

this work, the number of samples is sufficient, so the

records having missing values have been removed.

3.1.3. Normalization

If the difference among the values of features is big,

then it can train the model in a biased manner giving more

weightage to the features having higher values. To deal with

such conditions, standardization has been done to scale the

value of this work. In standardization, the value of a feature

is scaled in such a manner that its mean comes to zero, and

the standard deviation comes to 1. The formula to perform

normalization using a standard scaler is shown in Eq.

(1)[19].

𝑧 =
𝑥𝑖 − μ

σ

where μ =
1

𝑁
∑ (𝑥𝑖)𝑁

𝑖=1 andσ = √
1

𝑁
∑ (𝑥𝑖 − μ)2𝑁

𝑖=1

(1)

3.2. Proposed Stack of Classifiers

For attack detection, an ensemble approach of

classifiers called stacking has been used for the data plane

of the SDN in this work. KNN and RF have been used as

level 0 classifiers, and Logistic regression has been used as

a level 1 classifier. The reason for selecting these classifiers

has been mentioned in the below subsections.

Algorithm 1 Algorithm to train the Stack of Classifiers

Require: Training_Dataset DTRN (F, T), Testing_Dataset

DTST (F, T), k for K-Fold cross-validation, list of

classifiers C= {C1, C2,, CM }

Ensure: Stack of Trained Models

1: Split the Training Dataset DT RN into k subsets

2: DT RN = {D1, D2, , Dk}

3: Train the base classifiers

4: for m ← 1 To M do

5: Train classifier with each subset of the dataset

6: for d ← 1 To k do

7: Cm(Fd, T) ► T is the target or label of the

dataset

8: end for

9: end for

10: Generate dataset for next level classifier (Final

 estimator C ')

11: for m ← 1 To M do

F ' = Cm(DT ST (F, T))

12: end for

13: Get the dataset for next level classifier

D' = (F ', T)

14: Train second-level classifier C.'

M' = C ' (D')

15: Save the Model

dump(M' , ”Model.pkl”)

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

85

3.2.1. K-Nearest Neighbor (KNN)

KNN is a supervised learning algorithm used for

solving regression and classification problems. It is called a

lazy learner [20], [21] as for any new point, it calculates the

distance between the new point and other points. KNN

handles the noise, giving the best accuracy in attack

detection[22]. The default distance measuring method in

KNN is Minkowski, but Manhattan has been found to

perform best in [31], so it has been used in this work.

3.2.2. Random Forest (RF)

Random Forest (RF) is an ensemble supervised

classifier that works on the bagging principle, whose

diagram is shown in Fig.4. In bagging, the original dataset

is divided into subsets. Let this be {S1, S2,…… ,and Sn}.

These subsets are used to train base classifiers {M1,

M2,………., Mn} respectively. Let the prediction given by

these classifiers be {P1, P2,……., Pn}. The final decision is

taken based on a majority voting basis. The reason for

selecting RF is that RF not only selects the samples

randomly but also selects features randomly. The second

reason is that it reduces variance[24] and hence has been

used in many similar works [25].

3.2.3. Logistic Regression

Logistic regression is a technique that is both easier to

use and more effective for solving issues involving binary

and linear classification. It is a classification model that can

be implemented easily and works very well when applied to

classes that can be separated linearly. It is a categorization

method that sees extensive application in the business

world. A statistical method for binary classification that

may be extended to multiclass classification is known as the

logistic regression model[26].

Fig. 4 Diagram of Bagging Method

4. Experiments and Result Analysis
This section describes the work done for the proposed

SDN attack detection solution in the data plane. Python has

been used as a programming language, SKlearn as the

machine learning library, and Pandas, NumPy, Seaborn, and

other libraries as supporting libraries. The UNSW-NB15

dataset has been used to evaluate the proposed work's

performance. The operating system is Ubuntu 18.04, and

the system has 8GB of RAM and an AMD Pro processor

with a frequency of 1867 MHz.

4.1. Details about the UNSW-NB15 dataset

The suggested model has been evaluated using the

UNSW-NB15 dataset [27]. UNSW Canberra's Cyber Range

Lab used the IXIA PerfectStorm system to compile this

dataset. They generated normal and synthetic contemporary

attack traffic with the Argus and Bro-IDS tools and

extracted 49 features and 9 attack classes. The dataset

provided as training and testing data in CSV format has

been used in this work. The train and test datasets have a

total of 175,341 and 82,332 records, respectively. Fig.5

illustrates the sample counts for the training dataset based

on various classes. Similarly, Fig.6 illustrates the sample

counts for the testing dataset based on various classes.

Fig. 5 Distribution of attacks in the UNSW-NB15 Training Dataset

4.2. Performance Measuring Metrics

Precision, Accuracy, F1 value, Recall, Prediction Time,

and Cohen's Kappa Coefficient were used to assess the

suggested model's performance. These have been explained

in [28], [29]. Let the confusion matrix as shown in Table 1.

The performance evaluation metrics are described as:

4.2.1. Accuracy

This is the ratio of all true predictions to total

predictions, as given in Eq.2. A higher model accuracy

rating indicates better performance.

Table 1. Confusion Matrix

 Predicted Output

Actual

Output

 Attack Normal

Attack TP FN

Normal FP TN

Training Dataset

S2 S1 Sn

M1 M2 Mn

M1 M2 Mn

Voting

Final Prediction

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

86

Fig. 6 Distribution of attacks in UNSW-NB15 Testing Dataset

4.2.2. Precision

It is the ratio of TP to TP & FP. The formula to

calculate precision is shown in Eq.3. A model with a higher

precision value has superior performance.

4.2.3. Recall

It is the ratio of TP to TP & FN. The formula to

calculate recall is shown in Eq.4. A model with a higher

recall value has superior performance.

4.2.4. F1-Score

It is the weighted average of Precision and Recall. The

formula to calculate F1-Score is shown in Eq.5. A model's

F1-Score with a higher value indicates superior

performance.

4.2.5. Prediction Time

The prediction time shows the time taken by a classifier to

predict the outcome by taking features as input.

4.2.6. Cohen's Kappa Coefficient

This metric comes in handy when dealing with

multiclass and unbalanced datasets. In certain instances,

accuracy, precision, recall, and other metrics cannot tell the

whole story, but Kappa can. The Kappa coefficient is

calculated using Eq. 6. 𝑝𝑜 & 𝑝𝑒 are observed agreement and

projected agreement, respectively. Cohen's Kappa can be

less or equal to one. The classifier is meaningless if the

value is less than zero, whereas values near 1 (i.e., near 100

percent) indicate better performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(4)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒

=
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(5)

κ =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

= 1 −
1 − 𝑝𝑜

1 − 𝑝𝑒

(6)

4.3. Feature Selection and Model Evaluation

Feature selection has been performed to get the best

performance of the model. Two filter-based methods,

namely Pearson's Correlation Coefficient (PCC) and Mutual

Information, have been used sequentially to get the best

number of features for the best performance. The value of

PCC has been taken from 0.9 to 0.3. For one PCC value,

features with a higher value than that PCC are removed for

that pass. The features (K) having a lower value than the

PCC of that pass are taken, and all the classifiers, namely

Stack, RF, KNN, and LR, are evaluated for the said metrics.

Further, 10 percent of features with low mutual

information are removed, the top 90 percent of features

based on mutual information (new K) are taken, and the

model is again evaluated. Reduction by 10 percent based on

this approach continues for each cycle till 30 percent of the

number of features for that pass remains. This complete

approach has been shown in algorithm 2. Finally, a list of

features giving the best performance is prepared, which are

recommended for attack detection in the data plane. The

different values of K for each PCC are shown in Table 2.

Table 2. Combination of PCC and K for each pass

Pass PCC K

1 0.9 29 26 23 20 17 14 11 8

2 0.8 26 23 20 17 14 11 8 -

3 0.7 22 19 16 13 10 7 - -

4 0.6 19 17 15 13 11 9 7 5

5 0.5 17 15 13 11 9 7 5 -

6 0.4 12 10 8 6 - - - -

7 0.3 9 8 7 6 5 4 3 -

4.4. Performance analysis with the UNSW-NB15 dataset

The proposed method has been evaluated for all the

mentioned metrics one by one, namely Precision, Accuracy,

F1 value, Recall, Prediction Time, and Cohen's Kappa

Coefficient. Stack has been found to perform best for the

metrics Accuracy, Recall, F1, and CKC, while RF has been

found to perform best for Precision, Prediction Time. This

has been shown in Table 3.

Table 3. Name of the classifiers performing best for the mentioned

metrics

SN Name of metrics
Best

classifier
PCC K

1 Accuracy Stack 0.3 5

2 Recall Stack 0.3 5

3 F1 Stack 0.9 14

4 CKC Stack 0.3 5

5 Precision RF 0.9 26

6 Prediction Time RF 0.7 10

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

87

4.4.1. Evaluation of the models under Accuracy, Recall &

CKC

After running the process as shown in algorithm 2, it is

found that the stack of the classifier for PCC=0.3 and K=5

gives the best accuracy. It is also found that the overall best

values of Recall and CKC are also given by the stack for the

same combination of PCC and K. These have been shown

in Table 4.

Black-coloured values are the values given by the

classifiers; blue values show the best value for the current

combination of PCC and K, and green-coloured values

show the overall best values for all the combinations of

PCC and K. The greater the number of green colours, the

better the model's performance.

Here stack gives the overall best performance for

Accuracy, Recall, and CKC for PCC=0.3 and K=5. For the

remaining metrics, i.e., precision, F1, and execution time,

evaluation is shown one by one below sections.

Algorithm 2 Algorithm to select the best features.

Require: Training and Testing Datasets: train_x, test_x,

train_y, test_y.

List of classifiers C = {C1, C2,….., Cm}

Ensure: List of best features.

1: Loop to select the features having Pearson's Coefficient

value from 0.9 to 0.2

2: for x← 0.9 To 0.2, x = x - 0.1 do

3: Select the features based on Person's Correlation

Coefficient (PCC)

corr_features = correlation(train_x,x) ► Get

the Correlated Features

no_corr_features = count(corr_features) ►

Count the selected features

4: Select the features based on mutual information

(Between features and target)

 Mutual_info_of_ftr =

mutual_info_classif((Train_x_no_corr_features),

train_y)

5: Select K best features from 100% to 20% of selected

features

 start = count(mutual_info_of_f tr)

 end = math.ceil(count(mutual_info)/10) *2

 dec_val = math.ceil (count(mutual_in fo)/10)

6: for y← start To end, y= y – dec_val do

 sel_k_ftr = SelectKBest(mutual_info_of_ftr, k= y)

► Select K best features

7: Train & Test all the classifiers

8: for m ← 1To M do

 Cm.fit(train_x, train_y)

 start_time = current_time()

 predict_y = Cm.predict(test_x)

 total_time = (current_time() - start_time)

 a_scr = accuracy_score(test_y, predict_y)

 p_scr = precision_score(test_y, predict_y)

r_scr = recall_score(test_y, predict_y)

 f1_scr = f1_score(test_y, predict_y)

 ckc_scr = cohen_kappa_score(test_y,predict_y)

 9: end for

10: end for

11: Compare the metrics given by all the classifiers and

select the list of features giving the best performance

12: end for

4.4.2. Evaluation of the Models Under Precision

The overall best precision value is given by RF for

PCC=0.9 and K=26. It is shown in Table 5. RF is

outperforming other classifiers under precision for this

combination of PCC and K, but its overall performance

under other metrics is lower as it secures only one green

value.

4.4.3. Evaluation of the models under F1

The overall best value of F1 is given by stack for

PCC=0.9 and K=14. It is shown in Table 6. Stack is

outperforming other classifiers under F1 for this

combination of PCC and K; its overall performance is lower

under other metrics as it secures only one green value.

4.4.4. Evaluation of the models under Prediction Time

The overall best value of prediction time is given by RF

for PCC=0.7 and K=10. It has been shown in Table 7. RF is

outperforming other classifiers under prediction time for

this combination of PCC and K, but its overall performance

is lower under other metrics as it is securing only one green

value.

Summarily, it is stated that the stack is giving the best

performance under four parameters, namely, number of

features(K), accuracy, recall, and CKC for the PCC=0.3 and

K=5. For precision and prediction time, the value of RF is

better than the stack, where RF gives values of 84.12 and

3.31, respectively, and the stack gives values of 81.95 and

4.65, respectively. Here the performance of RF is a bit

better, but it requires a greater number of features, and it is

not giving overall better values for other metrics. So, the

stack can be used instead of RF for attack detection.

admin
Text Box

admin
Text Box

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

88

Table 4. Performance of different models under different metrics while considering the best accuracy

PCC K Classifier Accuracy Precision Recall F1 CKC Time

0.3 5 Stack 80.93 81.95 80.93 79.85 0.74 4.65

0.3 5 RF 78.60 82.02 78.60 78.68 0.71 8.50

0.3 5 KNN 72.20 79.27 72.20 74.49 0.63 5.77

0.3 5 LR 57.48 50.16 61.34 51.41 0.38 39.20

Table 5. Performance of different models under different metrics while considering the best precision

PCC K Classifier Accuracy Precision Recall F1 CKC Time

0.9 26 Stack 79.04 81.36 79.04 79.83 0.71 291.04

0.9 26 RF 75.43 84.12 75.43 77.75 0.67 4.59

0.9 26 KNN 73.81 79.40 73.81 75.88 0.65 852.85

0.9 26 LR 64.33 72.36 65.67 66.45 0.55 77.95

Table 6. Performance of different models under different metrics while considering the best F1-Value

PCC K Classifier Accuracy Precision Recall F1 CKC Time

0.9 14 Stack 80.06 82.35 80.72 80.83 0.73 9.66

0.9 14 RF 76.87 82.95 76.87 78.00 0.69 4.95

0.9 14 KNN 73.75 79.53 73.75 75.79 0.65 6.70

0.9 14 LR 55.70 65.16 56.86 58.19 0.43 53.45

Table 7. Performance of different models under different metrics while considering the least prediction time

5. Deployment of the Trained Model
In the case of the best F1 value, the stack gives better

values with PCC=0.9 and K=14. In this case, the stack gives

the value of F1 80.83. This is a bit better than 79.85, which

is given by a stack with PCC=0.3 and K=5, but a greater

number of features is the cost.

Also, the stack with PCC=0.9 and K=14 does not

perform better for other metrics. So, it is recommended to

use the stack for attack detection in the data plane with the

top 5 features based on mutual information having the value

of PCC less than 0.3. The names of such features are sbytes,

dbytes, sload, smean, and dmean.

Once the model has been trained, it is distributed across

all OpenFlow-enabled data plane devices from which

attacks are conceivable.

Fig. 7 Attack detection module enabled data plane

This is seen in Fig. 7 Once an attack is launched from

any data plane device, it can be detected by a module put in

the data plane itself. The attack detection procedure is

depicted in algorithm 3. If attack traffic is identified, it is

Algorithm 3 Algorithm for live attack detection.

Require: Network traffic coming to the Openflow-

enabled devices.

Ensure: Prediction by the model M as Attack or

Normal traffic

1: Capture the required features

 F = π(f1,f2,f3…fn) (Traffic)

2: Check if the traffic is an attack or a normal traffic

3: if M.predict(F) = attack then

4: Drop the packets and exit.

5: else

6: Search flow entries of all the FlowTables of all

switches.

7: for n ← 1 To count(Switch[flowtable]) do

8: for i ← 1 To len(Switchn[flowtable]) do

9: Check if any such entry already exists

10: if Packet_Heater_Info == [flow_entry_Match]i,

then

PCC K Classifier Accuracy Precision Recall F1 CKC Time

0.7 10 Stack 79.29 79.98 79.29 78.76 0.71 5.52

0.7 10 RF 77.17 81.98 77.17 77.94 0.69 3.31

0.7 10 KNN 72.34 77.85 72.34 74.47 0.63 5.45

0.7 10 LR 60.61 62.88 61.87 60.90 0.47 43.88

admin
Text Box

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

89

11: Follow the pre-installed rule.

12: else

13: Send Packet_In request to the controller.

14: end if

15: end for

16: end for

17: end if

 blocked in the data plane. If the traffic is identified as

normal traffic, the SDN will function normally.

6. Contribution

This study examines a decentralized attack detection

strategy for Software-Defined Networks. In this technique,

instead of forwarding all traffic to the controller, the

OpenFlow-enabled devices of the SDN perform preliminary

threat detection work. This offers two distinct benefits.

First, the data plane devices can identify the attack,

reducing the controller's workload and allowing it to

conduct other crucial tasks. Second, idle data plane

resources can be exploited for some meaningful activities.

Feature selection employing Pearson's Correlation

Coefficient and Mutual information has been performed to

improve attack detection lighter and more efficiently.

To achieve this goal, the data plane devices of the SDN

employ a stack of classifiers that outperforms the individual

classifiers used to build the stack. The algorithms for

training the stack and classifiers, selecting the best

characteristics, and detecting an attack in live traffic are

described in detail.

7. Conclusion and Future Work
This work highlights the disadvantage of centralized

IDS implemented in the controller. On the one hand, while

the controller becomes tremendously busy after the attack,

the data plane's resources are idle. To counteract these

shortcomings, a structure with dual benefits is designed.

First, a suggested classifier, stack, outperforming individual

classifiers in attack detection is selected. Second, a

decentralized IDS is installed in the data plane's OpenFlow-

enabled devices as opposed to the controller, such that

network attacks are only detected and dropped in the data

plane.

The performance of the model is estimated utilizing the

UNSB-NB15 datasets. The classifier stack surpasses the

individual classifiers regarding the accuracy, recall, CKC,

and feature count. Its performance is slightly inferior to that

of other classifiers in terms of precision, F1, and prediction

time, but when other parameters are considered, the

difference is manageable; therefore, the classifier stack is

proposed to be installed in the network's data plane to

identify the attacks in the live traffic.

Future improvements can be made for multi-controller

SDN, and the auxiliary controller can be utilized to cross-

validate whether the attack detected by the switch is

accurate. Additionally, deep learning can be utilized to

increase the model's performance.

References
[1] Huseyin Polat, Onur Polat, and Aydin Cetin, “Detecting DDoS Attacks in Software-Defined Networks Through Feature Selection

Methods and Machine Learning Models,” Sustainability, vol. 12, no. 3, 2020, [CrossRef] [Google Scholar] [Publisher link]

[2] Jian Su et al., “Redundant Rule Detection for Software-Defined Networking,” KSII Transactions on Internet and Information Systems,

vol. 14, no. 6, pp. 2735–2751, 2020, [CrossRef] [Google Scholar] [Publisher link]

[3] Safaa Mahrach, and Abdelkrim Haqiq, “DDoS Flooding Attack Mitigation in Software Defined Networks,” International Journal of

Advanced Computer Science and Applications, vol. 11, no. 1, 2020, [CrossRef] [Google Scholar] [Publisher link]

[4] Lusani Mamushiane, Albert Lysko, and Sabelo Dlamini, “A Comparative Evaluation of the Performance of Popular SDN Controllers,”

Wireless Days (WD), pp. 54–59, 2018, [CrossRef] [Google Scholar] [Publisher link]

[5] Ansam Khraisat et al., “Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges,” Cybersecurity, vol. 2, no. 1,

2019, [CrossRef] [Google Scholar] [Publisher link]

[6] Smitha Rajagopal, Poornima Panduranga Kundapur, and Katiganere Siddaramappa Hareesha, “A Stacking Ensemble for Network

Intrusion Detection Using Heterogeneous Datasets,” Security and Communication Networks, vol. 2020, 2020, [CrossRef] [Google

Scholar] [Publisher link]

[7] Shanshan Yu et al., “A Cooperative DDoS Attack Detection Scheme Based on Entropy and Ensemble Learning in SDN,” EURASIP

Journal on Wireless Communications and Networking, vol. 2021, 2021. [CrossRef] [Google Scholar] [Publisher link]

[8] R. Sanjeetha et al., “Mitigation of Controller Induced DDoS Attack on Primary Server in High Traffic Scenarios of Software Defined

Networks,” International Symposium on Advanced Networks and Telecommunication Systems (ANTS), pp. 1-6, 2018. [CrossRef]

[Google Scholar] [Publisher link]

[9] Jin Ye et al., “A DDoS Attack Detection Method Based on SVM in Software Defined Network,” Security and Communication

Networks, vol. 2018, 2018, [CrossRef] [Google Scholar] [Publisher link]

[10] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir, “Network Anti-Spoofing with SDN Data Plane,” IEEE INFOCOM 2017 - IEEE

Conference on Computer Communications, 2017. [CrossRef] [Google Scholar] [Publisher link]

[11] Liang Tan et al., “A New Framework for DDoS Attack Detection and Defense in SDN Environment,” IEEE Access, vol. 8, pp.

161908–161919, 2020, [CrossRef] [Google Scholar] [Publisher link]

[12] Kubra Kalkan et al., “JESS: Joint Entropy-Based DDoS Defense Scheme in SDN,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 10, pp. 2358–2372, 2018. [CrossRef] [Google Scholar] [Publisher link]

https://doi.org/10.3390/su12031035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+DDoS+Attacks+in+Software-Defined+Networks+Through+Feature+Selection+Methods+and+Machine+Learning+Models&btnG=
https://www.mdpi.com/2071-1050/12/3/1035
https://doi.org/10.3837/tiis.2020.06.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Redundant+Rule+Detection+for+Software-Defined+Networking&btnG=
https://itiis.org/digital-library/23602
https://dx.doi.org/10.14569/IJACSA.2020.0110185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DDoS+Flooding+Attack+Mitigation+in++Software+Defined+Networks&btnG=
https://thesai.org/Publications/ViewPaper?Volume=11&Issue=1&Code=IJACSA&SerialNo=85
https://doi.org/10.1109/WD.2018.8361694
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Evaluation+of+the+Performance+of+Popular+SDN+Controllers&btnG=
https://ieeexplore.ieee.org/document/8361694
https://doi.org/10.1186/s42400-019-0038-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+of+Intrusion+Detection+Systems%3A+Techniques%2C+Datasets+and+Challenges&btnG=
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0038-7
https://doi.org/10.1155/2020/4586875
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Stacking+Ensemble+for+Network+Intrusion+Detection+Using+Heterogeneous+Datasets&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Stacking+Ensemble+for+Network+Intrusion+Detection+Using+Heterogeneous+Datasets&btnG=
https://www.hindawi.com/journals/scn/2020/4586875/
https://doi.org/10.1186/s13638-021-01957-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Cooperative+DDoS+Attack+Detection+Scheme+Based+on+Entropy+and+Ensemble+Learning+in+SDN&btnG=
https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-021-01957-9
https://doi.org/10.1109/ANTS.2018.8710066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mitigation+of+Controller+Induced+DDoS+Attack+on+Primary+Server+in+High+Traffic+Scenarios+of+Software+Defined+Networks&btnG=
https://ieeexplore.ieee.org/document/8710066
https://doi.org/10.1155/2018/9804061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+DDoS+Attack+Detection+Method+Based+on+SVM+in+Software+Defined+Network&btnG=
https://www.hindawi.com/journals/scn/2018/9804061/
https://doi.org/10.1109/INFOCOM.2017.8057008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Anti-Spoofing+With+SDN+Data+Plane&btnG=
https://ieeexplore.ieee.org/document/8057008
https://doi.org/10.1109/ACCESS.2020.3021435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Framework+for+DDoS+Attack+Detection+and+Defense+in+SDN+Environment&btnG=
https://ieeexplore.ieee.org/document/9186014
https://doi.org/10.1109/JSAC.2018.2869997
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=JESS%3A+Joint+Entropy-Based+DDoS+Defense+Scheme+in+SDN&btnG=
https://ieeexplore.ieee.org/document/8466805
admin
Text Box

Ravindra Kumar Chouhan et al. / IJETT, 71(3), 81-90, 2023

90

[13] Prashant Kumar et al., “SAFETY: Early Detection and Mitigation of TCP SYN Flood Utilizing Entropy in SDN,” IEEE Transactions

on Network and Service Management, vol. 15, no. 4, pp. 1545–1559, 2018. [CrossRef] [Google Scholar] [Publisher link]

[14] Kshira Sagar Sahoo et al., “An Evolutionary SVM Model for DDOS Attack Detection in Software Defined Networks,” IEEE Access,

vol. 8, pp. 132502–132513, 2020. [CrossRef] [Google Scholar] [Publisher link]

[15] Nidhi Dandotiya, Abhinandan Singh Dandotiya, and Shashikant Gupta, “Impact of Software Defined Networking for Wireless Sensor

Networks,” SSRG International Journal of Computer Science and Engineering, vol. 6, no. 4, pp. 6-10, 2019. [CrossRef] [Publisher

link]

[16] Sapna Singh Kshatri et al., “An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked

Generalization: An Ensemble Approach,” IEEE Access, vol. 9, pp. 67488–67500, 2021, [CrossRef] [Google Scholar] [Publisher link]

[17] Mohammed Al-Sarem et al., “An Optimized Stacking Ensemble Model for Phishing Websites Detection,” Electronics, vol. 10, no. 11,

2021, [CrossRef] [Google Scholar] [Publisher link]

[18] Mwamba Kasongo Dahouda, and Inwhee Joe, “A Deep-Learned Embedding Technique for Categorical Features Encoding,” IEEE

Access, vol. 9, pp. 114381–114391, 2021, [CrossRef] [Google Scholar] [Publisher link]

[19] Gautam Srivastava et al., “An Ensemble Model for Intrusion Detection in the Internet of Softwarized Things,” ACM International

Conference Proceeding Series, pp. 25–30, 2021. [CrossRef] [Google Scholar] [Publisher link]

[20] Shi Dong, and Mudar Sarem, “DDoS Attack Detection Method Based on Improved KNN with the Degree of DDoS Attack in

Software-Defined Networks,” IEEE Access, vol. 8, pp. 5039–5048, 2020, [CrossRef] [Google Scholar] [Publisher link]

[21] Mamta Punjabi, and Gend Lal Prajapati, “Lazy Learner and PCA: An Evolutionary Approach,” 2017 Computing Conference, pp. 312–

316, 2017. [CrossRef] [Google Scholar] [Publisher link]

[22] Anupama Mishra et al., “Classification Based Machine Learning for Detection of DDoS Attack in Cloud Computing,” IEEE

International Conference on Consumer Electronics, 2021, [CrossRef] [Google Scholar] [Publisher link]

[23] Sangeetha M.V, and Bhavithra J, “Applying Packet Score Technique in SDN for DDoS Attack Detection,” SSRG International

Journal of Computer Science and Engineering, vol. 5, no. 6, pp. 20-24, 2018. [CrossRef] [Publisher link]

[24] S. R. Khonde, and V. Ulagamuthalvi, “Ensemble and Feature Selection-Based Intrusion Detection System for Multi-Attack

Environment,” 2020 5th International Conference on Computing, Communication and Security (ICCCS), 2020. [CrossRef] [Google

Scholar] [Publisher link]

[25] Rifkie Primartha, and Bayu Adhi Tama, “Anomaly Detection Using Random Forest: A Performance Revisited,” Proceedings of 2017

International Conference on Data and Software Engineering, ICoDSE, pp. 1–6, 2017. [CrossRef] [Google Scholar] [Publisher link]

[26] Abdulhamit Subasi, Practical Machine Learning for Data Analysis Using Python, 2020. [Google Scholar] [Publisher link]

[27] Nour Moustafa, and Jill Slay, “UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15

Network Data Set),” 2015 Military Communications and Information Systems Conference (MilCIS) pp. 1-6, 2015. [CrossRef] [Google

Scholar] [Publisher link]

[28] Salma Elhag et al., “A Multi-Objective Evolutionary Fuzzy System to Obtain A Broad and Accurate Set of Solutions in Intrusion

Detection Systems,” Soft Computing, vol. 23, pp. 1321–1336, 2019, [CrossRef] [Google Scholar] [Publisher link]

[29] Samson Ho et al., “A Novel Intrusion Detection Model for Detecting Known and Innovative Cyberattacks Using Convolutional Neural

Network,” IEEE Open Journal of the Computer Society, vol. 2, pp. 14–25, 2021. [CrossRef] [Google Scholar] [Publisher link]

[30] Yang Wang et al., “SGS: Safe-Guard Scheme for Protecting Control Plane against DDoS Attacks in Software-Defined Networking,”

IEEE Access, vol. 7, pp. 34699–34710, 2019, [CrossRef] [Google Scholar] [Publisher link]

[31] Diyana Tehrany Dehkordy, and Abbas Rasoolzadegan, “DroidTKM: Detection of Trojan Families Using the KNN Classifier Based on

Manhattan Distance Metric,” 2020 10th International Conference on Computer and Knowledge Engineering, ICCKE, pp. 136–141,

2020. [CrossRef] [Google Scholar] [Publisher link]

https://doi.org/10.1109/TNSM.2018.2861741
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SAFETY%3A+Early+Detection+and+Mitigation+of+TCP+SYN+Flood+Utilizing+Entropy+in+SDN&btnG=
https://ieeexplore.ieee.org/document/8423699
https://doi.org/10.1109/ACCESS.2020.3009733
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Evolutionary+SVM+Model+for+DDOS+Attack+Detection+in+Software+Defined+Networks&btnG=
https://ieeexplore.ieee.org/document/9142183
https://doi.org/10.14445/23488387/IJCSE-V6I4P102
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=312
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=312
https://doi.org/10.1109/ACCESS.2021.3075140
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Empirical+Analysis+of+Machine+Learning+Algorithms+for+Crime+Prediction+Using+Stacked+Generalization%3A+An+Ensemble+Approach&btnG=
https://ieeexplore.ieee.org/document/9410543
https://doi.org/10.3390/electronics10111285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Optimized+Stacking+Ensemble+Model+for+Phishing+Websites+Detection&btnG=
https://www.mdpi.com/2079-9292/10/11/1285
https://doi.org/10.1109/ACCESS.2021.3104357
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Deep-Learned+Embedding+Technique+for+Categorical+Features+Encoding&btnG=
https://ieeexplore.ieee.org/document/9512057
https://doi.org/10.1145/3427477.3429987
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Ensemble+Model+for+Intrusion+Detection+in+the+Internet+of+Softwarized+Things&btnG=
https://dl.acm.org/doi/10.1145/3427477.3429987
https://doi.org/10.1109/ACCESS.2019.2963077
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DDoS+Attack+Detection+Method+Based+on+Improved+KNN+With+the+Degree+of+DDoS+Attack+in+Software-Defined+Networks&btnG=
https://ieeexplore.ieee.org/document/8945375
https://doi.org/10.1109/SAI.2017.8252120
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lazy+Learner+and+PCA%3A+An+Evolutionary+Approach&btnG=
https://ieeexplore.ieee.org/document/8252120
https://doi.org/10.1109/ICCE50685.2021.9427665
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+Based+Machine+Learning+for+Detection+of+DDoS+Attack+in++Cloud+Computing&btnG=
https://ieeexplore.ieee.org/document/9427665
https://doi.org/10.14445/23488387/IJCSE-V5I6P104
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=271
https://doi.org/10.1109/ICCCS49678.2020.9276875
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+and+Feature+Selection-Based+Intrusion+Detection+System+for+Multi-Attack+Environment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+and+Feature+Selection-Based+Intrusion+Detection+System+for+Multi-Attack+Environment&btnG=
https://ieeexplore.ieee.org/document/9276875
https://doi.org/10.1109/ICODSE.2017.8285847
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+Random+Forest%3A+A+Performance+Revisited&btnG=
https://ieeexplore.ieee.org/document/8285847
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+Machine+Learning+for+Data+Analysis+Using+Python&btnG=
https://www.sciencedirect.com/book/9780128213797/practical-machine-learning-for-data-analysis-using-python
https://doi.org/10.1109/MilCIS.2015.7348942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UNSW-NB15%3A+A+Comprehensive+Data+Set+for+Network+Intrusion+Detection+Systems+%28UNSW-NB15+Network+Data+Set%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UNSW-NB15%3A+A+Comprehensive+Data+Set+for+Network+Intrusion+Detection+Systems+%28UNSW-NB15+Network+Data+Set%29&btnG=
https://ieeexplore.ieee.org/document/7348942
https://doi.org/10.1007/s00500-017-2856-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Multi-Objective+Evolutionary+Fuzzy+System+to+Obtain+A+Broad+and+Accurate+Set+of+Solutions+in++Intrusion+Detection+Systems&btnG=
https://link.springer.com/article/10.1007/s00500-017-2856-4
https://doi.org/10.1109/OJCS.2021.3050917
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Intrusion+Detection+Model+for+Detecting+Known+and+Innovative+Cyberattacks+Using+Convolutional+Neural+Network&btnG=
https://ieeexplore.ieee.org/document/9320588
https://doi.org/10.1109/ACCESS.2019.2895092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SGS%3A+Safe-Guard+Scheme+for+Protecting+Control+Plane+against+DDoS+Attacks+in+Software-Defined+Networking&btnG=
https://ieeexplore.ieee.org/document/8626095
https://doi.org/10.1109/ICCKE50421.2020.9303720
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DroidTKM%3A+Detection+of+Trojan+Families+Using+the+KNN+Classifier+Based+on+Manhattan+Distance+Metric&btnG=
https://ieeexplore.ieee.org/document/9303720

