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Abstract - For the last few years, the Software Defined Network (SDN) architecture has grown in popularity in industries and 

academia due to its advantages over traditional networks. Because of its emergence, it has attracted many attackers who 

interfere with the network's normal operation. To defend against such attacks, the SDN controller centrally monitors all 

network activities and then takes appropriate action. This task consumes the majority of the controller's resources, resulting 

in controller performance degradation. To address this problem, this paper proposes an architecture in which data plane 

resources are used for intrusion detection, freeing up the controller for other network-related tasks. In the switch of the data 

plane, a stack of classifiers composed of Random Forest (RF) and K-Nearest Neighbour (KNN) at level 0 and Logistic 

Regression (LR) at level 1 is used. Also, to fasten the attack detection process, the appropriate features have been selected 

using Pearson's Correlation Coefficient and mutual information of the features. The UNSW-NB15 dataset has been used to 

demonstrate this architecture's performance. The performance has been measured under the metrics Precision, Accuracy, F1 

value, Recall, Prediction Time, and Cohen's Kappa Coefficient. In terms of recall, accuracy, CKC, and feature count, the 

classifier stack surpasses the individual classifiers. Its performance is slightly inferior to that of other classifiers under 

precision, F1, and prediction time, but the difference is manageable when other parameters are considered. Hence, the stack 

of the classifier is selected for deployment in the data plane devices. 

 

Keywords - Intrusion Detection System (IDS), KNN, Machine Learning, OpenFlow, Random Forest, Software Defined 

Network (SDN), Stack of Classifiers. 

 

1. Introduction 
SDN is an innovative approach to the design of 

computer networks that offers advantages over traditional 

network architectures, such as programmability, centralized 

control, vendor neutrality, expandability, quickness, and 

lower capital and operational expenditure [1], [2]. The SDN 

diagram is depicted in Figure 1. The infrastructure layer 

comprises all network devices, both physical and virtual, 

concerned with forwarding data. Examples of such devices 

include switches and routers. The control layer is the layer 

that contains the controller, which is the brain of the SDN 

[3] and thus controls all network-related activities that occur 

in the network. This functionality gives the controller a 

comprehensive overview of the network[4]. The SDN 

controller is the one location for all logic involved in 

decision-making; thus, all decisions are made by the 

controller. The third layer, the application layer, sits on top 

of the SDN architecture and serves as the user interface. 

Users can interact with the control plane via applications 

developed by them to provide instructions to the controller, 

which can then instruct the data plane to carry out those 

instructions. 
 

Instructions for transferring information between the 

control and data planes are known as southbound rules. As a 

southbound rule, the OpenFlow protocol is used. The fields 

of OpenFlow protocol are used to send and receive various 

information between the controller and data plane devices, 

allowing necessary decisions for data coming into or 

leaving the network. In addition, some APIs known as 

northbound rules are used to provide communication 

between the controller and the application layer. 

 
Fig. 1 Diagram of SDN 
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Because of the popularity of SDN architecture in new 

environments such as industry networks, data centres, and 

clouds has attracted many attackers to steal user-related data 

from the network or clog the network in such a way that it 

cannot fulfil genuine requests of the users. To choke the 

network, attackers flood the network with different types of 

traffic, such as TCP, UDP, or ICMP traffic, causing the 

network's critical resources to become overburdened in 

responding to these requests (DDoS attack). To counter 

such attacks, the controller has an integrated intrusion 

detection system, which analyses the behaviour of traffic 

between the controller and data plane devices and prevents 

attacks by enforcing the rules at the data plane level. 

In the preceding scenario, the controller makes all 

decisions related to intrusion detection, so it consumes a 

large portion of the controller's resources, causing the 

controller's performance to deteriorate and, as a result, the 

network's responsiveness to suffering. At the same time, the 

resources available in data plane devices remain idle, and 

while they are doing their work, a large portion of their 

resources remain idle. If the resources available with these 

devices could be used for intrusion detection, some of the 

burdens from the controller would be lifted, allowing the 

controller to perform its other more important tasks more 

efficiently. The attacks that were entering the network 

through data plane devices can only be stopped there, and 

the spread of these attacks in the network can be stopped. 

Apart from the above point, to make the prediction 

faster, a smaller number of features should be used in the 

classifier for making a prediction. For this purpose, in this 

work, feature selection has been performed. Pearson's 

Correlation Coefficient and Mutual Information of the 

features have been considered. A smaller number of 

selected features provide faster prediction in data plane 

devices of SDN. 

There are two types of attack detection techniques used 

for attack detection: Anomaly-based IDS (AIDS) and 

Signature-based IDS (SIDS) [5]. SIDS are systems that 

store the pattern or signature of attacks in a database. An 

attack occurs when a new request arrives with a signature 

that matches one previously stored pattern. The advantage 

of SIDS is that it works more efficiently and quickly but 

fails when subjected to unforeseen attacks.  

AIDS is being used to combat this problem. In the case 

of AIDS, a model is learned by observing normal traffic 

behaviour. Any traffic that deviates from normal behaviour 

is considered an attack. In the proposed work, AIDS is used 

to detect attacks in the SDN data plane using a stack of 

classifiers. 

It is found in this work that using the classifier stack 

results in better performance. [6] has also demonstrated 

stack performance in their work. A classifier stack is one in 

which more than one classifier is used to predict an attack. 

Fig. 2 depicts the classifier stack diagram. The level 0 

classifiers are given the training data, and the predictions 

made by the level 0 classifiers are utilized as input into the 

level 1 classifier, also known as the final estimator. The 

prediction provided by the final estimator is used as the 

trained model's final prediction. 

The paper is divided into seven sections: Section 2 

presents Related Work, Section 3 presents Proposed Work, 

Section 4 presents Experiments and Result Analysis, 

Section 5 presents Deployment of the Trained Model, 

Section 6 presents Contribution, and finally, Section 7 

presents the Conclusion and Future Work. 

2. Related Work 
For attack detection and mitigation, much work has 

been done. Most works are implemented in the control 

plane of the SDN [7,23]. The paper [8] demonstrates 

investigating a DDoS attack on a primary server. The attack 

is probed by flooding the switch that connects to the main 

server with a huge quantity of packets containing 

destination IP addresses. The (POX) controller repeatedly 

installs flow table rules into this switch, causing its flow 

table space to be exhausted. The article discusses a scenario 

of a weak attack in which flow entries that the controller 

directly installs are considered to attack traffic. However, 

flow entries that are requested by the switch are considered 

to be legal traffic. The scenario is described in the paper. 

Mitigation is implemented by manually manipulating the 

"TIMEOUT" parameter value without an SDN application. 

[9] proposes a method for detecting DDoS attacks using 

SVM algorithms. It uses flow data available to controllers 

to form a 6-tuple, which is then used to learn and classify 

traffic into normal and spurious traffic on the control plane.  

Fig. 2 Stack of the classifiers 
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Fig. 3 Flow Diagram of Proposed Method 

 

To prevent attacks, the authors of [10] proposed a 

distributed design of stateful switches as an alternative to 

traditional SDN centralized solutions, which may be more 

susceptible to computational resource limitations. Because 

these methods require less time to evaluate a significant 

volume of traffic, entropy-based methods are widely used to 

identify attacks in SDN networks [11]. [12] has presented a 

control plane DDoS attack detection solution based on 

entropy. The Ryu controller and Mininet were used to 

simulate several attacks for simulation purposes. Using 

entropy to determine the unpredictability of the flow data 

[13] has offered a strategy for early detection and mitigation 

of DDoS attacks. They have used Floodlight and Mininet to 

develop a variety of attacks and scenarios for their work. 

[14,15] have employed SVM augmented by kernel principal 

component analysis (KPCA), utilizing KPCA to reduce the 

dimension of feature vectors and a genetic approach to 

optimize SVM parameters. [30] have suggested a technique 

for attack detection that employs both SDN layers. One 

controller functions as the master controller, while the other 

functions as the slave controller. For the demonstration, the 

Mininet emulator and Ryu Controller were utilized. In the 

data plane, [14,15] uses attack detection systems based on 

triggers. In the control plane, KNN and K-means were 

utilized to determine whether or not the warning provided 

by the data plane was accurate. In the data plane, the 

Packet-In message is observed; if its rate is high, the switch 

notifies the controller by sending an alarm. The controller 

then retrieves five vector tuples from the respective switch's 

traffic and utilizes them for prediction. The defence plan is 

activated if the controller identifies it as an attack. ONOS is 

employed as the SDN controller to demonstrate their work, 

and Mininet is used to establish the SDN topology. 

3. Proposed Work 
In this section, the architecture of the proposed work 

has been discussed. The work has been completed in 3 

phases, as shown in Fig.3. In phase 1; data preprocessing is 

done. 
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In phase 2, the stack of the classifiers, an ensemble of 

classifiers [16], [17], which at level 0 includes KNN and RF 

and at level 1 includes Logistic regression, was trained. To 

check the model's performance, the testing data is given to 

the trained model and the Precision, Accuracy, F1 value, 

Recall, Prediction Time, and Cohen's Kappa Coefficient are 

calculated. In Phase 3, the trained and tested model is 

installed in the data plane, i.e., in the switch of the SDN. 

Now whenever any new request comes to the switch, the 

required features are extracted from the live traffic, and then 

preprocessing is performed. The model (IDS) installed in 

the switch of the SDN takes the values of the features for 

which it has been trained and checks whether the coming 

traffic is normal traffic or attack traffic. If the traffic is 

predicted as the attack traffic, it is blocked by the switch 

itself. If the traffic is predicted as normal traffic, then the 

switch first searches its FlowTable to check whether or not 

the information related to dealing with this type of traffic 

exists. Suppose the information is already available in the 

FlowTable in the form of a flow entry. In that case, the 

action is taken accordingly. If there is no information 

available in the switch table, then the request to ask how to 

deal with these packets is sent to the controller using 

OpenFlow protocol in the form of a PacketIn request. The 

controller then sends the response using the same protocol 

but in the form of PacketOut action, and the sent rule is 

installed in the FlowTable in the form of flow entry. 

3.1. Dataset Preprocessing 

Dataset preprocessing is an essential part of any 

machine learning classifier. Under this, all non-numerical 

data of the dataset is converted into some numerical form. 

Also, it might give more weightage to higher numeric 

values, so all the numeric values are brought in the same 

scale. Only after performing the task of preprocessing the 

values of the dataset can it be used for training and testing 

the classifiers. In the current work, some essential 

operations mentioned below have been performed on the 

UNSW-NB15 dataset. 

3.1.1. Feature Mapping of Categorical Features 

Some features of the dataset contain categorical values, 

so to deal with such values, Label Encoding (LE) and One 

Hot Encoding (OHE) have been performed. In the case of 

Label Encoding, 'n' different values are generated, and in 

the case of OHE' n', different columns are generated if there 

are 'n' different values in that feature[18]. 

3.1.2. Imputing the missing values 

Some features contain missing values. Before using 

such features for training and testing, these missing values 

need to be removed. Many approaches are used to remove 

those missing values, like taking that feature's maximum, 

minimum, and average values to fill the missing values. 

Sometimes those rows/columns are removed altogether. In 

this work, the number of samples is sufficient, so the 

records having missing values have been removed.  

3.1.3. Normalization  

If the difference among the values of features is big, 

then it can train the model in a biased manner giving more 

weightage to the features having higher values. To deal with 

such conditions, standardization has been done to scale the 

value of this work. In standardization, the value of a feature 

is scaled in such a manner that its mean comes to zero, and 

the standard deviation comes to 1. The formula to perform 

normalization using a standard scaler is shown in Eq. 

(1)[19]. 

𝑧 =
𝑥𝑖 − μ

σ
 

where μ =
1

𝑁
∑ (𝑥𝑖)𝑁

𝑖=1 andσ = √
1

𝑁
∑ (𝑥𝑖 − μ)2𝑁

𝑖=1  
 

(1) 

 

3.2. Proposed Stack of Classifiers  

For attack detection, an ensemble approach of 

classifiers called stacking has been used for the data plane 

of the SDN in this work. KNN and RF have been used as 

level 0 classifiers, and Logistic regression has been used as 

a level 1 classifier. The reason for selecting these classifiers 

has been mentioned in the below subsections.  
 

Algorithm 1 Algorithm to train the Stack of Classifiers 

Require: Training_Dataset DTRN (F, T), Testing_Dataset 

DTST (F, T), k for K-Fold cross-validation, list of 

classifiers C= {C1, C2, ....., CM } 

Ensure: Stack of Trained Models 

1:  Split the Training Dataset DT RN into k subsets  

2:  DT RN = {D1, D2, . . . . . . , Dk}  

3:  Train the base classifiers  

4:  for m ← 1 To M do  

5:      Train classifier with each subset of the dataset  

6:      for d ← 1 To k do  

7:          Cm(Fd, T) ► T is the target or label of  the 

dataset  

8:      end for  

9:  end for  

10: Generate dataset for next level classifier (Final 

 estimator C ' )  

11:  for m ← 1 To M do  

F ' = Cm(DT ST (F, T))  

12: end for  

13:  Get the dataset for next level classifier  

D' = (F ', T)  

14:  Train second-level classifier C.'  

M' = C ' (D')  

15:  Save the Model  

dump( M' , ”Model.pkl” ) 
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3.2.1. K-Nearest Neighbor (KNN) 

KNN is a supervised learning algorithm used for 

solving regression and classification problems. It is called a 

lazy learner [20], [21] as for any new point, it calculates the 

distance between the new point and other points. KNN 

handles the noise, giving the best accuracy in attack 

detection[22]. The default distance measuring method in 

KNN is Minkowski, but Manhattan has been found to 

perform best in [31], so it has been used in this work. 

3.2.2. Random Forest (RF) 

Random Forest (RF) is an ensemble supervised 

classifier that works on the bagging principle, whose 

diagram is shown in Fig.4. In bagging, the original dataset 

is divided into subsets. Let this be {S1, S2,…… ,and Sn}. 

These subsets are used to train base classifiers {M1, 

M2,………., Mn} respectively. Let the prediction given by 

these classifiers be {P1, P2,……., Pn}. The final decision is 

taken based on a majority voting basis. The reason for 

selecting RF is that RF not only selects the samples 

randomly but also selects features randomly. The second 

reason is that it reduces variance[24] and hence has been 

used in many similar works [25]. 

3.2.3. Logistic Regression  

Logistic regression is a technique that is both easier to 

use and more effective for solving issues involving binary 

and linear classification. It is a classification model that can 

be implemented easily and works very well when applied to 

classes that can be separated linearly. It is a categorization 

method that sees extensive application in the business 

world. A statistical method for binary classification that 

may be extended to multiclass classification is known as the 

logistic regression model[26]. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 4 Diagram of Bagging Method 

4. Experiments and Result Analysis 
This section describes the work done for the proposed 

SDN attack detection solution in the data plane. Python has 

been used as a programming language, SKlearn as the 

machine learning library, and Pandas, NumPy, Seaborn, and 

other libraries as supporting libraries. The UNSW-NB15 

dataset has been used to evaluate the proposed work's 

performance. The operating system is Ubuntu 18.04, and 

the system has 8GB of RAM and an AMD Pro processor 

with a frequency of 1867 MHz. 

4.1. Details about the UNSW-NB15 dataset  

The suggested model has been evaluated using the 

UNSW-NB15 dataset [27]. UNSW Canberra's Cyber Range 

Lab used the IXIA PerfectStorm system to compile this 

dataset. They generated normal and synthetic contemporary 

attack traffic with the Argus and Bro-IDS tools and 

extracted 49 features and 9 attack classes. The dataset 

provided as training and testing data in CSV format has 

been used in this work. The train and test datasets have a 

total of 175,341 and 82,332 records, respectively. Fig.5 

illustrates the sample counts for the training dataset based 

on various classes. Similarly, Fig.6 illustrates the sample 

counts for the testing dataset based on various classes. 

 
Fig. 5 Distribution of attacks in the UNSW-NB15 Training Dataset 

4.2. Performance Measuring Metrics 

Precision, Accuracy, F1 value, Recall, Prediction Time, 

and Cohen's Kappa Coefficient were used to assess the 

suggested model's performance. These have been explained 

in [28], [29]. Let the confusion matrix as shown in Table 1. 

The performance evaluation metrics are described as: 
 

4.2.1. Accuracy 

This is the ratio of all true predictions to total 

predictions, as given in Eq.2. A higher model accuracy 

rating indicates better performance. 

 
Table 1. Confusion Matrix 

 Predicted Output 

Actual 

Output 

 Attack Normal 

Attack TP FN 

Normal FP TN 

Training Dataset 

S2 S1 Sn 

M1 M2 Mn 

M1 M2 Mn 

Voting 

Final Prediction 
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Fig. 6 Distribution of attacks in UNSW-NB15 Testing Dataset 

 

4.2.2. Precision 

It is the ratio of TP to TP & FP. The formula to 

calculate precision is shown in Eq.3. A model with a higher 

precision value has superior performance. 

 

4.2.3. Recall 

It is the ratio of TP to TP & FN. The formula to 

calculate recall is shown in Eq.4. A model with a higher 

recall value has superior performance. 

 

4.2.4. F1-Score 

It is the weighted average of Precision and Recall. The 

formula to calculate F1-Score is shown in Eq.5. A model's 

F1-Score with a higher value indicates superior 

performance. 

 

4.2.5. Prediction Time 

The prediction time shows the time taken by a classifier to 

predict the outcome by taking features as input.  

 

4.2.6. Cohen's Kappa Coefficient 

This metric comes in handy when dealing with 

multiclass and unbalanced datasets. In certain instances, 

accuracy, precision, recall, and other metrics cannot tell the 

whole story, but Kappa can. The Kappa coefficient is 

calculated using Eq. 6. 𝑝𝑜 & 𝑝𝑒 are observed agreement and 

projected agreement, respectively. Cohen's Kappa can be 

less or equal to one. The classifier is meaningless if the 

value is less than zero, whereas values near 1 (i.e., near 100 

percent) indicate better performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒

=
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(5) 

κ =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

= 1 −
1 − 𝑝𝑜

1 − 𝑝𝑒

 

 

(6) 

4.3. Feature Selection and Model Evaluation 

Feature selection has been performed to get the best 

performance of the model. Two filter-based methods, 

namely Pearson's Correlation Coefficient (PCC) and Mutual 

Information, have been used sequentially to get the best 

number of features for the best performance. The value of 

PCC has been taken from 0.9 to 0.3. For one PCC value, 

features with a higher value than that PCC are removed for 

that pass. The features (K) having a lower value than the 

PCC of that pass are taken, and all the classifiers, namely 

Stack, RF, KNN, and LR, are evaluated for the said metrics. 

Further, 10 percent of features with low mutual 

information are removed, the top 90 percent of features 

based on mutual information (new K) are taken, and the 

model is again evaluated. Reduction by 10 percent based on 

this approach continues for each cycle till 30 percent of the 

number of features for that pass remains. This complete 

approach has been shown in algorithm 2. Finally, a list of 

features giving the best performance is prepared, which are 

recommended for attack detection in the data plane. The 

different values of K for each PCC are shown in Table 2. 
 

Table 2. Combination of PCC and K for each pass 

Pass PCC K 

1 0.9 29 26 23 20 17 14 11 8 

2 0.8 26 23 20 17 14 11 8 - 

3 0.7 22 19 16 13 10 7 - - 

4 0.6 19 17 15 13 11 9 7 5 

5 0.5 17 15 13 11 9 7 5 - 

6 0.4 12 10 8 6 - - - - 

7 0.3 9 8 7 6 5 4 3 - 

4.4. Performance analysis with the UNSW-NB15 dataset 

The proposed method has been evaluated for all the 

mentioned metrics one by one, namely Precision, Accuracy, 

F1 value, Recall, Prediction Time, and Cohen's Kappa 

Coefficient. Stack has been found to perform best for the 

metrics Accuracy, Recall, F1, and CKC, while RF has been 

found to perform best for Precision, Prediction Time. This 

has been shown in Table 3. 

Table 3. Name of the classifiers performing best for the mentioned 

metrics 

SN Name of metrics 
Best 

classifier 
PCC K 

1 Accuracy Stack 0.3 5 

2 Recall Stack 0.3 5 

3 F1 Stack 0.9 14 

4 CKC Stack 0.3 5 

5 Precision RF 0.9 26 

6 Prediction Time RF 0.7 10 
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4.4.1. Evaluation of the models under Accuracy, Recall & 

CKC 

After running the process as shown in algorithm 2, it is 

found that the stack of the classifier for PCC=0.3 and K=5 

gives the best accuracy. It is also found that the overall best 

values of Recall and CKC are also given by the stack for the 

same combination of PCC and K. These have been shown 

in Table 4. 

 

Black-coloured values are the values given by the 

classifiers; blue values show the best value for the current 

combination of PCC and K, and green-coloured values 

show the overall best values for all the combinations of 

PCC and K. The greater the number of green colours, the 

better the model's performance.  

Here stack gives the overall best performance for 

Accuracy, Recall, and CKC for PCC=0.3 and K=5. For the 

remaining metrics, i.e., precision, F1, and execution time, 

evaluation is shown one by one below sections.  

Algorithm 2 Algorithm to select the best features. 

Require: Training and Testing Datasets: train_x, test_x, 

train_y, test_y. 

List of classifiers C = {C1, C2,….., Cm} 

Ensure: List of best features. 

1: Loop to select the features having Pearson's Coefficient 

value from 0.9 to 0.2  

2:  for x← 0.9 To 0.2, x = x - 0.1 do 

3:  Select the features based on Person's Correlation 

Coefficient (PCC) 

corr_features = correlation(train_x,x) ► Get 

the Correlated Features 

no_corr_features = count(corr_features) ► 

Count the selected features 

4:  Select the features based on mutual information 

(Between features and target) 

 Mutual_info_of_ftr = 

mutual_info_classif((Train_x_no_corr_features), 

train_y) 

5:  Select K best features from 100% to 20% of selected 

features  

  start  = count(mutual_info_of_f tr) 

  end = math.ceil(count(mutual_info)/10) *2 

 dec_val = math.ceil (count(mutual_in fo)/10)  

6:   for y← start To end, y= y – dec_val do 

  sel_k_ftr = SelectKBest(mutual_info_of_ftr, k= y) 

► Select K best features 

7:   Train & Test all the classifiers 

8:      for m ← 1To M do 

   Cm.fit(train_x, train_y) 

   start_time = current_time() 

   predict_y = Cm.predict(test_x) 

   total_time = (current_time() - start_time) 

  a_scr = accuracy_score(test_y, predict_y) 

  p_scr = precision_score(test_y, predict_y) 

r_scr = recall_score(test_y, predict_y) 

  f1_scr = f1_score(test_y, predict_y) 

 ckc_scr = cohen_kappa_score(test_y,predict_y) 

  9:      end for 

10:   end for 

11:  Compare the metrics given by all the classifiers and 

select the list of features giving the best performance 

12: end for 

4.4.2. Evaluation of the Models Under Precision 

The overall best precision value is given by RF for 

PCC=0.9 and K=26. It is shown in Table 5. RF is 

outperforming other classifiers under precision for this 

combination of PCC and K, but its overall performance 

under other metrics is lower as it secures only one green 

value. 
 

4.4.3. Evaluation of the models under F1 

The overall best value of F1 is given by stack for 

PCC=0.9 and K=14. It is shown in Table 6. Stack is 

outperforming other classifiers under F1 for this 

combination of PCC and K; its overall performance is lower 

under other metrics as it secures only one green value. 

4.4.4. Evaluation of the models under Prediction Time 

The overall best value of prediction time is given by RF 

for PCC=0.7 and K=10. It has been shown in Table 7. RF is 

outperforming other classifiers under prediction time for 

this combination of PCC and K, but its overall performance 

is lower under other metrics as it is securing only one green 

value. 
 

Summarily, it is stated that the stack is giving the best 

performance under four parameters, namely, number of 

features(K), accuracy, recall, and CKC for the PCC=0.3 and 

K=5. For precision and prediction time, the value of RF is 

better than the stack, where RF gives values of 84.12 and 

3.31, respectively, and the stack gives values of 81.95 and 

4.65, respectively. Here the performance of RF is a bit 

better, but it requires a greater number of features, and it is 

not giving overall better values for other metrics. So, the 

stack can be used instead of RF for attack detection. 
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Table 4. Performance of different models under different metrics while considering the best accuracy 

PCC K Classifier Accuracy Precision Recall F1 CKC Time 

0.3 5 Stack 80.93 81.95 80.93 79.85 0.74 4.65 

0.3 5 RF 78.60 82.02 78.60 78.68 0.71 8.50 

0.3 5 KNN 72.20 79.27 72.20 74.49 0.63 5.77 

0.3 5 LR 57.48 50.16 61.34 51.41 0.38 39.20 

Table 5. Performance of different models under different metrics while considering the best precision 

PCC K Classifier Accuracy Precision Recall F1 CKC Time 

0.9 26 Stack 79.04 81.36 79.04 79.83 0.71 291.04 

0.9 26 RF 75.43 84.12 75.43 77.75 0.67 4.59 

0.9 26 KNN 73.81 79.40 73.81 75.88 0.65 852.85 

0.9 26 LR 64.33 72.36 65.67 66.45 0.55 77.95 

Table 6. Performance of different models under different metrics while considering the best F1-Value 

PCC K Classifier Accuracy Precision Recall F1 CKC Time 

0.9 14 Stack 80.06 82.35 80.72 80.83 0.73 9.66 

0.9 14 RF 76.87 82.95 76.87 78.00 0.69 4.95 

0.9 14 KNN 73.75 79.53 73.75 75.79 0.65 6.70 

0.9 14 LR 55.70 65.16 56.86 58.19 0.43 53.45 

Table 7. Performance of different models under different metrics while considering the least prediction time 

 

5. Deployment of the Trained Model 
In the case of the best F1 value, the stack gives better 

values with PCC=0.9 and K=14. In this case, the stack gives 

the value of F1 80.83. This is a bit better than 79.85, which 

is given by a stack with PCC=0.3 and K=5, but a greater 

number of features is the cost.  

 

Also, the stack with PCC=0.9 and K=14 does not 

perform better for other metrics. So, it is recommended to 

use the stack for attack detection in the data plane with the 

top 5 features based on mutual information having the value 

of PCC less than 0.3. The names of such features are sbytes, 

dbytes, sload, smean, and dmean.   

 

Once the model has been trained, it is distributed across 

all OpenFlow-enabled data plane devices from which 

attacks are conceivable.  

 
Fig. 7 Attack detection module enabled data plane 

This is seen in Fig. 7 Once an attack is launched from 

any data plane device, it can be detected by a module put in 

the data plane itself. The attack detection procedure is 

depicted in algorithm 3. If attack traffic is identified, it is  

Algorithm 3 Algorithm for live attack detection. 

Require: Network traffic coming to the Openflow-

enabled devices. 

Ensure: Prediction by the model M as Attack or 

Normal traffic 

1: Capture the required features 

 F = π(f1,f2,f3…fn) (Traffic) 

2: Check if the traffic is an attack or a normal traffic  

3: if M.predict(F) = attack then  

4:  Drop the packets and exit.  

5: else 

6:  Search flow entries of all the FlowTables of all 

switches.  

7:  for n ← 1 To count(Switch[flowtable]) do  

8:        for  i ← 1 To len(Switchn[flowtable])  do 

9:              Check if any such entry already exists 

10:           if Packet_Heater_Info == [flow_entry_Match]i, 

then 

PCC K Classifier Accuracy Precision Recall F1 CKC Time 

0.7 10 Stack 79.29 79.98 79.29 78.76 0.71 5.52 

0.7 10 RF 77.17 81.98 77.17 77.94 0.69 3.31 

0.7 10 KNN 72.34 77.85 72.34 74.47 0.63 5.45 

0.7 10 LR 60.61 62.88 61.87 60.90 0.47 43.88 
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11:           Follow the pre-installed rule. 

12:    else 

13:           Send Packet_In request to the controller. 

14:    end if 

15: end for 

16:        end for 

17: end if 

 blocked in the data plane. If the traffic is identified as 

normal traffic, the SDN will function normally. 

6. Contribution 

This study examines a decentralized attack detection 

strategy for Software-Defined Networks. In this technique, 

instead of forwarding all traffic to the controller, the 

OpenFlow-enabled devices of the SDN perform preliminary 

threat detection work. This offers two distinct benefits. 

First, the data plane devices can identify the attack, 

reducing the controller's workload and allowing it to 

conduct other crucial tasks. Second, idle data plane 

resources can be exploited for some meaningful activities. 

Feature selection employing Pearson's Correlation 

Coefficient and Mutual information has been performed to 

improve attack detection lighter and more efficiently. 

To achieve this goal, the data plane devices of the SDN 

employ a stack of classifiers that outperforms the individual 

classifiers used to build the stack. The algorithms for 

training the stack and classifiers, selecting the best 

characteristics, and detecting an attack in live traffic are 

described in detail. 

7. Conclusion and Future Work 
This work highlights the disadvantage of centralized 

IDS implemented in the controller. On the one hand, while 

the controller becomes tremendously busy after the attack, 

the data plane's resources are idle. To counteract these 

shortcomings, a structure with dual benefits is designed. 

First, a suggested classifier, stack, outperforming individual 

classifiers in attack detection is selected. Second, a 

decentralized IDS is installed in the data plane's OpenFlow-

enabled devices as opposed to the controller, such that 

network attacks are only detected and dropped in the data 

plane.  
 

The performance of the model is estimated utilizing the 

UNSB-NB15 datasets. The classifier stack surpasses the 

individual classifiers regarding the accuracy, recall, CKC, 

and feature count. Its performance is slightly inferior to that 

of other classifiers in terms of precision, F1, and prediction 

time, but when other parameters are considered, the 

difference is manageable; therefore, the classifier stack is 

proposed to be installed in the network's data plane to 

identify the attacks in the live traffic. 

Future improvements can be made for multi-controller 

SDN, and the auxiliary controller can be utilized to cross-

validate whether the attack detected by the switch is 

accurate. Additionally, deep learning can be utilized to 

increase the model's performance. 
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