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Abstract - In this paper, a method of finding a path for a robot is proposed based on the calculation of the collision probability, 

partition of collision probability when a robot is being on its trajectory and the adjusted trajectory during the movement 

processing. The calculation of the collision probability and the partition of collision probability were provided to support the 

robot in deciding the movement process through a safety zone and avoiding obstacles at each time. In addition, the results of 

testing the model of the complement collision probability to build a safety trajectory for the robot with multiple obstacles had 

done. The results of the probability calculation and collision layer partition were tested, and obstacle avoidance was proposed. 

 

Keywords - Collision avoidance, Predictive probability, Collision probability, Collision prediction, Collision risk.  

1. Introduction  
In robot control, avoiding collisions with objects in the 

working area is very important. The key problem is how to 

evaluate the robot's collision probability with the movements 

in space with complex orbits and moving obstacles. 

 

In the field of collision avoidance research, many findings 

have been found [1,4,7,9,11], e.g. Certainty Grid- Moravec 

[2,3], Artificial Potential Field - Khatib [5,9], Virtual Force 

Field - Borenstein [6,7]... These methods are commonly 

applied to mobile robots but do not consider the dynamic limit, 

so, in many cases, when the robot moves in space like the 

shape of a bottleneck, it will not find a way out. Even the 

Elastic strips method proposed by Khatib [8] assumes that the 

robot's trajectory is an elastic band. The obstacle avoidance 

algorithm based on Elastic strips has been tested and shown to 

be suitable for real-time systems. However, there are still 

some limitations when it comes to practical implementation, 

which is specified in [10,11]. 

 

 
(a) Certainty Grid 

 
(b) Artificial Potential Field 

 
(c) Virtual Force Field 

 

Fig. 1 Collision avoidance method 
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(a) Velocity obstacle (VO) 

 
(b) The DCPA and TCPA concept. 

 

  

Fig. 2 Collision avoidance method based on based on the probability computation 

  

 

In recent years, a number of collision avoidance methods 

have been studied based on the probability of a collision, such 

as: Kuwata et al. [14] have used the Velocity Obstacles 

method to perform avoidance simulations for USV; Kim 

[13]and Chang [16] have performed studies using the Markov 

Decision Process as a collision avoidance measure based on 

the Markov decision-making model; Woo et al. [21] have 

tested the collision avoidance algorithm, which is based on 

deep reinforcement machine learning according to the Semi-

Markov Decision Process model. All of these methods use 

probability to determine the fuzzy concept of collision risk 

calculations or estimate ambiguous states of the dynamic 

environment. 

 

Chen et al. [15] studied a method using fuzzy logic using 

time and distance theory to the nearest approach point (TCPA, 

DCPA) for collision avoidance recognition; Park et al. [17] 

developed the models of support vector machine and 

relevance vector machine based on Bayesian theory for 

estimating collision risk index. Namgung et al. [18] used 

neuro-fuzzy to calculate the collision risk index. This study 

further examined the dynamic coefficients of obstructions; 

Fulgenzi et al. [20] performed dynamic environmental 

collision avoidance simulations by combining dynamic power 

grids provided by the sensor and the Probability Velocity of 

Obstructions. 

 

A collision avoidance algorithm based on prediction 

probability using the Kalman filter was proposed by Kim et al. 

[22]. This method uses the Kalman filter to estimate the ship's 

state variables and calculates the probability of position 

prediction based on the state variable and the predicted 

probability distribution. The proposed algorithm can predict 

states and easily plan the optimal path by considering the 

object's state variables, calculated through the prediction step 

of the unscented kalman filter.  

Most of the studies found that collision avoidance is based 

on the probability of focusing on the object's current state and 

calculating the risk of collision based on the velocity obstacle 

method. Determining the object's motion trajectory focuses on 

avoiding potential collision areas, so the robot's path is not 

optimal in terms of distance and time. 

 

Therefore, we propose a method to optimize the robot's 

path based on calculating the collision probability and 

partitioning the collision probability level, thereby helping the 

robot choose the moving area and the safety trajectory. 

 

2. Collision probability 
In [23,24], research work on calculating the collision 

probability between objects is applied not only to solve the 

problem of avoiding obstacles (transport ships, self-driving 

devices, robots,...) but also in military science, such as 

calculating the exact point and exact area of collision 

(interceptor, target point of the weapon and missile..) 

 

The robot model with a drive system consisting of two 

active wheels and one self-selecting wheel is introduced and 

shown on the Cartesian axis system in Fig 3. To perform the 

calculation of the collision probability between the robot and 

an obstacle. Assume that the robot and the obstacle are 

bounded by its sphere (3D-bounding sphere) and its circle 

(2D-bounding circle), which is its safety space of its.  

 

Considering two objects, which are moving on two 

different trajectories at each time (t), each object will occupy 

a certain space determined by the center and radius of the 

object. The two objects will only collide when those two 

spheres have a non-empty intersection domain. Thus, based on 

the intersection volume, we can estimate the collision 

probability between them. 
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Fig. 3 Robot model and coordinate system 

 

At each time (t), the intersection will certainly change if 

the velocity is changed. Therefore, the area of intersection also 

only characterizes the possibility of collision between two 

objects.  

 

 
Fig. 4 Collision domain 

 

Considering the object defined by two regions 𝛺1, 𝛺2, the 

measure of collision probability is determined by the formula 

(1), where V is the volume of the respective domains. 

 

𝑝[1,2, 𝑡] =
𝑉(𝛺1 ∩ 𝛺2)

𝑉(𝛺1 ∪ 𝛺2)
        (1) 

 

In general, formula (1) is used to calculate the collision 

probability of the two objects. In the special case, when two 

objects closely coincide with each other, the probability is 1, 

and when separated, the probability is zero, and the greater the 

probability, the higher the probability of a collision. 

 

With 2D, O(M1,r1), O(M2,r2) are bounding circles; 𝑑 =
𝜌(𝑀1, 𝑀2) is distance between the two centers; h1, h2 are the 

height of supply and demand.  

So, 

𝑥 =
𝑟1

2 + 𝑑2 − 𝑟2
2

2𝑑
; 𝑦 =

𝑟2
2 + 𝑑2 − 𝑟1

2

2𝑑
        (2) 

ℎ1 = 𝑟1 −
𝑟1

2 + 𝑑2 − 𝑟2
2

2𝑑
; ℎ2 = 𝑟2 −

𝑟2
2 + 𝑑2 − 𝑟1

2

2𝑑
        (3) 

  

𝑆1 = 𝜋𝑟1
2

𝛼

360
= 𝑟1

2 × 𝑎𝑟 𝑐𝑜𝑠(
𝑟1 − ℎ1

𝑟1

)        (4)  

 

𝑆2 = 𝑟2
2 × 𝑎𝑟 𝑐𝑜𝑠(

𝑟2 − ℎ2

𝑟2

)      (5) 

 

𝑆(𝑀1𝐼1𝐼2) = 𝑥 × 𝑧 = (𝑟1 − ℎ1) × √𝑟1
2 − (𝑟1 − ℎ1)2       (6) 

 

𝑆(𝑀1𝐼1𝐼2) = 𝑦 × 𝑧 = (𝑟2 − ℎ2) × √𝑟2
2 − (𝑟2 − ℎ2)2       (7) 

 

From (4), (5), (6), (7):  

𝑆(𝑂1 ∩ 𝑂2) = 𝑆1 + 𝑆2 − 𝑆(𝑀1𝐼1𝐼2) − 𝑆(𝑀2𝐼1𝐼2)      (8) 

 

Then, 

𝑆(𝑂1 ∩ 𝑂2) = 

𝑟1
2𝑎𝑟 𝑐𝑜𝑠 (

𝑟1 − ℎ1

𝑟1

) − (𝑟1 − ℎ1) × √𝑟1
2 − (𝑟1 − ℎ1)2 

+𝑟2
2𝑎𝑟 𝑐𝑜𝑠 (

𝑟2 − ℎ2

𝑟2

) − (𝑟2 − ℎ2) × √𝑟2
2 − (𝑟2 − ℎ2)2   (9) 

 

  𝑆(𝑂1 ∪ 𝑂2) = 𝜋𝑟1
2 + 𝜋𝑟2

2 − 𝑆(𝑂1 ∩ 𝑂2)       (10) 

 

Finally, collision probability in 2D:  

When 

|𝑟1 − 𝑟2| ≤ 𝑑 < 𝑟1 + 𝑟2; 𝑝[1,2, 𝑡] =
𝑆(𝑂1 ∩ 𝑂2)

𝑆(𝑂1 ∪ 𝑂2)
    (11) 

When 

𝑑 ≥ 𝑟1 + 𝑟2;  𝑝[1,2, 𝑡] = 0     (12) 

When 

 𝑑 < |𝑟1 − 𝑟2|;  𝑝[1,2, 𝑡] =
𝑚𝑖𝑛( 𝜋𝑟1

2, 𝜋𝑟2
2)

max(𝜋𝑟1
2, 𝜋𝑟2

2)
    (13) 

 

Similar, the calculation of collision probability in 3D 

based on e.q(12) below:  

 

When |𝑟1 − 𝑟2| ≤ 𝑑 < 𝑟1 + 𝑟2; 

𝑝[1,2, 𝑡] =
𝜋ℎ1

2 (𝑟1 −
ℎ1
3

) + 𝜋ℎ2
2 (𝑟2 −

ℎ2
3

)

4
3

𝜋(𝑟1
3 + 𝑟2

3) − 𝜋ℎ1
2 (𝑟1 −

ℎ1
3

) − 𝜋ℎ2
2 (𝑟2 −

ℎ2
3

)
  (14) 

When 

 𝑑 ≥ 𝑟1 + 𝑟2;  𝑝[1,2, 𝑡] = 0     (15) 

When 

 𝑑 < |𝑟1 − 𝑟2|;  𝑝[1,2, 𝑡] =
𝑀𝑖𝑛 (

4
3

𝜋𝑟1
3,

4
3

𝜋𝑟2
3)

𝑀𝑎𝑥 (
4
3

𝜋𝑟1
3,

4
3

𝜋𝑟2
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 (16) 

In which, 

𝑉(𝑂1 ∩ 𝑂2) = 𝜋ℎ1
2(𝑟1 −

ℎ1

3
) + 𝜋ℎ2

2(𝑟2 −
ℎ2

3
) (17) 
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𝑉(𝑂1 ∪ 𝑂2) =
4

3
𝜋(𝑟1

3 + 𝑟2
3) − 𝑉(𝑂1 ∩ 𝑂2)  (18) 

  

ℎ1 = 𝑟1 −
𝑟1

2 + 𝑑2 − 𝑟2
2

2𝑑
; ℎ2 = 𝑟2 −

𝑟2
2 + 𝑑2 − 𝑟1

2

2𝑑
 (19) 

 

 is the height of the spheres     

𝑝[1,2, . . . , 𝑚, 𝑡] =
∑ 𝑉(𝛺𝑖 ∩ 𝛺𝑗)𝑚

𝑖≠𝑗

∑ 𝑉(𝛺𝑖 ∪ 𝛺𝑗)𝑚
𝑖≠𝑗

  (20) 

 

The calculation of collision probability between two 

objects in 2D space according to formulas (11), (12), (13) and 

in 3D space according to formulas (14), (15), (16) and between 

m objects at a time (t) is determined by the formula (20), where 

V is the volume of respective domains. 

 

3. The algorithm for Partition of Collision 

Probability 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5 The algorithm for partition of collision probability 

 

4. Results and Simulations 
At each time (t), calculate the collision probability and 

build the collision probability layer. 

 

 

Input data: 

▪ xmax,ymax,zmax: the size of the observation domain 

(H) 

▪ N: number of meshing points. 

▪ x1(t),y1(t),z1(t),(u1,v1,w1): Trajectory, object 

velocity vector 1 

▪ x2(t),y2(t),z2(t),(u2,v2,w2): Trajectory, object 

velocity vector 2 

▪ R1, R2: Radius of 2 objects. 

▪ T: The time period of motion of the objects. 

▪ K: Number divided into congruent regions. 

 

Output: Level domains Si (i=0..K). 

 

The simulation data: 

Case K R1 R2 T N 

1 10 50 30 80 80 

2 10 30 30 50 50 

3 5,20 50 60 100 100 

4 5,10,15,20 50 60 100 100 

 

 

 
 

t=0 

BEGIN 

Initial Observation 

domain (H); Input 
O(M1,1); O (M2.r2) 

Input N, M 

t<=M 

Calculated probability 

p(1,2,t) base on e.q(8) 

or e.q(9) 

Confirm and choosing 

value of collision 

probability on H 

END 

Partition probability 

based on K that is the 

number of layers 

t=t+1 
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Fig. 6 Result of case 1 
 

  

  
Fig. 7 Result of case 2 

 

The calculation and simulation results of Case 1 are 

shown in Fig 6, where two objects that move closely coincide 

with each other; the probability is 1. The results of calculating 

the collision probability and partition collision probability are 
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the same. 

With the dataset of Case 2, Fig 7 shows that the collision 

probability calculation results and the collision partitioning 

are clearly shown when comparing the collision probability 

simulation results without partitioning and after partitioning, 

with the value k=10; 

 

  

  
Fig. 8 Result of case 3 
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Fig 9. Result of case 4 

 

  
 

Fig. 10 (1-P) the model with Case 3 

 

  
 

Fig. 11 (1-P) the model with multiple obstacles 
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In Case 3, with the same input data set, and changed the 

number of collision partitions with k1=5 and k2=20. The 

results showed that the calculation probabilities of both cases, 

k1, k2 were the same. However, the collision probability 

partitioning was specified, and the smaller the number of 

partitions, the thicker the endpoints of an area would be, which 

means that the decision-making for the robot to choose the 

penetration area will be safer when we partition it into more 

layers. Fig 8. 

 

Case 4 is a contribution to the robot’s path-finding 

algorithm. Here, with the same data set, different numbers of 

partitions: k1=5,k2=10,k3=15,k4=20. Calculation results of 

collision probability and probability contour partitioning have 

been done. It is remarked that when the number of partition 

layers is less, the calculation speed is faster, but the accuracy 

is low. The risk is high in the robot’s decision-making. On the 

contrary, if the number of collision probability partitions into 

more regions, the robot has more safe choices for moving, and 

the calculation speed will be slower.  

Testing the model of the complement collision 

probability (1-P): the results are the basis for building the 

safety trajectory. Fig 10 shows the result of the (1-P) model in 

Case 3; Fig 11 shows the result with multiple obstacles. 

5. Discussion 
The method of optimizing the path for the robot is based 

on collision probability, and the collision partitioning method 

was presented, which is the basis for the robot to make a 

decision to move through the safety zone and build its 

trajectory. The calculation results of collision probability and 

contour partitioning verified the mathematical model in the 

above formulas. After that, we continued researching the 

problem of collision avoidance with moving objects, 

including environmental factors. At the same time, we 

improved the collision contour partitioning algorithm for the 

robot's collision prediction problem so that the robot made 

accurate, safe and reliable decisions. 
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